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Coupled-cluster method in Fock space. II. Brueckner-Hartree-Fock method
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The generalized coupled-cluster (CC) method of the preceding paper is cast into the form of the
Brueckner-Hartree-Fock (BHF) method. In this approach the model vacuum 4 is optimized to be-
come the maximum-overlap configuration for the reference eigenfunction %. One of the approxima-
tion schemes of the preceding paper is applied to derive explicit algebraic equations which can be
used for practical calculations of (approximate) energies of several states of a many-fermion system.
These include the S-particle ground-state energy, energies of some (S—1)- and (5+1)-particle
states, as well as energies of certain X-particle excited states. It is indicated that the numerical ef-
fort required in the present approach is comparable to that of the coupled-cluster singles and dou-
bles (CCSD) method of Purvis and Bartlett [J. Chem. Phys. 76, 1910 (1982)].

I. CHOICE OF MODEL VACUUM

In the preceding paper, ' hereafter referred to as paper I,
a generalization of the coupled-cluster (CC) method has
been proposed. Although being essentially a single-
reference approach, this generalized CC method may pro-
vide an access to an (in principle) arbitrary portion of the
spectrum of the Fock-space Hamiltonian H. When deriv-
ing the generalized CC equations (see Sec. VI of paper I)
we found it convenient to assume that the reference con-
figuration N (model vacuum) is the maximum-overlap
configuration for some reference eigenfunction 4 of M.
In the present paper we would like to reformulate the
theory of paper I such that optimization of 4& towards the
maximum-overlap configuration is taken into account.
Another purpose of this paper is to apply one of the ap-
proximation schemes described in Sec. VII of paper I, and
obtain a set of generalized CC equations suitable for prac-
tical computations. Solutions of these equations (CC am-
plitudes) may be used for calculating (approximate) values
of the N-particle ground-state energy E and energies of
some (N 1)- and (N + —1)-particle states, as well as ener-
gies of certain excited N-particle states of a many-fermion
system.

In Ref. 2 we showed how the usual single-reference CC
method can be modified to allow for the above-mentioned
optimization of 4. We shall refer to this modified version
of the CC method as the Brueckner-Hartree-Fock (BHF)
method. A fairly extensive bibliography of the BHF
method and related subjects can be found in Ref. 2.
Below we shall combine results of Ref. 2 and paper I to
formulate the BHF method in Fock space. The notation
of paper I will be employed. When referring to a formula
of paper I, we shall hereafter simply quote its number
preceding it by the Roman numeral I.

It is instructive to consider first the usual Hartree-Fock
(HF) method. Since the algebraic approximation is em-

ployed, one should speak rather of the Hartree-Fock-
Roothaan (HFR) method. Here, as in the case of the
BHF method discussed further, the one-particle space N

remains fixed, and only partition (I.24) is to be found.

f„t'= rip„——0, (2)

Additional conditions may be imposed [see Eqs. (I.32c)]:

f = —g = 5 (3a)

f„'=ri„'=e„5„' . (3b)

According to Koopmans's theorem, ( —ez) approximates
an energy of detachment of a particle from the N-particle
system, and e„approximates an energy of attachment of a
particle to this system. Conditions (2) and (3) correspond
to diagonalization of operator f of Eq. (I.34) within the
space Ki ——N [see Eq. (I.ll)]. Since f depends on its
eigenfunctions, an iterative procedure known as the self-
consistent-field (SCF) method is necessary in this case.
The self-consistent eigenfunctions of f are known as the
canonical HF spinorbitals.

In the case of the BHF method the basic requirement
1S

(4&
~

4) = maximum, (4)

for @ and 4 both normalized to unity. The necessary
condition for (4) means that the overlap integral is station-
ary. It can be shown that in this case for the generalized
CC operator 0 of Eq. (I.116) one has

O,J ——Op, ——0, (S)

for p=1,2, . . . , N, and r=N+1, N+2, . . . , M. In Ref.
2 we showed that to impose the necessary condition for (4)
one can assume that (S) holds and the Brueckner spin or-
bitals (corresponding to the maximum-overlap configura-
tion N) can be determined from equations [see Eq.
(I.113a), and Fig. 4(a) of paper I]:

TIJ =XP =

The HF condition reads [see Eq. (I.33)].

(4
~

H
~

4) —= ri = minimum .

The necessary condition for (1), 71 stationary, is equivalent
to the requirement [see Eqs. (I.32b) and (I.32d)]
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b„i'= (bp')* =yp',

bp =(b ~)*=—,' (yp —+y ~),

(8a)

(8b)

b, '= (b,")'= —,
' (y„'+y, "), (8c)

and it is assumed that the generalized CC operator 0 ful-
fills condition (5). By definition (8), operator b is Hermi-
tian. Now, when b is made diagonal, condition (6) is au-
tomatically met. It should be stressed that also in this
case a SCF procedure is needed. Since b depends not only
on spin orbitals, but also on (generalized) CC amplitudes,
the problem of so-called double self-consistency emerges
in this case. One can notice that because of definition (8b)
[(8c)] the Hermitian part of matrix C'rh (Cx~) becomes di-

agonal when operator b is diagonalized [see Eqs. (I.113b),
and Eqs. (I.102) and (I.103)]. This means that for this
choice of (self-consistent) Brueckner spin orbitals (we
shall call them canonical) one has

gp = —go.

for p&o, and

gr = —gs

(9a)

(9b)

for r&s. It is seen that when anti-Hermitian contribu-
tions (9) are small, the set I

—ez] of eigenvalues of b ap-
proaches exact particle-detachment energies of the X-
particle system, whereas the set IE„I of eigenvalues of b
approximates particle-attachment energies. When the
above assumption is not justified, diagonalization of non-
Hermitian matrices (I.103a) and (I.103b) should be per-'

formed.
In Sec. II explicit BHF equations will be derived using

approximations introduced in Sec. VII of paper I.

II. APPROXIMATE VARIANTS OF BHF METHOD

Approximations described in Sec. VII of paper I can be
applied equally well to the BHF method of Sec. I. In any
approximation scheme, some model vacuum 4 (e.g. , the
HFR determinantal wave function) is assumed as a start-
ing point. A truncated (generalized) CC operator 0
(primes used in Sec. VII of paper I will be suppressed
hereafter) is constructed assuming condition (5). The
BHF operator (7) is then built according to definitions (8),
and the eigenvalue problem for this operator is solved
self-consistently [this includes solving a proper set of gen-
eralized CC equations (I.140)]. Finally, an effective Ham-
iltonian (I.141) is built following prescription (I.142), and
its eigenvalues are calculated to approximate eigenvalues
of Hamiltonian H. Below two examples of approximate

for p= 1,2, . . . , N, and r =X+1,%+2, . . . , M. Below
we modify slightly the formulation of the BHF method
given in Ref. 2. It will be useful to introduce the BHF
operator b of the form

b=b;Ja a~,
where we define [see Eq. (I.113b), and Fig. 6(b) of paper I]
[operator b should not be confused with one of the fer-
mion operators of Eqs. (I.27)]

variants of the BHF method are considered.
(i) The variant corresponding to L =0 and IC0=4.

This is exactly the BHF(2) method described in Ref. 2.
Here [see Eq. (I.139)]

=O4O (10)

and the corresponding CC equations read [see Fig. 4(b) of
paper I]

(rr &.rrl o —(z

(b) (rr rrr r')
I I I ]L]

( ) + — (6

(c) (rrr rr) o —( )

( I ( I
(d) (r rr err 1 o — ( j

FICr. 1. Approximate diagrammatic expressions for parame-
(a) 7'jik)mn) (b) aijkrmnpq (c) &ijl&m", (d) +ijklmnp

Figs. 1—3 of paper I.

Xijkl Xpo rs

for p &a and r &s. Equations (6) are taken into account
when the eigenproblem for the BHF operator (7) is con-
sidered. In this approach only the ground-state energy E
is determined.

(ii) The variant with L =1, Ko ——4, and ICi ——3. This is
one step beyond the previous approximation scheme. We
are going to discuss this variant in detail. For the CC
operator one has formally

O4Q+ O31 (12)

and, besides Eqs. (6) and (11), the following CC equations
are to be solved [see Fig. 5(a) of paper I]:

„~=0 for p(o
7 iJk (13)

yz„,
'——0 for r &s .

One can notice that now Eqs. (6) and (11) contain more
terms than in the case. of variant (i). This is because in
variant (i) all the CC amplitudes, except amplitudes 0& „„
are set equal to zero. In variant (ii) higher amplitudes rz
for x & 6 [see Figs. 1(a) and 1(b)] can be approximated by
linked terms built of amplitudes 0&,& and 0&„,'. The same
applies to amplitudes ~z' for x )5 [see Figs. 1(c) and 1(d)]
which appear in Eqs. (13).

Variant (ii) seems to be the most general BHF method
involving unknowns (CC amplitudes) which are at most
four-indexed. It can be shown that in this case construc-
tion of the left-hand sides (lhs's) of Eqs. (6), (11), and (13)
can be reduced to procedures for which computation
times scale approximately like M, where M is the dimen-
sion of the spin-orbital space Jf . Hence, the numerical ef-
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(a) I~I+( ) + ( ) = 0 0 = 0

(b)
(b) )$ + ( ) +( )+( )

+( )( ) + ( )( ) = Q

(c)

(c) I l

I

+ ( ) + L. )
+ ( )( ) + ( )( )

+ ( ) — ( ) + ( )

! !

+ ( )( ) + ( )( )

FIG. 3. Approximate BHF equations in the diagrammatic
form: (a) y=g =E, (b) y; =g;, (c) yfj gfj Compare with
Fig. 6 of paper I.

FIG. 2. Approximate BHF equations in the diagrammatic
form: (a) y;J =0, (b) yfJkl ——0, (c) y;Jk' ——0. Compare with Figs. 4
and 5 of paper I.

ters of the effective Hamiltonian [see Eqs. (I.141) and
(I.142) are depicted in Fig. 3. We neglect here three- and
higher-quasiparticle interactions. In Sec. III an algebraic
form of the diagrammatic equations of Fig. 2 and 3 will
be given. We shall refer to these equations as approxi-
mate BHF equations.

fort required for solving the generalized CC equations in
variant (ii) should be comparable to that in the coupled-
cluster singles and doubles (CCSD) model. Let us also
notice that Eqs. (6), (11), and (13) of variant (ii) corre-
spond exactly to those terms in Hamiltonian H of Eq.
(I.31) which are responsible for H not being a
quasiparticle-number —conserving operator.

It is difficult to assess now whether inclusion of terms
depicted in Fig. 1 will improve the results (the energy
spectrum) calculated in variant (ii). Hereafter we shall
consider a simplified variant (ii) in which the amplitudes

shown in Fig. 1 are set equal to zero. The resulting
diagrammatic CC equations are shown in Fig. 2. Parame-

III. BHF EQUATIONS

The BHF equations depicted in Fig. 2 and 3 can be
translated into an algebraic form with the help of formula
(I.B18) and its analog derived in the appendix of the
present paper [see Eq. (A9)]. An example of the applica-
tion of Eq. (I.B18) is given in Fig. 2 of paper I. It should
be pointed out that the generalized Kronecker deltas in
Eqs. (I.B18) and (A9) are used simply to antisymmetrize
the resulting algebraic expressions. Below the BHF equa-
tions of Figs. 2 and 3 are expressed in the algebraic form.
Einstein's summation convention is employed; each unre-
stricted summation over n equivalent indices gives rise to
the factor (n!) '. The equations of Fig. 2 read

kl & klm klm
Xij = lij + Y 1 ~klij + 6 ( li ~klmj lj ~klmi )

m~ m~ m~
Vijkl Iijkl + Ii ~mj kl Ij Omikl + Ik Omij l

m & mn mn mn mn mn mn
ll ~mijk+ 7( lij ~mnkl+ ljk ~mnil lj! ~mnik lik ~mnjl + lil ~mnjk+ lkl ~mnij )

+ ( 1 ) 6 gl (Omijkonpq! ~mj kl ~npgi +Omikl ~npqj ~mijl()npqk )

+ 4~ l mnij pgk! + mnj k pqi! mnik pqj!

l l lm & lmn lmn lmn
Yijk lijk + I ~mijk+ Y( li ~mnjk 9j ~mnik+ lk ~mnij )

m l m l m l m l & mn l mn I mn l+ i)i ~mjk glj ~mik + lk ~mij Oijk ) m + 2 ( ilij ~mnk +gljk ()mni lik ~mnj )

+( ) 6 l (~mij ~npqk+Omjk (lnpqi ~mik 'gnpqj )

+( ) 4 1 (omni ~pqjk ~mnj l)pqik+~mnk gpqij )+( ) 6 1 ()mnp ~gijk

The BHF equations of Fig. 3 read

V I+ z4 I ijkl g

(14a)

(14b)

(14c)

(15a)
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(15b)

kl kl & klmn km I lm k & kmn 1 lmn k Imn k kmn l
Yij lij + 2 ) 8mnij+ ) 8mij ) 8mij + 2 ( Ii 8mnj 9i 8mnj + lj 8mni 9j 8mni )

+( 1) 6 '9 (8mij 8npg 8mij 8npq )+( ) 4 '9 (8mni 8jtqj 8mni 8pqj

kl
RlJ (15c)

The phase factors in Eqs. (14) and (15) stem from the use of formula (A9): in Eq. (14b) factor ( —1) corresponds to
z $3 —3 and x 2 ——3, etc. Equations ( 14) and ( 15) are written in a very general form which is good also when the general
Bogoliubov-Valatin transformation is used to define new fermion operators in Eq. (I.26); in this case only the definitions
(I.32) should be generalized, When the usual particle-hole transformation (I.27) is employed, the pseudocharge symmetry
[see Eq. (I.136)] can be used to simplify Eqs. (14) and (15). The resulting equations read

7 pr 9pr+ 9 8ptrsr + 2 ( 1p 8trrsr+ gr 8ptrst ) (16a)

t~ vv~ 7tQ Uter - at@ mt~
Vpors Ipors + Qp ~ors gu mrs Ir post + gs port + 2 Ipo ~rs + Ior prts 9os petr Ipr carts + gps owtr

tu & ~vtu
8P t„——22) (8P 8 „+8,„,8p„„—8,p„,8 „„—8p,„8 „)

(16b)

Equation (14c) splits into two types of equations:

g~t ~ gtu
Vpo. r Ipor 9 port+ 9p ~o~tr Qo ~petr + 2 1r ~po. tu + Ip d'or /o ~vpr + Ir ~pot ~por Xw

~t g ~ natu+ 2 9ptr 8rvr + ltrr 8prt gpr 8trrt + 2 ) (8ptrt 8rvur 8ror 8pvtu +8wpr 8trvtu )

2) (8trrt 8trvur 8trrt 8pvur 4 8rvr 8ptrtu ) 72) 8rvt 8ptrru (16c)

z= z—~z ~z rtz ~tz 'r z
Vprs Iprs I ~rprs+ 2 Vp ~~rs Ir pets+ Qs petr+ 7p burrs

t z t z t z rt z & tu z ~t z+ Ir pst + gs eprt Oprs Vt + Qpr its + 2 Irs ptu Ips ~tr

'"(8 „,'8 „,—8, '8p,„—8 „'8 „„)+2) '"(
4 8,„'8 „+8„,'8,„,—8„,'8,„„)

(16d)

Equation (15a) becomes

y=g+ 4' Op „——g=E .

Equation (15b) splits into

o o & o.~tu rt o & ~et o o.
Xp =up —zn p. t. +n Op.t + 2np

(17a)

(17b)

s s & ~ts v.t s & rtu s s
Xr Ir 2 9 ~~tr+ I vtr + 2 gr ~rtu gr (17c)

There are three types of two-quasiparticle potentials [see Eqs. (I.104) and (I.105)], but we shall be interested only in the
hole-particle one:

3 pr Ipr + j prtr + 9 prt + I rpr + Qp ~wtr 2 Qp ~rvr + Ir pet 2 Ir ~ptu

+ 2
n'~™(8.i. 8.t.' 8,rt'8 ~ ) n—'"(8i.t 8.u. '—+ 4 8,tu'8 ~ )

o's
=Cpr (17d)

The above effective potential is necessary in calculations
for excited states of the X-particle system, see Eqs.
(I.105b) and (I.106).

It can be checked that Eqs. (16a) and 16(b) and Eq.
(17a) are in fact identical with those of the BHF(2)
method of Ref. 2. Therefore, that approach may be used

as a starting point in the present extended BHF method.
It is to be noted that the definition of the BHF operator b
in Ref. 2 does not require the knowledge of CC ampli-
tudes Op „~ and 6Ip„'. In the present treatment these am-
plitudes are determined by solving Eqs. (16c) and (16d),
respectively. It is interesting to find that if one substitutes
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in these equations [see Eqs. (17b) and 17(c)],

pcrr X7. ~pcrr
z z

Oprs 'Vt ~prs It

(18a)

(18b)

In order to combine formulas (A2} and (A3), it will be
useful to express the generalized Kronecker delta 5zx, ' '

in a different form. We observe that when nonzero it can
be written as

the resulting equations will become linear in the unknown
amplitudes.
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APPENDIX

Here we derive an analog of formula (I.B18}for a prod-
uct of three operators:

where strings of indices Z12, Z13, X2, and X3 (of un-
specified internal ordering) are unequivocally determined
by strings Z, X4, V2, and V3. Taking into account that

5 12 2 13 3 { 1 } 13 2 (A5)Z(~Z(3X2X3

we can now write

2 3 ggggg 12 13' 2 3

XZ X3 Zi2 Zi3
EC=BCD . (A 1)

~x '= g g g g +5x ' 'bx, '
~zx, '&r, r, '

X) X4 Yj Y2 Z

and one can find also that

{A2)

~zx, = g g g g g&zx„cv, ~z„v, &r, r,
V2 V3 Y2 Y3 Z23

It is assumed that operators 8, C, and D belong to
subalgebra 8 (even), and are expressed in the form (I.49),
with linear parameters bx, cx, and dx, respectively.

A AA
The same applies to operators EC and A=CD, where the
corresponding parameters are vx and kx, respectively.
For operator k =BA formula (I.B18) gives

(A6)

where the restricted summation over strings of indices is
performed [see the comments to Eq. (I.49)]. It can be
found that Eq. '(A6) is valid for any choice of strings
Z, X4, V2, and V3. By combining Eqs. (A2), (A3), and
(A6), and performing summations

Y4
r2r3 r1 v4 v1 r2 "3

Y4

b '5 ""=b
X) Z X(

Z

(A3) etc. , we arrive at the desired formula

r ggggggggg( 1) 13 2g 1 2 3b 1 12 13 2 23d . 3g Y

X) X2 X3 Y] Y2 Y3 Z/2 Z]3 Z23

The corresponding formulas for products of four, five, etc., operators can be derived in a similar fashion.
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