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The problem of finding the spectrum of the Pock-space Hamiltonian H for a system of many fer-
mions is analyzed. The quasiparticle formalism is employ'ed, with "holes" and "particles" defined
with respect to some X-particle determinantal wave function (the model vacuum). The basic idea

behind the proposed approach is to perform a similarity transformation of Hamiltonian H, such
~ ~

that the resulting effective Hamiltonian 6 is, unlike H, a quasiparticle-number —conserving opera-

tor. It is shown that eigenvalues of G, corresponding to small numbers of quasiparticles (0,1,2) can

be easily calculated. This is equivalent to finding eigenvalues of H for certain states of X, ¹1,
and %+2 particles. The construction of the operator transforming H into 6 (the wave operator)
stems from an analysis of the structure of the algebra of linear operators acting in a (finite-
dimensional) Pock space. The exponential Ansatz for the wave operator is used, resulting in a gen-
eralization of the coupled-cluster (CC) method of Coester [Nucl. Phys. 7, 421 (1958)]. The general-
ized CC equations determining the wave operator, and equations determining the effective Hamil-

tonian 6, are presented in a diagrammatic form. An effort has been made to obtain a concise nota-
tion for expressing these equations in an algebraic form. Approximation schemes, necessary for
practical applications of the proposed method, are also studied.

I. INTRODUCTION

The quantum many-body problem appears as a key is-
sue in theoretical studies of electronic and nucleonic sys-
tems (finite and extended), and quantum fluids composed
of helium isotopes. In this paper we propose a new ap-
proach to the nonrelativistic, time-independent problem of
many fermions. Our considerations apply to a model
known as the algebraic approximation. ' In this model the
Hamiltonian P' of a many-particle system is approximat-

A A A A
ed by the projected Hamiltonian H =H A H, where H
is an idempotent projector onto a certain finite-
dimensional Hilbert space K. The construction of K in-
volves choosing a finite set of one-particle functions (spin
orbitals); these functions are then used to generate a set of
many-particle determinantal wave functions (configura-
tions) which span K. The algebraic structure of the con-
sidered model becomes especially rich when K is chosen
to be a Fock space, i.e., it is spanned by all the possible
configurations generated without fixing the number of
particles in the system. In quantum chemistry, the use of
the Fock-space Hamiltonian H was advocated by Kutzel™
nigg. Our paper pursues this approach, albeit in a some-
what different fashion.

The exact solution to the many-particle problem in the
algebraic approximation is provided by the full
configuration-interaction (full CI) method in which diago-
nalization of matrix H (the matrix representation of
operator H in the basis set of all configurations) is per-
formed. This direct approach is seldom applied, because
the dimensions of the matrices involved (these are diago-
nal blocks of H, corresponding to symmetry properties of
Hamiltonian H) are usually very large. Among many

methods devised for approximate calculations of eigen-
values of H, the coupled-cluster (CC) method occupies
a special position since it is neither perturbative nor varia-
tional. In this approach, hereafter referred to as the
single-reference CC method, some eigenfunction 4 (usual-
ly representing a closed-shell ground state of the con-
sidered many-particle system), and the corresponding
eigenvalue E of Hamiltonian H are determined by per-
forming a similarity transformation

II~6 =Q HQ .

Q is here a wave operator such that +=AN and N is
some chosen determinantal wave function called the refer-
ence configuration. The CC method uses a characteristic
prescription for constructing the wave operator:
A=exp(T), and the CC operator T is expanded as a
linear combination of so-called particle-hole operators.
The important property of these operators is that they
form an algebra that is nilpotent (and, incidentally, com-
mutative). The linear parameters (the CC amplitudes)

which appear in the definition of operator T can be calcu-
lated by solving a set of coupled nonlinear algebraic equa-
tions. These so-called CC equations are derived from the

eigenvalue problem for the effective Hamiltonian 6:
G@=E@.

The single-reference CC method is capable of providing
the exact value of energy E, but this would require a nu-

merical effort comparable to that of the full CI method.
A very substantial reduction of the number of the CC
equations can be achieved when a truncated expansion of
operator T is used. This approximation proved to be
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highly effective and, unlike a truncated CI treatment, it
preserves the so-called size consistency (or size extensivity,
see Ref. 5) of the calculated value of E.

Several generalizations of the single-reference CC
method, devised to treat open-shell states of Hamiltonian

H, have been proposed. ' Each of these methods, here-
after referred to as multireference CC methods, deals ex-

plicitly with several eigenstates of H. The generalized CC
method of the present paper is related, in some respects,
to the methods of Mukherjee et al. and Offerman et al.
Being essentially a single-reference approach, this method
is formulated such that the entire spectrum of the Fock-
space Hamiltonian H can be analyzed. There is no need
for choosing a so-called model space in this approach,
thus eliminating complications due to the classification of
spin orbitals (the partition into core, valence, and virtual
spin orbitals), and the occurrence of so-called unlinked
terms when the model space is incomplete (see Ref. 10).
We use the quasiparticle formalism in which the physical
particles are formally replaced by quasiparticles: "holes"
and "particles, " defined with respect to the reference con-
figuration @. This gives rise to an algebraic field-
theoretical model, with 4' being the (model) vacuum, and
the remaining configurations representing states with in-
teger (greater than zero) number of quasiparticles. The
Hamiltonian H, being a particle-number —conserving
operator, is not a quasiparticle-number —conserving opera-
tor when expressed in the quasiparticle formalism. This
defect can be "corrected" with the help of a suitable
"universal" wave operator 0, and in our generalization
of the single-reference CC method condition (2) is supple-
mented by the requirement that the effective Hamiltonian
G is a quasiparticle-number —conserving operator. The
universal wave operator Q is constructed using the ex-
ponential Ansatz. Actually, we found that, although a
"biexponential" form of Q is formals necessary in this
case, we can achieve our goal with Q,„=exp(8). 0 is
here a generalized CC operator, and is expressed as a
linear combination of so-called excitation operators.
These operators form the largest nilpotent subalgebra con-
tained in the algebra of all linear operators in the Fock
space K. We also show that if the model vacuum @ is
fully symmetric with respect to the symmetry group of
Hamiltonian H, operators 8 and G are symmetry adapt-
ed, i.e., they commute with all the symmetry operators of
this group. This makes the spin-adapted version of the
method possible.

The formulation of the CC method considering the en-

tire spectrum of H is chosen here to illustrate the com-
pleteness of the underlying mathematical treatment, but is
obviously impractical. We show, however, how by apply-
ing standard approximations (truncating the CC operator
0) a tractable computational scheme emerges. In this ap-
proach energy E of the model vacuum, and energies of
these states of H which (as eigenstates of G) correspond
to a small number of quasiparticles can be calculated.
Even if we restrict our consideration to states with only 0,
1, and 2 quasiparticles (see the forthcoming paper, " here-
after referred to as paper II), this treatment provides an
access to a fairly broad excitation spectrum of the system.

n

~„=w+g h(i)+ g u(i,j), (4)

1 p2+ ~
2mO

and mo is the particle mass. In Eq. (4), W is a constant
term; in electronic systems, e.g., molecules, it represents
the internuclear Coulombic repulsion.

In the algebraic approximation some finite (say, M-
element) set of spin orbitals is chosen. This set, assumed
to be linearly independent, spans an M-dimensional space
H. Let

(6)

be an orthonormal basis in N. The set of annihilation
operators, corresponding to set (6), can be constructed fol-
lowing the definition

a;%(1,2, . . . , n ) =n '~ f dr„P;*(n)%(1,2, . . . , n)

=( a+)(1, ,2. . . , n —1), (7)

where we restrict the domain of a; to antisymmetric %"s.
The creation operators are defined as

a '=(a;) (8)

The algebra generated by the set [a;,a 'I ';:~ will be called
here the Fermi-Dirac (FD) algebra, and denoted by
~ =~(M). This algebra is characterized by the follow-
ing anticommutation relations

[a;,aj ]+= [a ', a ~]+=0,

[a;,a J]+=5;J .

This approach can be used to formulate a correlated band
theory of crystals. '

The plan of the present paper is as follows. In Sec. II
the construction of the Fock space is outlined. The quasi-
particle formalism is introduced in Sec. III. Section IV
contains an analysis of the algebraic structure of linear
operators in the Fock space K, leading to the construction
of the universal wave operator Q. In Sec. V the structure
of the effective Hamiltonian G is discussed, and general-
ized CC equations are defined. A diagrammatic form of
these equations is studied in Sec. VI. A scheme of sys-
tematic approximations, necessary for practical applica-
tions of the method, is presented in Sec. VII. There are
also three appendixes with some supplementary material.

II. FOCK SPACE

We consider a system of many fermions (e.g., electrons,
nucleons, or He atoms) embedded in an external, station-
ary field represented by a one-particle potential u. The
interparticle interactions are described by a two-particle
potential u (three- and more-body forces can be taken into
account, if necessary). The Hamiltonian for this system,
for arbitrary numbers of particles, has the form

(3)
n=0

where A „ is the n-particle Hamiltonian
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Transformations of the annihilation and creation opera-
tors (jointly, they will be referred to as the fermion opera-
tors), induced by unitary transformations of the spin-
orbital basis (6), are discussed in Appendix A.

The eigenstate @o of Hamiltonian A, corresponding to
n =0 (physical vacuum), fulfills the equations

a;4O ——0, (10)

for i =1,2, . . . , M. C&o and the set of creation operators

I a 'I can be used to generate the Fock space K =. K(M)

K= K„,
where Ko is spanned by @0, K~ is spanned by I a '@oI, K2
is spanned by Ia Ja ~40, i &jI, etc. The functions span-
ning subspace K„can be expressed as Slater determinants
built of n spin orbitals from basis (6); they are called con-
figurations. It is easy to find that the dimension of K„ is

Mt
(12)

n!(M —n)!

Hence, the dimension of the Fock space (11) is

and (antisymmetrized) two-particle integrals

u~f"' ——(y;(1)y,.(2)
~

u(1,2)yI, ( 1)yI(2) )
—(y, (1)y, (2)

~
u(1, 2)y&(i)P, (2) & . (17b)

h;J=(h~;)*, (19a)

(19b)

According to definition (17b) parameters u,z" are an-
tisymmetric with respect to (separate) permutations of
their lower and upper indices.

An important linear operator in the Fock space is the
particle-number operator

(20)

In Eqs. (17), because of the orthonormality of basis (6),
one can shift indices between the lower (covariant) and
upper (contravariant) position:

h;~=h'J=h'j ——h; j
vij U =U kl =vij ld

Since operators h and u are assumed to be Hermitian, it
follows that

(13)
corresponding to the structure revealed in Eq. (11):

Operators belonging to the FD algebra P are all linear
operators acting in K. As a vector space, M is spanned
by the set for XH K„. The commutation relation

(21)

IXtYJ, (14) [H,%] =0 (22)

with i &j& . The number of annihilation operators
in string X will be denoted by x; for x =0 we assume

X=1 . (15b)

An operator string of the form X tY, where X and Y are
defined in Eqs. (15), is called the normal product of fer-
mion operators. There are exactly 2 different strings
(15) [see Eq. (13)],hence the dimension of the vector space
P is (2 ) =2 . We conclude that the FD algebra W is
identical with the algebra of all linear operators acting in
K (the so-called endomorphisms of K).

Any linear operator in the Pock space K can be written
as a linear combination of operators from basis (14). In
particular, the projection of Hamiltonian (3) on K has a
simple form

(16)

where the Einstein convention is used to indicate unre-
stricted summations over repeated upper and lower in-
dices; this convention will be used whenever possible
throughout this paper. The parameters appearing in Eq.
(16) are so-called one-particle integrals

h;~=(P; ~hPJ), (17a)

where operators X and F are represented by products
("strings") of annihilation operators, e.g.,

(15a)

indicates that Hamiltonian H is a particle-number N con-
serving operator.

III. QUASIPARTICLE FORMALISM

In the algebraic approximation it is usually assumed
that the one-particle space ~ is invariant with respect to
the symmetry group of Hamiltonian A of Eq. (3). In this
case Hamiltonian H of Eq. (16) is also invariant with
respect to this symmetry group. We would like to put
aside the question of what is the optimal choice of 8 for a
given M. We notice, however, that probably only a very
small fraction of 2 eigenfunctions of H can provide ac-
ceptable approximations for some eigenfunctions of A .
Suppose that 8 has been chosen such that a certain N-

particle eigenfunction of H, 4, can be regarded as a good
approximation to an eigenfunction of A . We shall
assume that %' is nondegenerate and corresponds to the
lowest eigenvalue of H in subspace K& (although these
assumptions are not essential to our further considera-
tions). If N is suitably chosen one can expect that also
some other eigenfunctions of A describing a few lowest
excited X-particle states, as well as certain (S—1)- and
(5+I)-particle states, can be fairly represented by ap-
propriate eigenfunctions 'of H.

Let us consider an N-particle determinantal wave func-
tions 4, expressed in terms of spin orbitals from g. @ is
chosen to be an approximation to 4, although we need not
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The choice of 4 determines the partition

X =Xi,SR@, (24)

where 8 II is spanned by the spin orbitals occupied in +.
We shall assume that the basis set (6) is chosen such that

(25a)

spans subspace A]„and

I Nr ] r =iv+1 (25b)

spans R ~. Due to requirements of the spin symmetry M
and N must be even. From now on indices p, o, are
used to enumerate the spin orbitals occupied in 4, indices
r,s, . . . are used for unoccupied spin orbitals, and indices
i,j, . . . are used for both types of spin orbitals.

The notion of quasiparticles is introduced via transfor-
mation: a; ~b;, where the new fermion operators

b iIi =M (26)

must fulfill the same anticommutation relations (9) as the
old ones. The most general linear transformation of this
kind is the Bogoliubov-Valatin transformation. ' Here we
employ a special case of this transformation, namely the
particle-hole trans formation:

assume that @ is optimal, e.g., as Hartree-Fock-Roothaan
(HFR) (Ref. 13) wave function, maximum-overlap config-
uration (see Ref. 14, and references therein), etc. From
the formal point of view it is sufficient to require

(23)

Ki ——Ki, Kp, (30a)

where Ki, CKiv &
is spanned by I4 I, and K~CKiv+, is

spanned by I@"I;

K2 ——Ki,i,&Ki,pS Kpp, (30b)

where Ki,i, CKiv 2 is spanned by I4, o &i01, Ki,pCKiv
is spanned by IW"I, K~„CKiv+2 is spanned by
r &sj, etc.

Operators H and X defined in Sec. II [see Eqs. (16) and
(20), respectively] have to be expressed using the new fer-
mion operators (26). This can be done simply by inserting
Eqs. (27) into appropriate expressions. Some additional
effort is necessary to put the fermion operator strings in
these expressions into the normal product form with
respect to new fermion operators. This can be done con-
veniently by using the time-independent Wick's theorem. '

Hamiltonian H in the quasiparticle representation be-
comes

H =g+g; b 'bj+ 2
g' b;bj+ 2 9;J. '+

4 9;J b b'bkbl

b'bjbkbl+ 6g,jk b b b'bl

+,4q' b;b.bkbl+ —,4g;.klb b kb jb'. (31)

g=W+ ,'(h i'+f i'), — (32a)

where we introduce new parameters

f 1 h.j+U .~J ~. — (32b)

The linear parameters appearing on the right-hand side
(rhs) of the above equations can be expressed through the
one- and two-particle integrals (17) as follows:

b =aP
P

for p=1,2, . . . , X; and

b, =a,

(27a)

(27b)

ni = —f',
s f s.

n J =(n" ) *=ni. =f'
(32c)

(32d)

for r=N+1, X +2, . . . , MNow, the operators b and

b, describe the annihilation of the quasiparticle "holes"
and "particles, " respectively. Our reference configuration
@satisfies the equations

fori &j;

m pa
'gapa

=Uw

kl, as ps
'Qij = ' 'fjpr = —Uor (32e)

b;4=0, (28) tu tu
'mrs =Urs

for i=1,2, . . . ,M. [Compare Eq. (10) for the physical
vacuum @0.] Thus, @ serves as the vacuum state in the
quasiparticle formalism, and is referred to as the model
vacuum. (Kutzelnigg calls N the physical vacuum; the
name "Fermi vacuum" is also sometimes used. )

With the help of the model vacuum N and the set of
creation operators I b'] a new structure of the Pock space
can be introduced:

for i &j, k&l;

pa
Ipar = Uor

Vifk'=(rji"") *= '
s ps

'mrs =.~rs
(32f)

n=0

where KD is spanned by N, K i is spanned by I
@'=b '@I,

K2 is spanned by IN'J= b Jb '@, i &.jj, etc. Further parti-
tioning of subspaces 9R„ is possible when a distinction be-
tween "holes" and "particles" is made:

for i &j &k;

Qij kl ~ 9 ~ Ipors Urs (32g)

for i &j & k &/. Parameters q,j, g,j, etc., are assumed to
be antisymmetric with respect to permutations of the
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lower (and upper) indices. Since this property is not au-
tomatically satisfied by the rhs's of Eqs. (32d)—(32g), one
has to put, for instance,

n.p= fp"— (32h)

etc. Parameters not defined in Eqs. (32) are identically
equal to zero. The scalar parameter of Eq. (32a) is equal

to the mean value of Hamiltonian H in the state described
by N:

q=(cia ic) . (33)

f=f;Ja 'az . (34)

In the quasiparticle representation involving the fer-
mion operators (27) the particle-number operator can be
written in the form

N=N+Q, (35)

where N is the number of particles in state 4 and Q is
what we call the pseudocharge operator

Q = b~bp+b —"b„. (36)

Configurations spanning the Fock space K [see Eqs. (29)
and (30)] are eigenfunctions of Q:

Q@=0

Parameters of Eq. (32b) define the so-called HFR operator

f which can be conveniently expressed using the fermion
operators of Sec. II:

[H,Nq) &0 . (40}

Moreover, the model vacuum 4 is not an eigenfunction of
H. @ is hence "unstable, " and its time evolution would
create an admixture of states (configurations) with one,
two, etc., "hole"-"particle" pairs. In Sec. IV we shall con-
struct the universal wave operator 0 transforming H into
the effective Hamiltonian G [see formula (1)] fulfilling

[G,Nq] =0 . (41}

IV. CONSTRUCTION OF UNIVERSAL
WAVE OPERATOR

In this section we will discuss the structure of the FD
algebra W. This analysis is helpful in constructing the
universal wave operator Q. The set of generators of P is
chosen in the form (26) where definition (27) applies. The
vector-space structure of ~ is determined by basis (14),
where operators X and Y are defined as in Eqs. (15), with

[a; ] replaced by [b; ]. It is useful to consider strings X as

composed of operators b; taken in an arbitrary order.
The corresponding strings of indices will be denoted by X,
with the special case of an ordered set of indices [see Eq.
(15a}] denoted by X. Again, we use symbol x for the
number of operators b; in string X. The basis of the vec-
tor space ~ can now be written in the form

It can be shown that the above condition implies also Eq.
(2), where now E replaces g of Eqs. (32a) and (33), as the
true energy of the model vacuum @.

QM= —W, (37b) (X Y: X=X, Y= Y]„"'~y o (42)

QN'= N", (37c)

etc. It is easy to observe that each "hole" contributes
( —1) and each "particle" (+ 1) to the total pseudocharge.
This quantity may be interpreted as the quantum number
distinguishing between "holes" and "particles, " see Eqs.
(37b) and (37c). The pseudocharge cannot be identified
with the charge of the physical particles, because Eqs.
(37b) and (37c) are true also for systems of neutral parti-
cles (neutrons or He). The commutation relation (22) is
equivalent to

[H,Q] =0,
which can be interpreted as the pseudocharge symmetry
of Hamiltonian H. We shall treat it on the same footing
as other symmetries of H. If the Bogoliubov-Valatin'
transformation of a general kind is used to define fermion
operators (26), the corresponding (generalized) configura-
tions are no longer eigenfunctions of the pseudocharge
operator Q=N —N. Hence, the Bogoliubov quasiparti-
cles correspond to indefinite pseudocharge.

It will be useful to introduce the quasiparticle-number

operator

N, =b'b, - . (39)

It is easy to check that Hamiltonian H is not
quasiparticle-number conserving,

K„&4 =X 4.
For any X, one can express its "length" x as

X =Xh+Xp (45}

where xh (x~) is the number of "hole" ("particle" ) annihi-

lation operators in X. Equation (37) for the pseudocharge
operator of Eq. (36) can now be written in a compact
form

Q@ = (x~ —xh )4& (46)

The orthonormality of basis (43) can be used to define the
generalized Kronecker delta

F (CX
i
q)F) (47)

which, due to definition (44), is antisymmetric with
respect to permutations of lower (and upper) indices. The
generalized Kronecker delta can be expressed through the
usual one, e.g.,

5Jkl=5 k5Jl —5 l5Jk

The basis of the Fock space K, composed of configura-
tions [see Eqs. (29) and (30)], reads

X=X/:o
where
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etc.
The notation introduced above proves to be very con-

venient in the discussion of algebraic properties of the FD
algebra u. Any linear operator A in K can now be ex-
pressed as

A=+ gX 'X'Y,
X Y

(49)

where g~ symbolizes a constrained summation over all
the strings of indices X and of length x, with 0&x &M.
The constraint is that if a string X appears in the summa-
tion, all the strings which can be obtained from X by per-
mutations of indices are excluded. The ordering of in-
dices in X and Y appearing in Eq. (49) can be arbitrary
because we assume that parameters A,x are antisymmetric
with respect to permutations of set X (and set Y). Opera-
tor A can also be expressed by applying a generalized Ein-
stein summation convention

A = (x ty! ) 'A,x rX t Y, (50)

where now the unconstrained summation over all the
strings X and Y is performed. The above form is used in
Eqs. (31), (36), and (39), and will be applied when con-
venient. We define also the matrix representation A of
operator A:

A=(A~ .. X=X, Y= YJ"„'y 0

where

(51)

(52)

Again, matrix elements (52) can be regarded as being an-
tisymmetric with respect to permutations of indices in X
and Y. In Appendix 8 some useful formulas for linear
operators expressed in the form (49) are derived.

Now we focus our considerations on the algebraic struc-
ture of the FD algebra W. The following partition of P
as a vector space is introduced:

K =K(even)63 K(odd), (S7)

where K(even) contains states of even numbers of
(quasi)particles, and K(odd) contains states of odd num-
bers of (quasi)particles. It can be shown that transforma-
tion (27) does not change the partition (57). Hence, we

can observe that the Hamiltonian H of Eq. (31) does not
mix the subspaces K(even) and K(odd). This is a general
property of operators built of strings of even numbers of
fermion operators. One can write

W=W(even)$ W(odd),

where ~ (even) is the subspace of W spanned by

(58)

Algebras W' and W' are Hermitian "images" of each oth-
er,

(56)

where the left-hand side (lhs) of the above equation corre-
sponds to taking the Hermitian conjugate of all the opera-
tors belonging to ~ "; ~ is the Hermitian "image" of it-
self. We shall refer to operators of set (54a) as excitation
operators, and to algebra M ' as excitation algebra. Opera-
tors of set (54c) will be called deexcitation operators, and

will be called deexcitation algebra. It should be
stressed that partition (53) depends in general on the
choice of the generators (fermion operators). Specifically,
unitary transformations of fermion operators (see Appen-
dix A) do not change the algebras a ', W, and W', but
transformations (27) (or more general Bogoliubov-
Valatin' transformations) necessarily do. An important
example is provided by the Hamiltonian operator. When
the original fermion operators are used (see Sec. II),
HUM [see Eq. (16)j; after transformation (27) H con-
tains some terms from a ' and P ', as can be seen in Eq.
(31).

The Fock space can be expressed as

(53)
[X Y: X=X, Y= Y; x+y =even] . (59)

where subspace ~ ' is spanned by
Again, it is easy to check that W(even) is also a subalgebra
of ~ . In a complete analogy to Eq. (53)

(X Y: X=X, Y= Y; x&y), (54a)
M (even) =M '(even)M M '(even), (60)

subspace M is spanned by

(X Y: X=X, Y= Y; x=y),
and subspace ~ ' by

jX "Y: X=X, Y= Y; x &yJ .

(54b)

(54c)

It is easy to find that condition (55) if fulfilled for n )M.

From result (89) of Appendix 8 one can infer that each
subspace in Eq. (53) is closed with respect to multiplica-
tion of operators. Therefore, ~ ', ~, and P ' are
subalgebras of the FD algebra ~. It can also be easily
found that ~ ' and W' are nilpotent algebras, i.e., for any
operator ARM ' (~ ') there is a positive integer n & oo

such that

(55)

~'(even)HC=Q g c~ X Y,
X Y

(y &x)

(61)

~ '(even)HD=Q g d~ X
X Y

(y &X)

It can be shown (see Appendix 8 5) that

where ~ '(even) and M '(even) are subalgebras of ~ ' and
~ ', respectively. The algebras ~ '(even) and ~ '(even)
are nilpotent, the condition (SS) is now fulfilled for

1
n )—,M. Since our wave operator Q is not supposed to
mix K(even) and K(odd), we restrict our further con-
siderations to M (even).

Consider two operators
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C(yw g q) vC w

V
(Uyw)

(63) are not orthogonal by symmetry.
(iii) It is assumed that

Dq)lv g q)vD w

V
(v &w)

(64)

where linear coefficients Cv (D~ ) correspond to the
matrix representation of C (D) [see Eqs. (51) and (52)],
and can be expressed as linear combinations of parameters
c~ (dz ) [see Eq. (B30) of Appendix B].

It is important for our purposes that operators

AC =%, (74)

where 4' corresponds to the ground state of the X-particle
system.

A =QB, (75)

Other conditions for A will be considered later. Now we
propose that 2 can be expressed in the form

8=in(1+C)

:-=ln(1+D)

(65)

(66)

where Q is our universal wave operator and B is a non-
singular operator belonging to subalgebra M. Operator
0 is defined as

0 g —j( 1)n —IC n (67)

and

exist. This is because there is only a finite number of
terms in expansions

0=(1+C)( 1+D), (76)

and operators C and D were introduced in Eqs. (61) and
(62), respectively. We show that if Eq. (75) holds, this
representation is unique, i.e., there is only one choice of
operators B, C, and D. Assume that

:-=g n '( —1)" 'D" (68)
(1+C)(1+D )8=(1+C ')(1+D ')8 ', (77)

n=1

due to the nilpotency of C and D [see condition (55)]. We
have also

where operators 8 ', C ', and D ', can be different from B,
C, and D, respectively. Equation (77) can be transformed
[see Eqs. (71) and (72)] into

and

1+C =exp(O) = g (n!) 'O~ "
n=0

1+D=exp(:")= g (n!)

C"=(1+D)B"(1+D') ' —1,
where

W'(even) HC"=[(1+C) '(1+C') —1],
(70)

and

(79)

and it is seen that the inverses of the above operators ex-
ist:

(1+C) '=exp( —0),
(1+D) '=exp( —:-),

(71)

%X=A@X. (73)

A is by no means unique, because arbitrary mappings
X~% can be considered. Therefore, we can impose
some conditions on A.

for any choices of the linear coefficients in Eqs. (61) and
(62).

After these preparations the problem of constructing
the universal wave operator 0 can be studied. Consider a
mapping of the set of all 2 configurations [basis (43)]
onto the set IV I of all 2 eigenfunctions of Hamiltoni-
ans H. This mapping may be described by a certain uni-

tary operator A:

M~ a "=a(a ')-' .

It is seen that the rhs of Eq. (78) does not contain any
contribution from P '(even), and hence C"=0. Further
arguments lead to the conclusion that B'=B, C '=C, and
D'=D, thus proving that Eq. (75) provides the unique
representation of A. The question remains, however,
whether this representation is sufficiently general, i.e.,
whether operator 0 of the form (76) exists for any unitary
A fulfilling conditions (i)—(iii).

Consider the (full) CI expansions

e'=~@"= g e ~ "+ g e ~ '+ g Cxx ',
X X X

(»y) (x =y) ' (x &y)

(81)

for the eigenfunctions of H, where the matrix representa-
tion of operator A [see Eqs. (51) and (52)] is used. Equa-
tions for operator B are also to be considered:

(i) AH~ (even).
(ii) 4 contains a symmetry component corresponding

to the (pure) symmetry of 4 . It means that 4 and 4
ae'= g e~a "

X
(x =y)

(82)
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—18.=$ (83)

According to our previous assumptions matrix B is non-
singular; hence its inverse [see Eq. (A2)]

exists. Now we shall attempt to express the matrix ele-
ments Bx, Cx, and Dx appearing in Eqs. (82), (63),
and (64), respectively, in terms of the CI amplitudes Ax
of Eq. (81). One finds that

ql =(1+C)(1+D)B@=(1+C)(1+D) g C&xBx"

(x =y)

(1+C) g @xB r+ g ~, wD xB v

X W
(x =y) (w &y)

@xB Y+ g @wC xB F+ y @wD xB F+ g g @vC wD XB Y

X W W W V
(x =y) (w' &y) (w &y) (w &y) (u & w)

Ax =Bx + Q g Cx Dv Bw" '

W V
(w =y) (u &y)

(85a)

By comparing with Eq. (81) one finds the following rela-
tions: For x =y,

Ax ——0, x&y . (87)

account, one can find that also all states 4'~ '' ("hole"
indices only), and W'' ' ("particle" indices only) corre-
spond to

for x &y,

Ax=+Cx Brv+g QCxDvBw
W W V

(w =y) (w =y) (u &y)

for x &y,

(85b)

In this case Eq. (86c) reads

Dx = —g Cx Dv «y .
V

(u &x)

It is seen that the rhs of the above equation contains pa-
rameters Dv with U &x. Hence, for x=0, 1,2, . . ..

g Ax Bz =&x + g Cx Dv
Z V

(z =y) (u &y)

(86a)

for x &y,

Ax'= g Dx B~"+ g
W W V

(w =y) (w =y) (u &x)

It is seen that the number of unknowns (parameters Bx,
Cx, and Dx ) equals the number of CI coefficients Ax".
A simpler form of these equations follows when equation
0=AB ' is used as the starting point instead of Eq. (75).
Now the elements of matrix B replace elements Bx as
unknowns. The resulting equations are the following:
For x =y, I

Dx ——0, (89)

AB =1 (x =y =0),
AxB =Cx (x &y =0);

(2) for W (y =1),

A, "B,J=6,& (x =y =1),

(90a)

(90b)

(91a)

and, by a simple inductive argument, the above equality
extends over all x &y. We see that Eqs. (87) and (89) are
equivalent.

Returning to Eqs. (86), we know that Eq. (89) holds for
y =0, and y = 1, and we have the following:

(1) For 4 (y =0),

g Ax Bz =Cx + g Cx Dv
Z V

(z =y) (u &y)

(86b) Ax Bkj=Cxj (x &y =1) . (91b)

for x &y,

g Ax Bz =Dx + g Cx Dv'
Z V

(z =y) (u &x)

(86c)

These are simple linear equations which can be solved,
provided that A0 [see Eq. (74)], and the following con-
dition holds:

(iv) The submatrix of A,
Solutions of Eqs. (86) are equivalent to the solutions of
Eqs. (85) only when matrix 8 is nonsingular. We can ob-
serve that among states IV J there are states for which
"deexcitation" coefficients Ax (x &y) are zero. Impor-
tant examples of such states are state 4, and states 4'.
When pseudocharge [see Eq. (38)] symmetry is taken into

Ag ——[A;JJ,
is rionsingular.

(92)

It can be observed in Eqs. (86), for y &2, that nonlinear
terms of the type
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g Cx Dv" (93)

(u &y)

contain parameters Cx only with u &y. Hence, when
these equations are solved for y &yo, equations for
p =pp+ 1 become linear in the unknown parameters. Be-
cause equations for y =0 [Eqs. (90)] and y =1 [Eqs. (91)]
can be solved, a conclusion can be reached by induction
that solving Eqs. (86) [and, hence, Eqs. (85)] can be traced
down to solving a set of linear equations. Previously we
learned that if there is a solution to Eqs. (85), it must be a
unique one. Still, there is no definitive answer to the
question whether such a solution exists. It is tempting,
however, to make a conjecture that for any Hamiltonian
H one can find such a form of A that representation (75}
holds. In Sec. VII we show that this assumption is not
crucial when an approximate treatment is introduced.

(ii) for x =y =1,

Gi ——Cxl,& Cxp,

where [see Eq. (830) of Appendix 8]
C'h={Gp =E&p +gp j

(102)

(103a)

Cxp ——{G„'=E5„'+g„'j, (103b)

C'2= C"hh C"hp C'pp

where

and diagonalization of these matrices yields energies of
( N —1)-particle states, Ep, and energies of ( N + 1)-
particle states, E', respectively;

(iii) for x =y =2,

V. EFFECTIVE HAMILTONIAN

We assume here that the unitary operator 2 of Eq. (73)
A iAA ~

can be expressed in the form (75). Operator A HA is a
diagonal energy operator in basis (43)

Ghh = {6p&, p & a", r (v j

C"hp= {Gp, 'j,
Gpp = {Giq, P ($; t (g j

(105a)

(105b)

(105c)

~ -'aae~=E~C~. (94) and, in general [see Eq. (830) of Appendix 8],

Ex is here the eigenvalue corresponding to eigenfunction

of Hamiltonian H. The effective Hamiltonian defined
in Eq. (1) can now be written as

6 =B(A 'HA )8 (95)

Gx ~——(Nx
i
6

i
C&~)

are considered. One can write

(97)

Cx= S Cx„,
n=p

where

6„={6+ . x=y=n j, (99)

and diagonalization of these matrices yields eigenvalues of
M [see Eqs. (94) and (95)]:

E &x = g g &x Gv &w".
(v =x) (w =x)

Let us consider explicitly a few special cases.
(i) For x =y =0,

G=g=E,

(100)

(101)

where the rhs of Eq. (95) obviously belongs to ~ . Hence,

6 fulfills condition (41). We can express 6 as follows:

G =g g g~ "Xt F, (96)
X Y

(y =x)

and the meaning of parameters gx can be understood
better when matrix elements

6 kl Eg kl+g kg l g lg k+g lg k
g kQ I+g kl

(106)

and diagonalization of matrices (105) gives eigenvalues
Ep, E ", and E", corresponding to some (N —2)-, N-,
and ( N +2)-particle states, respectively.

One can see that once the effective Hamiltonian 6 is
known, energies of states corresponding to a small number
of quasiparticles (0, 1, and 2) can be calculated with ease.
Moreover, the corresponding excitation energies can be
determined directly, since the reference energy E may be
subtracted from the diagonal of matrix Cx [see Eqs. (103)
and (106}]. A minor complication is that matrices Cx„
are, in general, non-Hermitian for n )0. This is the price
one has to pay when permitting a nonunitary operator 0
in transformation (1).

Hamiltonian H of Eq. (16) and Hamiltonian 6 of Eq.
(96) provide equivalent descriptions of the physical system
under consideration. The picture associated with G is
that of a system of interacting, stable quasiparticles. Here
parameters gx [for x (=y) =2,3, . . . , M] corresponds
to x-quasiparticle interactions. In contrast, Hamiltonian
H of the form of Eq. (31) describes our system in terms of
quasiparticles which are unstable. Using the jargon of the
quantum field theory we can say that the second picture
involves "bare" quasiparticles, and the first one "dressed"
quasiparticles. Accordingly, transformation (1) can be in-
terpreted as a kind of renormalization procedure.

The effective Hamiltonian 6 is dependent on the choice
of the model vacuum @. In Appendix C we have proved
that for N invariant with respect to the symmetry group
S of Hamiltonian H one has also

where E is the eigenvalue of H, corresponding to the
wave function +; [6,V] =0 (107)
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G =( I+D ')(1+C ')H(1+ C)(1+D), (108)

where [see Eqs. (71) and (72)]

1+C'=(1+C) (109a)

and

1+D '=(1+D)
We introduce an auxiliary effective Hamiltonian

I = (1+C ')H(1+ C) =(1+D)G(1+D '),

and observe that the difference

r —6 =Do+ GD'+DGD'

(109b)

(110)

belongs to subalgebra ~ '(even). Thus, by expressing
operator I in the form

I =& gyx'X'Y,
X Y

one finds immediately that

Xx =oY

for x &y; and that

Y Y'Yx =gx

(112)

(113a)

(113b)

for x =y. The last equation indicates that the effective
Hamiltonian G of the form (96) can be quite easily
"extracted" from the auxiliary effective Hamiltonian I .
We write 1 as

r =a,„'Hn,„, (114)

where the excitation part of the universal wave operator

Q, 0,„=1+C, can be expressed using the exponential an-
satz [see Eq. (69)]:

Q,„=exp(O) . (115)

The generalized CC operator 0 belongs to the excitation
algebra M '(even):

for all VH S. Findings of Appendix C may be employed
in formulation of a spin-adapted version of the proposed
method.

Now we wish to look more closely at the similarity
transformation (1), with Q defined in Eq. (76). One can
write

exp( —O)H exp(O)

=H+[H, O] +(2!) [[H,S],O] + =I
(117)

can be employed. The commutator series (117) can have
only a finite number of nonzero terms; this is because ex-
pansion (69) is finite. The representation of I' given in
Eq. (117) indicates that each parameter yx can be ex-
pressed as a sum containing a finite number of linked
products of parameters gv and 8vw [see Appendix B,
Eq. (B21)]. This is also true if an approximate, truncated
form of operator 0 is used (as in Sec. VII). Therefore,
unlinked terms do not appear in this approach.

A direct application of expansion (117) is not easy for a
general CC operator of Eq. (116), and below a modified
treatment is proposed. From Eq. (110) the following form
of I can be obtained,

I =H+O'H+HC+C'HC, (118)

and parameters yx can be easily expressed through pa-
rameters cv [see Eq. (61)] and parameters c'v corre-

sponding to operator C ' [see Eq. (109a)]. Parameters cv
and c'v can be, in turn, expressed via parameters Ox
[see Eqs. (69) and (71)]. The pertinent expressions contain
both linked and unlinked terms, and it is useful to intro-
duce new parameters

&X & CX ~linked ~

Y i Yr x =(c x )hnkqd

(119a)

(119b)

(120)

etc. Obviously, the rhs of Eq. (120) contains, besides rx,
only unlinked terms. Now we can express the rhs of Eq.
(118) using parameters rv and r' v . Each parameter
yx can now be expressed as a polynomial in ~v and
'rv, with linear coefficients defined in Eqs. (32). Because
of expansion (117), only linked contributions will survive.
In Sec. VI we employ a diagrammatic approach to find
linked expressions for parameters rv and r'v, in terms
of parameters 8x, and for parameters yx", in terms of
parameters v.v and ~'v . As indicated previously, the
CC amplitudes 8v can be calculated by solving (general-
ized) CC equations which follow from conditions (113a):

It can be shown that parameters cx (c'x ) can be ex-
pressed as polynomials in rv (r'v ), with linear coeffi-
cients equal to 1:

cx'=rx'+& & g Q&x ' '~v, '~v, '&w, w, '+
V) V

O=g +8xX Y.
X Y

(y ~x)

(116)
) x'([8v ])=0, (121)

The generalized CC amplitudes: 8x" (x &y) are deter-
mined by conditions (113a); it is to be noticed that the
number of these conditions is equal to the number of am-

plitudes Ox . Parameters yx of the operator I can be
expressed in terms of parameters gv of Hamiltonian H
[see Eqs. (31) and (32)] and amplitudes 8v . In order to
find explicit expressions the commutator expansion +x Q @x (122)

for x &y. Parameters gx of the effective Hamiltonian G
are then calculated according to Eq. (113b).

Concluding this section we would like to discuss certain
properties of operator 0,„, which shed some light on how
the present method is related to previous CC theories. Let
us consider wave functions
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These functions, are, in general, neither normalized nor
orthogonal. They fulfill the intermediate normalization
condition

(@x~ qy Y) 5 Y

We can write operator C of Eq. (61) in the form
M —1

C= gC„,

(123)

(124)

where

C„= g g e'X'i. (125)
Y X

(y=n) (x &y)

By substituting Q,„=1+C we can write Eq. (122) in the
orm

VI. GENERALIZED COUPLED-CLUSTER EQUATIONS
IN DIAGRAMMATIC FORM

x+y =even . (135)

The generalized CC equations (121), and equations for
the parameters of the effective Hamiltonian [Eq. (113b)]
contain large numbers of (linked) terms. These terms can
be conveniently expressed in the form of diagrams; the
ones used in the present paper resemble the Hugenholtz
diagrams. ' The diagrammatic representation of basic pa-
rameters in our CC method is shown in Fig. 1.

When drawing a diagram, e.g., for a parameter yx,
one should remember that the number of quasiparticle
lines on the top of the diagram (equal to x) and the num-
ber of quasiparticle lines on the bottom (equal to y) must
fulfill the condition

4X=(1+Co+ . +Cx)Cx.
For x =0 one has ql = (@

~

ql) '4, and

%=(i+Co)@ .

(126)

(127)

In general we shall suppress the indices and arrows (1 for
"holes" and t for "particles" ); each diagram can be easily
completed with these symbols. It should be noticed that
the pseudocharge symmetry [see Eqs. (38) and (46) and
Appendix C] requires

Here Co is the CI operator appearing in the single-
reference CC method (see, e.g., Ref. 14). In the present
notation the wave operator of this method reads

1+Co ——exp( To),
where

To ——g txXt,
X(» o)

(128)

(129)

~X +X ~

and operators X (corresponding to x even and xh ——x~
because of the pseudocharge symmetry, see Sec. III) are
the so-called particle-hole operators. These operators
form a commutative subalgebra of the excitation algebra
M '(even). It can be found that

{a)

{b)

e" =
X

X

I I I I

( )
II

I I I I

X&y,

x&y.

xI —xh =O'I —Ph .

Linked terms in Eqs. (121) and (113b) are represented by
linked diagrams such as that shown in Fig. 2.

Algebraic representation of more complex diagrams
(with the number of components greater than 2) requires
multiple applications of the formula (B18); such a treat-
ment will be applied in paper II." This is the advantage
of diagrammatic techniques —that they help to generate
all the terms appearing in a given equation without the
need of considering explicit algebraic expressions. The di-

where [see Eq. (119a)]

XX= (CX )linked (131)

) y I I I I
x& y.

II

We can speculate that our operator Q,„ofEq. (115) can
be written in the form

Q,„=exp(To)exp(T& ) . . exp(TM 2),

where

g t "X'I .
Y X

(y =n) (x &y)

Contrary to Eq. (130), for y ~ 0 we have in general

tx QrxY Y

(132)

(133)

(134)

{e)

kl = )Ig q . I = q. lklI I

ll ~ ilk

I I I I

+ ljkl
ll II II

y I I I I
1 I

X II

One can notice (see Ref. 10) that Q,„ofEq. (132) is a gen-
eralization of the wave operator proposed by Offerman
et al. , ' whereas Q,„of Eq. (115) generalizes the wave
operator of Mukherjee et al.

FIG. 1. The diagrammatic representations of (a) the CC am-
plitudes [see Eq. (116)],(b) and (c) parameters r» and r'& [see

Eqs. (119)],(d) parameters of Hamiltonian & of Eq. (31), and (e)

parameters of the auxiliary effective Hamiltonian I of Eq.
(112).
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(p) - )II + (//r ) + (/&/) + (////)

= (2!) ('g
I &mnjk+ gk +mnij + 'g. Tmnki )

—
I Imn . Imn Imn

0

FIG. 2. An example of a linked diagram and the correspond-
ing algebraic expression. Here k;jk is one of the contributions to
the parameter y;Jk of the auxiliary Hamiltonian f', originating

from term HCin Eq. (118) [see formula(B18) of Appendix B].

(b) I + (/&'/) + (//& )

+ (///)(///) + (///)(//&')

agrammatic expansion of a few parameters vz" is shown
in Fig. 3.

In order to suppress the proliferation of terms in the di-
agrammatic expressions of Fig. 3 we assumed that our
reference configuration 4 is the maximum-overlap con-
figuration for the eigenfunction 4 (see Refs. 11 and 14,
and references therein), for in this case etc.

+ (/&/'/) + (/ / &/)

+(/& r//) = Q

c,j——~,J =O,J =0, (137) FIG. 4. The generalized CC equations in the diagrammatic
form: (a) y;J =0, (b) yfJki 0.

for all i &j. Even so, the expression for ~,jk' „z' [not
shown in Fig. (3a)] contains already 54 terms. The nu-
merical factors appearing in the diagrammatic expressions
of Fig. 3 correspond to the factors (n!) ' in expansion
(69). For higher values of n an additional factor, equal to
the number of different "time orderings" of components
of the diagram, may appear. Diagrammatic expressions
for parameters ~'~ are almost identical to those of Fig. 3,
the only difference being due to the factor ( —1)"originat-
ing from the expansion (69) applied to operator (71).

The generalized CC equations (121) are shown in a di-
agrammatic form in Figs. 4 and 5. Here p'arameters yz
for x &y are expressed in terms of parameters r' and

8'
o

It is easy to find that the diagrammatic expressions in
Fig. 4 are in fact identical with those appearing in the
single-reference CC method based. on the maximum-
overlap configuration N. The graphical expression in Fig.
4(a) corresponds to the condition from which the so-called
Brueckner spin-orbitals are determined (see Refs. 11 and
14, and references therein).

+ (//g + (//'/) + (//) + (//)
I t

(a) + (///) +
I

C// )( /)

!(r //) +
I

(//e(/) + ( ////)T
( XX)

(/&///) + Q = Q
I

)

(///) = ( ) l

(/&'/'&') = ( )+ ( ) + —( )2 2
I I I II I I I I I I

2 2 1

etc.

II I I' II I"
(b) I I = (///') + (//) + (/&/) + (»8

I I

t&//) + (/&'/) + (/&'/) + (»''/) (//&')
I I

(b) (// ) = ( )

(///) = ( )+ —( ) + —(

+ (/&'/)(///) + (&//)(///) + (///)(//& )

I I. . . , I+ (//&/) +(/&'//) + (/&////) + (////)(&/)

I I I I I

)

+ —( )2 +[»»&u&) + r»»N&r} +

etc.

(c) (///) = ( )
+ (/&//v) + (r///// )

!I

I I I I I

( XXX)
= O.

etc.

FICx. 3. Diagrammatic expansions for (a) ~;~, ~ Jk~, and 'T Jkr
(b) 7j&k and ~;~k~~",' (c) ~IJkr . See Eqs. (69), (119a),and (137).

FICx. 5. The generalized CC equations in the diagrammatic
form: (a) y'jk:0 (b) y'jki ——0. The last term in the diagram-
matic exPression for y;Jk'(y;Jk~ ") is 7 j'k yp(7 pjk]~ yp"), and Pa-
rameters y; J are depicted in Fig. 6(b).
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{b)

I I I I

Q - g + (x& &.)

~ g + (&&& ) + t&x) + (»)

where

0'g(= g g 8'» X I', (139)

(x =k) (y =1)

and L &M, l &K~ &M. For each CC operator 0' of Eq.
(138) we can construct the corresponding wave operator
0,'„and (auxiliary) effective Hamiltonian I ' [see -Eqs.
(115) and (114), respectively]. Unknown CC amplitudes
8'» are now determined from a truncated set of general-
ized CC equations

{c) )"»'( [0'v (140)

+ c x&') + t& & )tii) + (& at'i&)
!

for 0&y &L„y &x &E~. Again, the number of unknowns
is equal to the number of equations. We can also con-
struct an approximation to the effective Hamiltonian G of
Eq. (96):

+ tr ». ) + t&&~) + (&&A

! ~ s ~ ~+ [&'& /&)

FICx. 6. The diagrammatic expressions for the parameters of
the effective Hamiltonian 6 of Eq. (96): (a) y=g=E, (b)

g) ~ (c) 3')J' =g)jj j kl kl

G'=g gg' 'X'I,
X Y

where [compare Eq. (113b)]

Rx ='Vx

for x =y. In the case
=L~

&

——M we have

O. =O.

(141)

(142)

of L =M —1, ICO Ei——

(143)

Finally, in Fig. 6 we present diagrammatic equations
determining the parameters of the effective Hamiltonian
G [see Eq. (113b)].

Diagrammatic equations shown explicitly in Figs. 3—6
constitute only a very small fraction of the set of equa-
tions which can be, in principle, derived in our method.
In paper II (Ref. 11) we shall formulate an approximate
CC method using equations depicted in Figs. 3—6. Ap-
proximation schemes in the CC method are introduced in
Sec. VII.

and the full CC method is recovered. It is interesting to
note that for approximate versions of this method corre-
sponding to L &M —1, Ko ——X& Xr ——M, one finds
that

F FÃx =Sx (144)

for x =y & L. It means that in these cases exact values of
eigenvalues E [see Eq. (94)) for x &L can be obtained
from G '. In particular, for L =0 one has

VII. APPROXIMATION SCHEMES and

S'=S =E (145)

The generalized CC equations (121), a few of which
were presented in the graphical form in Figs. 4 and 5,
form a set of coupled nonlinear algebraic equations for
the CC amplitudes Ox . Their maximal rank can be
found to be as high as N, the number of particles corre-
sponding to the reference state @. Provided that Eqs. (85)
have a solution, the generalized CC equations can have
many solutions, corresponding to different choices of
operator A of Eq. (73). Solving the full set of generalized
CC equations seems to be an impossible task, even if X
and M are not large. This would be also impractical,
since, as already mentioned, only a small part of the spec-
trum of Hamiltonian H can be of interest. Below we dis-
cuss approximation schemes which may be employed in
practical applications of the CC method described in
preceding sections.

Consider a family of (truncated) CC operators

L /

0 '=0 '(L;Ko, . . . , IC~ ) = g g 0 'p(, (138)
1 =0 k ()l)

O=Tp, (146)

where To, defined in Eq. (129), is the CC operator of the
single-reference CC method. It is seen that by taking
L =1,2, 3. . . we can gradually extend the single-reference
CC method thus providing access to a certain portion of
the spectrum of Hamiltonian H. The corresponding
eigenstates of H are in some sense "least excited" with
respect to the reference eigenstate +.

In practical applications of the proposed generalization
of the CC method we must assume that parameters J and
Ep,E~, . . . , EL are much smaller than their limiting
values corresponding to Eq. (143). For the single-
reference CC method (L =0) it was found that in
most cases the approximation with ICO 4(this corre-——
sponds to the inclusion of double "particle"-"hole" excita-
tions) is excellent. In paper II (Ref. 11) we shall describe
a variant of the generalized CC method in which the ap-
proximation with L =1, Kp ——4, and K] ——3 is employed.
Our treatment will provide an extension of the
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8rueckner-Hartree-Fock (BHF) version of the single-
reference CC method. ' It is to be pointed out that the
problem of the existence of a solution of Eqs. (85) can be
avoided when a variant with L =1 is considered. This is
because in this case only Eqs. (90) and (91) need to be tak-
en into account, and conditions (i)—(iv) [see Eqs. (74) and
(92)] which are sufficient for the existence of their solu-
tions can be met.
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APPENDIX A: TRANSFORMATIONS
OF FERMION OPERATORS, INDUCED

BY TRANSFORMATIONS OF SPIN-ORBITAL BASIS

We consider a unitary transformation of basis (6):

b —+b' =a~Up ——bpU~

b„~b ', =a„(U", )*=b„(U", )* .

(A5a)

(Asb)

One can find that if Ui cannot be expressed in the form
(A4), the resulting transformation of operators b; is that
of Bogoliubov-Valatin' (general type). Since we would
like not to break the pseudocharge symmetry of quasipar-
ticles [see the discussion after Eq. (38)], our further con-
siderations will be restricted to transformations (A 1)
which fulfill condition (A4). It will be useful to introduce
the matrix

b 'j ——bi(V'i. )*=Vj'b;, (Aja)

and the corresponding transformed creation operators as

(b j)'=b 'V,'. (A7b)

It is seen that the form of the transformed fermion opera-
tors in Eqs. (A7) is the same as of those in Eqs. (A3).

The transformation of fermion operator strings from
set (42) requires applying Eqs. (A7) to all the fermion
operators in a given string:

Vi ——Uh*S Uir, (A6)

and its inverse Vi ' ——Vi ——Vi. Now the transformed an-
nihilation operators of Eqs. (A5) can be written as

4j=0 U'j (A 1) X Y~(X Y)'

where the linear parameters define a unitary matrix Ui
(the subscript 1 indicates a transformation of one-particle
functions). As in Eq. (18a) there is a freedom in assigning
covariant and contravariant positions to the indices in
O'J. The inverse matrix U&

' ——UI will be denoted as
Ui ——

t U'j j, where

(b j)'(b')')bk )'(bi )'

—v pv'. - ~. . s "Ims s . . . ~v 'vjk l p q J m n (A8)

In order to express the above transformation in a compact
form we introduce matrix

U'J ——(Uj')" . (A2) V=& V„,
n=0

(A9)

By substituting Eq. (Al) into definition (7), the following
transformation of the annihilation operators can be de-
duced:

V„=[ Vx ". x =y =n I,
where

(A10)

where Vo ——[1I, Vi is defined in Eq. (A6), and, in general,

aj ~a 'j ——ai( U'j ) = Uj'ai . (A3a)
Y k l. . .Vx ( Vi Vj )antisymmetrized r (A 1 1)

The corresponding transformation of the creation opera-
tors [see Eq. (8)] reads

a J~(a j)'=a 'Uij . (A3b)

Transformation (Al) induces also transformations of one-
and two-particle integrals (17), but it can be shown that
Hamiltonian II of Eq. (16) and operator N of Eq. (20) are
invariant under transformation (A 1).

In the quasiparticle representation determined by
transformation (27) let us consider transformations (Al)
for which

e.g.,

(A12)

The same definition follows for matrix V=V '=V .
Now we can write

(XtY). y y V zg tZV (A13)
W Z

(m =x) (z =y)

For a linear operator A of the form (50) transformation
(Al) leads to a new representation

Ui ——Uh Ui, A = (x!y!) 'A, 'x (X Y)', (A14)
where Uh ——[ Ui'

I and Uz ——[ U", I. The following
transformations of quasiparticle annihilation operators
emerge:

where the transformed parameters A, '& can be expressed
as follows:
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~'x = g g Vx ~w Vz".
W Z

(W =X) (Z =y)

(A15) W) ——g5p, ' Y(Z,
Yi

(BSa)

APPENDIX B: SOME USEFUL FORMULAS
FOR OPERATORS BELONGING TO FD ALGEBRA

1. The contraction theorem {Ref. 17)

Consider two strings, A and B, composed of fermion
operators from set (26). The lengths of these strings are a
and b, respectively. The contraction theorem involving
these strings reads

min(a, b)
BA =(—1)'" g AB,

n=o (n)
where

(81)

AB

(n)

symbolizes a sum of all the possible contractions involv-
ing n-fermion operators from string A, and the same
number of fermion operators from string B. Each of n
tuple contractions is a superposition of n single contrac-
tions. A single contraction within the string

AB =c)c2 c, +b (82)

( —1)' J[c;,c~]+ . (83)

It is important that here an operator c; is either an annihi-
lation or creation operator from set (26), and index i is
equal to the ordinal number of operator c; in string (82).
In the case of multiple contractions ( n ) 1) the phase fac-
tor in (83).is, for each successive single contraction, calcu-
lated according to the actual ordinal numbers of operators
in the string. It can be shown that the definition of multi-
ple contractions does not depend on the sequence in which
the single contractions have been performed.

is defined as follows. If the contraction involves operators
c; and cj, they are removed from string (82) and the re-
sulting string of (a+b —2)-fermion operators is multi-
plied by a factor

V2 ——+5), 'ZX2,
X2

(85b)

where string Z contains those operators which will be
contracted. In Eqs. (BS) the constrained summation over
strings of indices is applied [see Eq. (49)], and therefore
there is only a single term which survives in each Eq.
(85). Now we can write

(X (W) )( V2Y2)

( 1
)(z)+w()v2

&&+ g +5m, 5zx, X2Z X)Y(ZY2
x2 Y( z (z)

(86)

where the contraction theorem gives

X2ZtX) Y)ZYp ——( —1) ' ' zX2X) Y) Y2 .
(z)

(87)

&&(X)X2) Y) Y2 . (89)

It is to be noted that if operator X]8'~ belongs to
W(even) [see set (59)], then x) +w ) ——even, and

(
)(z) +N( )zp

(810)

I

3. Calculation of products of linear operators
in Fock space

From Eqs. (85) it follows that (v) ——y) +z, and vz ——x2+z.
The phase factors appearing in Eqs. (86) and (87) can be
combined to give

(z|~y)+z)(x2+z)( (x|+y)+1)z

( 1) 1 1+ 2
( 1) )+ 1 2 (Bg)

where we have used the fact that expression
2(x(+y()z+z +z is always even. Finally, we get

(X)W()(V2Y2)=g g g( —1) ' ' '5 ' 5
X2 Y) Z

2. Multiplication of the normal products
of fermion operators

The contraction theorem described in Sec. 1 of this ap-
pendix is applied here to calculation of the product

(X (W()(V2Y~)

CD =A, (811)

where A is written in Eq. (49), and operators C and D are
of the same form:

From now on we restrict our attention only to operators
belonging to subalgebra ~ (even). Consider the product

min(v2, w& )

=( —1) ' ' ' g V2X(W(Y2,
z=o (z

(84)

A A
where X), W(, V2, and Y2 are strings of annihilation
operators [b; I. Here and below we make use of the nota-
tion introduced at the beginning of Sec. IV. For perform-
ing each z-tuple contraction in Eq. (84), the following
representation will be used:

C =g +ex, 'X ( W),
Xl Wl

D=g gdy; 'Vga .
V2 Y2

After inserting Eqs. (812) into Eq. (811)we get

A=+ g g gcx, dv (XtW()(V2Y2)
X) 8') V2 Y~

(812a)

(812b)

(813)
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Now we can use result (89) with Eq. (810). Since

W1 Y1Z Y1Z
+ex) 5 w) cxt

and

Y2 V2 Y
gdv, 5zx, =dzx,
V2

we arrive at the formula

(814)

(815)

Ax ——g g g g g5» ' 'cx, '
dzx, 5r, r, (818)

X1 X2 Y1 Y2 Z.

This is an important formula which can greatly simplify
derivation of algebraic expressions appearing in many-
fermion theories. Below, some applications of formula
(818) will be shown.

4. Calculation of a commutator

A=/ y y y ycx dz» (X]Xp) Y] F2
.. X1 X2 Y1 Y2 Z

Similarly, as in Eqs. (85), we can write

X,Xz —+5»~»2 X,
X

F(I'2 ——+5r, r, I'.
Y

Finally, by comparing with Eq. (49), we find that

(816)

(817a)

(817b)

In this section we calculate a commutator

[C,D] =CD DC . —

By denoting A'=DC we find from Eq. (818) that

(819)

A.'» =g g g g g5» ' 'dx2 '
czx, '5r, r, . (820)

X1 X2 Y1 Y2 Z

For commutator (819), we substitute A"=A —A' and
obtain the formula

X1 X2 Y1 Y2 Z
(z) 0)

(821)

It is to be noticed that terms corresponding to z =0 are
missing from the rhs of Eq. (821). This happens because
(x~+y~) and (x2+y2) are even in that case, and this
leads to

1 2g Y g 2 1g Y
1 2 2 1

(822)

5. Calculation of matrix elements

Here we show calculation of matrix elements

C '=(C iCC'), (823)

where operator C is of the general form shown in Eq.
(812a). We can write [see Eq. (44)]

C4 =CD@,
where

D= Y~,

(824)

(825)

Thus, due to cancellation of terms with z =0, the rhs of
Eq. (821) contains only so-called linked terms.

C»"= (ex
~

Aa ) =X» . (828)

Let us notice that operator D defined Eq. (825) is not
necessarily confined to ~(even). However, since we as-
sume that operator C C~ (even), equality (810) holds and
we can use Eq. (818) to obtain

~x=& & &5» ' 'cx, 'dzx, . (829)
X1 X2 Z

By combining Eqs. (828), (829), and (827) we finally find

Cx'=g g +5» '
cx, '5x,z',

X1 X2 Z
(830)

where symbols X2 and Z have been exchanged in order to
obtain a more symmetrical expression.

Equation (830) determines a linear mapping
Ic» 'I~IC» I. It is easy to find that any parameter

cx ' can contribute only to matrix elements Cx for
1

which x =x~+z and y&+z (z)0). This means that if,
for example, operator CEa '(even), all the matrix ele-
ments Cx corresponding to x &y are identically zero.

and in Eq. (812b) we must set

dv,
' ——0 (826)

APPENDIX C: SYMMETRY PROPERTIES
OF THE UNIVERSAL WAVE OPERATOR

for y2 & 0, and

dv =~V
2 2

(827)

We also take advantage of Eq. (811) to write Eq. (823) in
the form

In the algebraic approximation space 9R is usually
chosen to be invariant with respect to the symmetry group
of Hamiltonian A . In this case the symmetry group of
the projected Hamiltonian H is the same as that of A .
The symmetry of Harniltonian (3) includes the permuta-
tional, particle-number, spin and spatial, as well as time-
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VC, Y (y1)
—1(y»V Y (Cl)

reversal symmetry. In nucleonic systems the spin symme-
try also occurs. For the system of fermions, the permuta-
tional symmetry is fully taken into account, when K is
constructed as a Fock space (see Sec. II). Thus, this sym-
metry need not be discussed further. In the quasiparticle
formalism (see Sec. III) the particle-number symmetry is
replaced by the pseudocharge symmetry represented by
operator Q of Eq. (36), and Hamiltonian H is found to
commute with Q [see Eq. (38)]. The . remaining sym-

metrics of A can be analyzed at the level of one-particle
wave functions; here the corresponding symmetry opera-
tions are represented by one-particle operators UI. We
make the assumption (see Sec. III) that our one-particle
space N is invariant with respect to all the symmetry
operators U1. With this assumption fulfilled, we may
state that the Fock space K and Hamiltonian H of Eq.
(31) are invariant with respect to the symmetry group of
Harniltonian (3).

In Sec. III we have chosen a certain eigenfunction of H
as a reference and assumed that 4 belongs to the fully
symmetric representation of the symmetry group of H
(the permutational symmetry is not considered here).
Now we assume that our model vacuum 4 possess the
same property. This is by no means an obvious assump-
tion, since a "broken-symmetry" determinantal wave
function can provide a better approximation to ql in cer-
tain cases. ' The symmetry breaking may not only per-
tain to the symmetries described by operators UI, but also
to the pseudocharge symmetry. '

In the case of a fully symmetrical @ not only N, but
also each of subspaces N 1, and 8 ~ [see Eq. (24)] is invariant
with respect to all the operators UI. The corresponding
transformations of basis (6) can now be described as in
Appendix A, Eq. (Al), with condition (A4) fulfilled. [We
exclude the time-reversal symmetry operator from our
further considerations, since it corresponds to an antiuni-
tary transformation of basis (6). The problem of the
time-reversal symmetry in the single-reference CC method
was analyzed in Ref. 14; an extension of this analysis to
the generalized CC method is straightforward. ] Using the
results of Appendix A one can find that for each one-

particle symmetry operator U& its extension V onto the
Fock space can be constructed:

commutes with some operator VE- 9. In this case

VA V '=A, (C4)

and A can be written as

A = (x!y!) 'A,x (X Y)',
I

where operators

(X t Y)'= VX t YV

(C5)

can also be expressed as in Eq. (A13). By comparing Eqs.
(50) and (C5), the following invariance can be proved
[compare Eq. (A15)]:

=(x!y!) Vw A,» VY

Similarly, for matrix elements (52) one finds

Alv (x 'y') Vw Ax VY

(C7)

(C8)

After these preparations we can discuss symmetry
properties of operators A, 8, C, and D introduced in Sec.
IV. We know that, because of Eq. (C2a), eigenfunctions
of H belong to irreducible representations of the symme-
try group 9:

V@IY ( 1)
—1qyx~ Y (C9)

where matrices K [of the structure similar to matrices V
of Eq. (A9)] are block-diagonal, each block being an ir-

reducible matrix "image" of operator V. Here it is as-

sumed that condition (ij) for operator 3 (see Sec. IV) is
fulfilled. From Eq. (81) one gets

Vq Y=(x!)-'(VC»)~x Y, (C10)

and by comparing Eqs. (C9) and (C10) [see also Eq. (Cl)]
one finds

(x!) '%»XXY——(x!z!) 'NzVz»A»Y. (Cl 1)

Again, we compare the above equation with Eq. (81) and
arrive at the following symmetry-invariance formula for
the CI amplitudes:

w
( 1 1)

—1V xg Y~ w (C12)

where K=K '=Kt. Now we can apply Eq. (C12) to
transform both sides of Eqs. (85), the resulting equations
are the following: For x =y,

where matrix elements Vx ——(N
~

V N } can be con-
structed as in Eq. (All). The symmetry operators V are
unitary and fulfill the commutation relations

~x =&'x + g g C'x D'v &'w
8' V

(IL) =y) (u &y)

for x )y,

(C12')

[H, V] =0, (C2a)

[Q, V] =O. (C2b)

We can include unitary operators exp(iaA ), 0 & a & 2', in
the set

~x = g C'x &'w + g g C'x D'v &'w'
W W V

(u =y) (w =y) (U &y)

(C12")

(C3)
and for x (y,

containing the symmetry operators of Hamiltonian H; we
shall refer to S as to the symmetry group of H.

Consider an operator A, expressed as in Eq. (50), which

~x = g D'x &'w + g g C'x D'v &'w",
W W V

(w =y) (m =y) (v &x)

(C12'")
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where

B' =(x!y!) 'V B K

( i Iv (~|yt)—1V xc FV w

&'z =(x'y') 'Vz Dx'Vr

(C13a)

(C13b)

[C, V] =0,

[D, V] =0.

Hence, we have [see Eq. (76)]
(C13c)

(C15a)

(C15b)

In Sec. IV [see Eqs. (75)—(80), and the discussion at the
end of the section] we have shown that Eqs. (C12) can
have only one solution (and we assume that it exists).
Thus

[0,V] =0,
and, therefore,

[G, V] =0.

(C16a)

(C16b)

&'z =&z

C'z ——Cz

D'z —Dz

(C14b) [0,V] =0,
(C14c) and [see Eq. (114)]

(C14a) From Eq. (C15a) it follows also that [see Eq. (67)]

(C17a)

The last two equalities, combined with Eqs. (C13b) and
(C13c), respectively, prove [see Eq. (CS)] that

[r, V] =0. (C17b)
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