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Interaction of chemical bonds. II. Ab initio theory for overlap, delocalization,
and dispersion interactions
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A zeroth-order wave function is constructed as an antisymmetrized product of two-electron group
wave functions (geminals) expanded in disjunct but overlapping subspaces of basis orbitals. The
geminals are obtained as exact solutions of the two-electron Schrodinger equations within the corre-
sponding local basis sets, and thus give a fully correlated description of the two-electron chemical
bonds coupled by inductive (Coulomb and exchange) effects, the latter being taken into account by
an appropriate effective core operator. A second-quantized formulation [P. R. Surjan, Phys. Rev.
A 30, 43 (1984)] is applied where the wave functions of the individual bonds are represented by ap-
propriate composite particle creation operators. Individual chemical bonds thus correspond to Bose
quasipartieles composed of two electrons. Second-order perturbation theory is used for calculating
interbond delocalization and dispersion effects. The treatment is based on a biorthogonal formula-
tion [I. Mayer, Int. J. Quant. Chem. 23, 341 (1983); Ph. W. Payne, J. Chem. Phys. 77, 5630 (1982)]
which makes the handling of interbond overlap very effective, and represents essentially a method of
moments in the perturbation theory.

I. INTRODUCTION

A representative class of molecules is built up of more
or less localized two-electron chemical bonds. This
feature may significantly simplify the quantum-chemical
treatment of molecules in their ground electronic state,
and contribute to a better understanding of the electronic
structure, as it was utilized in the early valence-bond-
(VB) type approaches undergoing at present a considerable
renaissance, ' as well as in various geminal and localized
molecular orbital (LMO) methods. The most successful
realizations of this theory were done at the semiempirical
level of sophistication. Howeverin ,spite of some consid-
erable effort, no widely accepted ab initio scheme has
been proposed which would make use of the above con-
cept in actual calculations. In the present paper we
develop a theory according to the following lines.

(i) Basis orbitals are constructed so that each of them
could be assigned to a particular two-electron chemical
bond, lone pair, or inner-shell orbital. This is achieved by
a hybridization procedure starting from a usual linear
combination of atomic orbitals (LCAO) basis, and possi-
bly by adding also off-centered bond functions to the basis
subset assigned directly to bonds or lone pairs.

(ii) The second-quantized Born-Oppenheimer Hamil-
tonian of the molecule is written down in the above
nonorthogonal basis, utilizing the biorthogonal formal-
ism. ' This operator is partitioned into one-bond, two-
bond, etc., terms.

(iii) A zeroth-order Hamiltonian H is defined as the
sum of the effective intrabond Hamiltonians. This H is
capable of describing interbond inductive (Coulomb and

exchange) interactions which do not produce interbond
charge transfer. Exact eigenfunctions of the effective in-
trabond Hamiltonians are determined within the corre-
sponding limited basis set assigned to the chemical bond
(lone pair, etc.) in question. These eigenfunctions are re-
ferred to as strictly localized geminals (SLG's). The
zeroth-order wave function is defined as the antlsym-
metrized product of these SLG's (AP-SLG). The
biorthogonal geminals are defined over the biorthogonal
basis functions and the zeroth-order energy is evaluated in
the biorthogonal formalism according to the method of
moments. ' ' The creation operators for SLG's obey
Bose-type commutation rules so at the zeroth-order the
molecule is viewed as a system of Bose quasiparticles
which are, of course, not elementary but are composed of
two electrons. The internal structure of these Bose quasi-
particles is affected by the inductive interbond interac-
tions. Composite particles in electronic systems, although
in another context, have been introduced previously by
several authors. '

(iv) To improve the quasiboson approximation a many-
body perturbation approach is developed. It has the spe-
cial feature that it works with the biorthogonal orbitals
and starts with a reference state which is an eigenfunction
from the right of a formally non-Hermitian zeroth-order
Hamiltonian. The perturbation theory (PT) is expected to
show a very fine convergence behavior since we have a
very accurate AP-SLG reference state: it is highly corre-
lated giving essentially an exact account of the chemically
most important ("left-right") electron correlation. So, the
role of perturbation theory is merely to take into account
indeed small interbond overlap, delocalization, and disper-
sion interactions.
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II. THE PARTITION OF THE HAMILT, ONIAN

We define a set of reciprocal basis functions (spin orbi-
tals)

q„=ps„„'x„

(Sz„' being a shorthand notation for the elements of the
inverse of the overlap matrix Sp„——(Xp ~

X„)), which are
biorthogonal to the original basis spin orbitals X~..

(~„~x, ) =~„, . (2)

The creation and annihilation operators 7& and Xz,
respectively, corresponding to the nonorthogonal basis
[Xj, obey the following commutation rules:"

XP Xv +Xv XP SPv

and similarly for y@ with S& replaced by S& '. Usual
fermion commutation rules are formally recovered for
pairs of operators of direct and reciprocal basis:

(4)

That is, a mixed use of original and reciprocal fermion
operators allows us to use the calculus (Wick's theorem, '

etc.) valid for the orthogonal case.
The total Hamiltonian can be expressed by means of

operators 7+ and y as: '

H=Xh;~~ &. + 'X [pal ~-~]x,'X.'~.@~ .
P, V, A., CT

Here the indices refer to spin orbitals, h„- =(p„~ h
~ X&)

is the matrix element of the core, while [pv
~

A,cr] is the
usual two-electron integral in the [12~12] convention.
Here and further on the tilde refers to reciprocal orbitals.
Now, the summation indices can be distinguished accord-
ing to the bonds (lone pairs, etc.) that they belong to

X—=XX

(i) (j)
H;J =g gh„-Q~+y, (term A)

P V

(i) (j)
g [ge

~
~p]xq+X~+q) p y „(term 8 )

'g~ &, K P
(i) (j)

g[ge ~ ap]Xv X, y y„(term C)
Y/, K,p

(i) (j)
+ —,y g([ge

~
~p] [g—e

~

p~])x~+x+y p q „
'g~ K 6~P

(i) (J)
+ 2 X X[a~ I ~p»& X'V, V . .

7/, E K,P

(9)

The operators H,Jk and H,Jkl describe simultaneous
three-bond and four-bond interactions which are of less
importance, thus their expression is not reported here (see
Ref. 7); this is expected both from qualitative reasoning as
well as because they do not give contributions up to the
second order of PT we are going to consider. A very sim-
ple Coulomb part of them will be, however, included in
the effective core discussed below.

Various terms in Eq. (9) have simple physical meaning.
The operator string in term A, 7& y, annihilates an elec-
tron on the bond j while it creates one on the bond i. Ac-
cordingly, it describes a j~i electron delocalization
(transfer). The terms 8 and C have similar meaning. The
operator string in the fourth sum of Eq. (9) conserves the
particle number on both bonds i and j; this term describes
the interbond Coulomb and exchange interaction and
dispersion. Finally, the last term accounts for a two-
electron charge transfer from j to i which is evidently of
minor importance and will be neglected.

III. THE ZEROTH-ORDER WAVE FUNCTION:
ANTISYMMETRIZED PRODUCT

OF STRICTLY LOCALIZED GEMINALS

Let us assume an effective Hamiltonian H,' to be
known for the bond i Its conn. ection with the terms of
Eq. (7) will be specified below. As will be seen, the opera-

@tor H,' is, in general, non-Hermitian due to the inter-
bond overlap. The two-electron Schrodinger equation
within the subspace of basis orbitals assigned to the bond
i then reads

H,' g,+»
i
vac) =E»f,+»i vac). (10)

where i runs over all bonds and the symbol (i) indicates
that the summation is to be performed over basis orbitals
assigned to i. Equation (5) can thus be written in form of

H=gH;+g'H;, +g'H, ,k+ g' H,,„, ,
i,j,k ij,k, l

(i) (i)
H~=X~-»Xy'p» + 2~ 2 [pal ~~]XIX»%'n%z

P, V, A, O'

where the indices i, j, etc. do not coincide. For the one-
bond and two-bond operators one obtains by simple alge-
braic manipulations

for the state q (q =0, 1,2, . . . ), where the two-elec-
tron creation operator g,+» has the general expansion

(i)

q,+»= g c„"„x~+x+ .
@~V
P(V

The corresponding two-electron annihilation operator is
defined over the reciprocal basis space as

(i)

PI Qcp~ p» gp (12)
P, V

P(V

It can be shown easily that the operators f,+, P, obey the
following commutation rules:
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4k 4—'k 0
A A+ A+A A

4k —4k 4' =Q.5k .

(13)

(14)

(k)
h„'„=h„+ g QPk ([pA,

~
vo] —[pA,

~

ov]),
k (~i) A.,o.

Equations (13) and (14) correspond to Bose-type commu-
tation which is a natural consequence of the fact that the
operators g~+, P, defined by Eqs. (11) and (12) describe a
system of integer spin. There is a deviation from the usu-
al Bose-commutation rule, the appearance of operator Q;
for which one obtains, after some algebra,

(i)

Qi 1+ g ct,kckpXp P v

P, V, A,

where the presence of the sum in the right-hand side (rhs)
is the consequence of the composite nature of the Bose
particles created by fi;+.

The operator Q; has the important property that, acting
on the vacuum state, it behaves iri the same manner as the
identity operator:

p, vEi . (21)

ffThe Hamiltonian H,' using this effective core is capable
of describing interbond inductive interactions. The next
step is to symmetrize the integrals Ii„'- and [pv

~

A,o] ap-
pearing in Eqs. (8) and (21), i.e., to introduce

( j, ~&f + j, «&
) /2 (22)pv pv vp

[pv f
A,o]= —,'([pv

(
Ao]+, [Aof p, v]) . (23)

The antisymmetric counterparts, as, e.g., (h'-„—h-'„)/2,
will be considered as a perturbation. The reason for this
symmetrization in Eqs. (22) and (23) is that it warrants
that the states g,+»

~

vac ) as obtained by the local
Schrodinger equation (10) will be biorthonormal to each
other for different states:

Q; i
vac) =

i
vac) . (16) ( vac

~ P, ~i',+»
~

vac ) =5~» . (24)

Therefore, from the commutation rule (14) one obtains

i
vac) =(hatt;+qY; +Q;) i

vac) =
i
vac) . (17)

That is, the biorthogonal operator P, in fact annihilates
the quasiparticle created by operator P,+. The formalism
of these Bose-type operators is based on Eq. (17), and the
operator Q; does not appear in any further formulas of
ours.

For the sake of further development, the following
quantities are defined.

(i) Generalized first-order density-matrix elements for
the ground state of the bond (p, v, ei ):

P~~ —(vac
~ P l X~ Ip ~ Q; ~

vac)
(i)

cpgcv (18)
A,

(ii) Generalized first-order transition density-matrix ele-
ments corresponding to the local, O~q excitation within
the bond i:

P„' (vac
( P, X~+@„P+=»

~

vac)
(i)

=gczkc'$ (q =1,2, 3, . . . ) .

The validity of Eqs. (18) and (19) can easily be shown by
inserting the expansion of the Bose operators (11) and
(12), applying Wick's theorem and introducing the con-
vention

j
Cvp = cpv (20)

for p & v. (Note that only the upper triangle of matrix c&„
enters the original definition Eq. (11) of P+.)

Let us now turn to the problem of defining the effective
Hamiltonian for the bond i. First, it can be seen that the
fourth term of Eq. (9), which describes interbond electro-
static interactions, does have an average value which can

ffbe incorporated into H,' as an effective core in the usual
manner:

Hlk, jail'5kj+hkj 5I +['lk
~

&j]' (27)

where the subscripts refer to spatial basis orbitals. The
system of equations (26) for the different bonds i are cou-
pled through the Coulomb and exchange interaction in-
corporated into the effective core, therefore it should be
solved iteratively. However, according to our experience
based on semiempirical schemes, ' such iterations con-
verge very fast.

According1y, the final effective Hamiltonian for the bond
i is defined as

(i) (i)

=QIipv&p 0'v + 2~ g [Pv I
~o'Pp&v F n V'k

(25)
Note again that H'; is still not Hermitian since the fer-
mion operators 7& and y& are not the adjoints of each
other.

The important point here is that this non-Hermiticity is
somewhat formal; it accounts for basis overlap effects (in
orthogonal metrics the direct and reciprocal basis orbitals

ffwould coincide and H,' would become Hermitian). The
mixed use of operators X+,P+, related to the direct orbi-
tal space, and of @,P related to the reciprocal one per-
mits us to apply formally the same calculus which would
be valid in an orthogonal basis set. Once the list of in-
tegrals has been transformed to the biorthogonal basis (in
the first two indices), and the intrabond integrals have
been symmetrized, one need not take further care of basis
overlap effects at the zeroth order one has to solve, e.g.,
Hermitian matrix-eigenvalue problems for each bond.

The local Schrodinger Eq. (10) for the expansion coeffi-
cients c&q„and the bond energies Eq has the matrix repre-
sentation

QHk' qg„'~„=E,»c»k (q=0, 1,2, . . . ) .
P)V
P(V

It can also be rewritten in terms of spatial orbitals. After
spin adaptation, the matrix elements of the effective
Hamiltonian for singlets, e.g., become
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The ground-state wave function %p of the molecule is
now written at the zeroth order as

Hermitian eigenvalue problem. We have, however, anoth-
er set of functions 4x biorthogonal to the original ones:

I
'pp& =@i'@z . @.+ I

vac& . &4'x
I
+l. & =41. ~ (35)

Note that 'II0 is properly antisymmetric in the variables of
electrons, while the two-electron bond creation operators
obey the symmetric commutation rules (13). Accordingly,
%p can be referred to as the antisymmetrized product of
strictly localized geminals. Its biorthogonal counterpart
N0 is defined as

& ~'p
I

= &»c
I 0 ~ 0 z

' (28')

where the Coulomb and exchange correction appears be-
cause the sum of individual bond energies E; accounts for
the interbond electron-electron interaction twice.

IV. BIORTHOGONAL PERTURBATION THEORY

In this section the generalization of the nondegenerate
Rayleigh-Schrodinger perturbation theory to the case of
non-Hermitian zeroth-order Hamiltonians is considered.
We apply essentially the method of moments, the
biorthogonal functions being chosen as weight functions.

Let H be the non-Hermitian zeroth-order Hamiltonian
and 4 be its eigenfunction from the right:

H0%K =EK%0K . (30)

The exact wave function %x. and the exact energy Ex ful-
fill the Schrodinger equation

(H +W)+x Ex+x . ——

Since the total Hamiltonian is Hermitian, but H is not,
8' is not Hermitian either. The O'K can be expanded in
terms of the zeroth-order solutions

The total electronic energy at the zeroth order is readily
seen to be

E=(@p
I

H
I

%'p)

(i) (k)
=RE —

2 X 2 X&&P~ ((vv I
~~]—I:v~l~~]),

ki pv A, ,~
k+i

Then, multiplying with these biorthogonal functions from
the left and integrating, one obtains the following
straightforward generalization of the usual perturbation
formulas:

( Nx.
I

W 'kL ) ( Nl
I

W
I
@x )

0 0
L (~K) EL —EK

(36)

(37)

V. EXCITATIONS:
ONE- AND THREE-ELECTRON STATES

The biorthogonal PT developed in Sec. IV is now ap-
plied for describing interbond interactions. We choose the
AP-SLG wave function as the zeroth-order wave function
and the sum of effective intrabond Hamiltonians

etc. Note that the matrix WxL ——(C&x.
I Wl +L ) is not

symmetric. It will turn out that the evaluation of these
matrix elements is extremely simple as compared to the
difficulties which one would encounter without utilizing
biorthogonality, i.e., using merely the overlapping direct
space wave functions 4x. Whenever the perturbation ex-
pansions (33) and (34) converge, one obtains the exact
solutions Ex and %x for the given basis set.

As noted above, the present approach is similar to the
method of moments. ' ' One argument against the use of
the method of moments in connection with
configuration-interaction (Ref. 6) or VB (Ref. 9) ap-
proaches is that the resulting energies do not serve as
upper bounds to the exact energy. This objection, howev-
er, is not relevant in connection with the PT which does
not give upper bounds even in the traditional case. More-
over, it can be shown (cf. also Ref. 6) that our zeroth-
order energy (29) does represent a strict upper bound.

At the expense of working with non-Hermitian opera-
tors, our formalism permits us to incorporate the most
important overlap effects already at the zeroth order of
PT. This offers the promise that quickly converging per-
turbation expansions will be obtained.

+x=QCxi. +I. ~

L
(32) H'=gH'" (38)

The coefficients CxL and the energies E~ are expanded in
the usual manner as the zeroth-order Hamiltonian. The perturbation opera-

tor W has the following terms:

CxL, =&xL, + g CIrL, ~

@=1

EK ——EK+EK+EK+. . .

(33)

(34)

w =ps, ++II',,", (39)

These expansions can be substituted into Eqs. (31) and
(32). In the usual PT the formulas so obtained are multi-
plied by the zeroth-order functions from the left, and then
integrated, providing expressions for CgL and Eg. In the
present problem, however, the zeroth-order wave func-
tions do not represent eigenfunctions from the left; neither
form an orthogonal set, being obtained from a non-

where we consider only effective two-bond interaction
terms since three- and four-bond interactions do not ap-
pear up to the second order of PT. In the first term on
the rhs of Eq. (39), S; is due to the antisymmetric com-
ponent of the intrabond integral (hyper) matrices [note
that only the symmetric component has been included at
the zeroth order, cf. Eqs. (22) and (23)]:
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(k)
h„'„=h„,+ g QP)„([pA,

~

vcr] —[pA,
~

harv])
k (+i jj A.,o

(41)

which accounts for the electrostatic effect of the third
bond k on the i ~j delocalization, similarly to the corre-
sponding electrostatic effect of all the nuclei, included in
h„. We therefore know the explicit second-quantized ex-
pressions for the various terms of the perturbing operator
and now we are faced with the problem of how to
represent excited states.

In calculating the effects due to the overlap term Eq.
(40), the particle-hole operators X& y, , etc. , describe
merely intrabond excitations. This effect can be termed as
"overlap polarization. " This corresponds formally to a
one-bond term originating from the overlap, which could
not, however, be included in the zeroth order due to the
reasons discussed above. Accordingly, such contributions
can be evaluated in terms of zeroth-order excited states of
individual bonds, i.e., by using the many-bond wave func-
tion

I

q" &=4'~+'0 r I
+'o& . (42)

That is, the 1th bond is excited to the state q.
Another type of terms appears in the two-bond part of

the perturbing Hamiltonian describing electron delocaliza-
tion. Here the particle-hole operators annihilate an elec-
tron on the bond i and put it on the bond j, or vice versa.
The relevant many-electron excited states can be written
as

~

q/0
&

j+(3)qy+(1)pj y
—

~

q/0&— (43)

where p; ' 'p and g J+' 'q are the creation operators for the
one- and three-electron states on the corresponding bonds,
respectively (see below).

Finally, in order to describe interbond dispersion effects
generated by the fourth term of Eq. (9), one has to consid-
er simultaneous local excitations on two different bonds:

I'p~" &=@I+'0+'0, 0 I
q'o& . (44)

The biorthogonal counterparts of the last three equations,
which are also needed in the. biorthogonal perturbation
theory [cf. Eq. (37)], are readily seen to be

(@x
~
=(@0~p~+p~ q (overlap polarization), (42')

&Cx
~
=&CPf,+y,+y '"j;""(delocah. a«o ),

(43')

(4x"
~

= (NP f,+QJ P, PP J
q (dispersion) . (44')

(i)
s, =g-,' (h'" —h'")x+-—

P, V

(i)
+ —. g ([v~l ~~l —[~~ lvvl»„+x.'m. y~ .

P, V, A, ,O

(40)
A.

The two-bond operator H,'j -is essentially the same as that
given in Eq. (9), except that we neglect the two-electron
charge-transfer term, but we use an effective two-bond
core

By means of the above expressions, using the actual
(3)form of operators g; q, g; ' 'q, and P+' 'q, and applying

Wick's theorem the perturbation energy corrections can be
evaluated in a straightforward manner. The actual form
of the matrix elements and that of energy corrections will
be given in Sec. VI. Now we discuss the one- and three-
electron states appearing in the perturbative treatment of
electron delocalization in some detail.

As to the one-electron operators )It,+'"q, they represent
no special problem since they can be expanded simply as

(i)
~~ +(1)q y iqx+

p p
p

(45)

and the coefficients cp~ can easily be calculated by solving
the local one-electron Schrodinger equation for the bond i,
giving the various one-electron states q. Note that, for the
sake of simplicity, we use the same effective core operator
as a one-electron Hamiltonian which has been obtained by
solving the coupled two-electron problems over the whole
molecule iteratively.

The three-electron states are expanded as

g,+""= g c„".gx~+x+xg+ .
P, V, A,

P(V(A,

(46)

The coefficients can be obtained by solving the local full
configuration-interaction (CI) problems for three elec-
trons, which read

In larger basis sets, however, the solution of Eq. (47) can
be rather expensive. So, it is desirable to solve it for dou-
blets only since the quadruplets cannot be coupled with
one-electron doublets to form a singlet excited state, the
latter being of the only interest. Moreover, perhaps it will
be sufficient to obtain an approximate solution of Eq.
(47). The operator H,' in Eq. (47) is built up by using
the same effective core obtained by solving the two-
electron problems, thus the evaluation of the matrix ele-
ments in Eq. (47) is straightforward. It is to be stressed
that the exact full CI solution of Eq. (47).is manageable in
most cases due to the limited number of basis orbitals as-
signed to the bond i In a "dou.ble-zeta" (DZ) type basis
set, e.g., one has four spatial, i.e., eight spin orbitals as-
signed to each bond; this means 10 two-electron singlets
and 20 three-electron doublets only.

VI. MATRIX ELEMENTS: SECOND-ORDER
ENERGY CORRECTIONS

Let us consider first the matrix elements of the overlap
polarization terms of Eq. (40). We have pointed out that
the polarization-type excitations (42) and (42') are relevant
in this case. For the O~K matrix element we have

(i)

g &vac
~ ~.+,+, II;"-x+x-+x-~+

~

-.&.„"„,=z,q..';, .
P, V, A,

P (V(A,

(47)
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(4~ gS,: 4» = —,'g g g 4g g(h„'-„' —h-'„„)X»+y„+—,
' g ([pv At»] —[)c7(pv])X»+X+y y» ()~+~(), Vp),

i l q
(48)

where i and I run over all bonds while q runs over the
internal two-electron excited states of the bond l. By sub-
stituting the form of the AP-SLG wave function from
Eqs. (28) and (28'), as well as the expansion of the direct
and biorthogonal Bose operators of Eqs. (11) and (12), and
applying Wick's theorem, Eq. (48) reduces to

4o S;

(l)
+ —. X ([] vl~~] —[~~l] vl)cI,'w~. , (49)

~'o Si +x

where the generalized first-order density-matrix elements
P&~ have been defined in Eq. (19), and the particular ex-
cited state K considered is the O~q excitation on the
bond l.

It is easy to write down Eq. (49) in terms of spatial or-
bitals:

It is of interest to note that the first term of Eq. (50),
for instance, containing the core integrals h'„, can be
rewritten by substituting the form of the biorthogonal or-
bitals from Eq. (1) as

(l)
] y[s —] heff] Pf(] (50')

m, n

which shows that, as far as h' were proportional to the
overlap matrix S, the overlap polarization effect would
disappear. This condition, of course, is not fulfilled exact-
ly but some correlation between h and S matrix elements
certainly exists.

Matrix elements of the delocalization and dispersion
operators can be evaluated in a similar manner. Let us
denote the charge-transfer terms of the two-electron Ham-
iltonian, Eq. (9), by A, B, and C [the first three terms of
Eq. (9), respectively]. For their matrix elements one ob-
tains, in terms of spatial orbitals,

(l) (j)
&e,ol ~

l

q~o&=2y yh.ffc!"„jc.'„c]j, , (52)
m, n r, t, s

(l) (j)
&C'0

l

B
l g & = —2 g +[he «]c/f c/„c~~c,', , (53)

h, e, k r, t, s

(j) (l)

o l l
~z&= g g[ e

I
«]cP'c'fc&. (c/l. —clk»

h, krs e f
(l)

([mn
l
rs] [rs

l
mn])c' „c„',—, (50)

(54)

lq lqp(] gpg (51)

the o being the spin label (a or /3). The spatial coeffi-
cients c~~„correspond to a singlet (ground or excited)
state. ,

m, n, r, s

where the generalized spatial transition density matrix
P~~„ is defined as

where the particular excitation considered is the electron
transfer from the bond l to the bond j, with the one-
electron state p on the bond I and with the three-electron
state q on the bond j. A quite similar set of expressions
holds for the matrix elements of type &@]r

l

W
l

q~o&. The
relevant perturbation corrections can be obtained by sub-
stituting the above matrix elements into the general
second-order formula Eq. (37). We have for the overlap
polarization

Ef E[—l q

C'o Si +e +'rc Si +o

aE(S)= —g (55)

for the delocalization terms

[doU»«~]
& 40

l

A +B+C
l
%x & & @x

l

3 +B+C
l

]I'0&
b, E(deloc) =— (56)

while for the interbond dispersion we get
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g g([he
f
kr] ——,

' [he [ rk])Pt kP,'e
h, k e, r

b, E(disp) =- —g Ef+E~ E—t E-J J

1

4

~ ~=+] ms~+Ms~=0)

(j) (1)

g +[he
~
rk]P/kP, '„

h, k e, r

Ett+Ei E ——E. (57)

with obvious notations for the S, quantum numbers Mz.
Equations (50)—(57) are the working formulas for the

perturbation calculation of interbond interactions in the
present scheme. Although they may appear to be compli-
cated, they are computable with a rather small effort.
The working integral list is obtained by a two-index
transformation to the biorthogonal basis set. Qnly one-
and two-bond integrals are needed except the two-bond ef-
fective core in which certain types of three-bond integrals
appear [cf. Eq. (41)]. Anyway, only a very small portion
of the whole integral list should be transformed into the
biorthogonal basis. Since it is expected that some 90%%uo of

the (self-consistent-field and correlation) energy is ac-
counted for already at the zeroth order, the perturbation
theory up to the second order should give very accurate
results. The proposed method is not a variational one,
partly due to the application of the perturbation theory
and partly due to the biorthogonal formalism. The
method is, however, size consistent and accounts for dis-
sociation properties properly. Therefore it is adequate in
studying potential energy hypersurfaces. Preliminary
zeroth-order results, as obtained by semiempirical model
Hamiltonians, are encouraging; the computer realization
of the present ab initio theory is now in progress.
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