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Rigorous formulation of Slater s transition-state theory for excited states
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Slater s transition-state equations, which are used for calculating electronic properties of excited
states of atoms, molecules, and solids, are similar to the Kohn-Sham (KS) equations, apart from the
fact that the former involve fractional occupation numbers. The subspace density functional theory
{SDFT)was introduced by one of us [A. K. Theophilou, J. Phys. C 12, 5419 (1979)] for the develop-
ment of an excited-state DFT. The lowest-order approximation of SDFT coincides with Slater s

transition-state theory. However SDFT shares the mathematical deficiencies of the initial Kohn-
Sham DFT for the ground state. In this paper a rigorous derivation of SDFT equations is present-

ed, which lacks these mathematical deficiencies and, in particular, bypasses the U-representability

problem. The present formalism makes use of density functionals for subspaces similar to those de-

fined by Levy and Lieb. The procedure followed is along the same lines as the recent developments
in the rigorous derivation of the KS theory [N. Hadjisavvas and A. K. Theophilou, Phys. Rev. A
30, 2138 (1984); M. Levy and J. P. Perdiew, in Density Functional Methods in Physics, edited by R.
M. Dreizler and X. da Providencia (Plenum, New York, 1985)].

I. INTRODUCTION

Many theoretical physics calculations are based on in-
tuition rather than mathematical rigor. The comparison
of the experimental data to the theoretical results is the
usual criterion applied for their validity. Although some
mathematical justification is usually given, the rigorous
formulation comes later. A typical case is Slater's
transition-state theory. ' This theory was applied for
calculating electronic properties of excited states of atoms,
molecules, and solids. The equations which resulted from
this theory are exactly like those of the Kohn-Sham (KS)
equations, where the exchange and correlation energy is
expressed as a functional of the density. The difference
from the KS theory is that the expression for the density
involves fractional occupation numbers. This is a very
unusual feature, because in a Slater determinant one can-
not have fractionally occupied orbitals. Although Slater
gave a statistical interpretation of this unusual feature,
not many physicists were convinced.

Slater's transition-state theory found a sound theoreti-
cal derivation when it was proved to be the lowest-order
approximation of the "subspace theory for excited states"
developed by one of us. ' Thus physical intuition proved
correct, although mathematical justification lagged far
behind. The subspace theory for excited states shares the
deficiencies of the original KS theory, the main deficiency
being the hypothesis of U representability. As Levy and
Lieb have shown, this hypothesis does not always hold.
Their proof can be extended to the subspace densities.

The aim of this paper is to present a rigorous derivation
of the one-particle equations of the subspace theory, i.e.,
the equations corresponding to the KS equation for the
ground state. The procedure to be followed is similar to
that of the KS theory developed independently by Levy
and Perdiew and the present authors. '

II. THE SUBSPACE THEORY
FOR EXCITED STATES

The Hamiltonian of a system of N electrons in an
external potential is

H=Hp+ pr Vr d r. (1)

In the following T will denote the kinetic-energy opera-
tor

T= —, I V%' (r) VV(r)d r,
while

Hp ——T+H;„, ,

with

H;„,= —,
' j4 (r)p(r)%(r)d r,

+ (r) and 4'(r) being the fermion-field operators;
p(r) = (g ~

p(r )
~ g) is the electron density.

The Hamiltonian considered will be assumed to possess
at least M discrete eigenvalues E; lying below the continu-
ous spectrum. The index i will denote arrangement of the
eigenvalues in increasing sequence, i.e., E; (E;+~, where
each eigenvalue is repeated a number of times equal to its
multiplicity. These eigenvalues can be obtained by a
Rayleigh-Ritz variational principle.

The subspace theory for excited states relies on the fact
that the traces of the various operators representing a
physical observable, calculated in a subspace, are func-
tionals of the subspace, i.e., they do not depend on the
particular choice of basis. Thus one can define subspace
energies and subspace densities. Then the eigenspaces of
H can be obtained by using a principle similar to the
Rayleigh-Ritz variational principle. These functionals are
defined as follows.
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If A is a self-adjoint operator and S an M-dimensional
subspace, then

M —1

g &4 IA IA& &4 IP, &=&;, (4)
0

is a functional of S.
The independence of Gz (S) on the particular choice of

basis can be easily verified by noting that
G~(S) =(1/M)Tr(AEs), Es being the Projection oPerator
on S. In this way one can define the energy subspace
functional GH(S) and prove the following5

Lemma 1. (a) The equality

M —1

min G~(S)= g E;
S M,.

holds.
(b) The minimizing S has a basis of M orthogonal

eigenstates
~ f; &, with eigenvalues E;, i =0, 1, . . . , M —1.

One can show that the minimizing subspace S is
uniquely determined apart from the case in which the
highest energy level is degenerate and the subspace of de-
generacy is not a subspace of S. When S is uniquely
determined, there is a one-to-one correspondence between
the minimizing subspace and its density p(r)=G& ~(S).
Thus all functionals Gz(S) can be expressed in terms of
the density. Then under hypotheses similar to those tacit-
ly assumed in the Hohenberg-Kohn" (HK) theory, one
can vary the density instead of the subspaces for deter-
mining the minimum subspace energy. Unfortunately, as
we already pointed out, these hypotheses do not hold.
However, the subspace theory can be slightly modified, in
the spirit of Levy's modification' ' of the HK theory, to
be rigorous and to include automatically the case of de-
generate energy levels.

Part of this work has already been done by Levy and
Perdiew, English and English, ' and Pathak. ' In the
above work the validity of the fundamental theorem of
Lieb for the ground state (theorem 3.3 of Ref. 8) was as-
sumed to hold for the subspace density-functional theory
(SDFT). This assumption is correct, as we shall now
show.

- We first introduce some notation. In what follows,

i f& will denote an arbitrary N-fermion state while
will be reserved for Slater determinants. P ~p will
mean that p(r) =

& g ~

p(r)
i g &. Analogously, S will

denote an arbitrary M-dimensional subspace, R a sub-
space having a basis of M Slater determinants, and

=-p will mean that the subspace density of S is p, i.e.,
p(r) =G-(,)(S).

A further remark is necessary: Since we are interested
only in vectors

i P& representing physical states, we shall
of course require &p i

T
~

p& & 00. But then it is known8

that the corresponding density p(r) = & f i p(r) i P & satis-
fies f (VVp) & m. That is why, in the following, the
word "density" will be reserved onl for those functions
p(r) such that p(r) &0, f p(r) =N, (VV p) & ao.

The first question we have to consider is the following:
Given a density p, does there exist a subspace having this
density? The answer is yes, as the following lemma
shows:

Lemma 2. Let p(r) be a density and M a positive in-
teger. Then there exists a subspace R such that R ~p.

Proof. We simply follow the construction of Harri-
man. ' Set r=(x,y, z) and define

f(x)= f ds f +
dt f +

du p(s t u),
1/2

g'(r) = p(r) exp[ijf(x)], j=0,+1,+2, . . . .

Then gj(r) are orthogonal wave functions, each having a
finite kinetic energy, such that &g ~p(r) ig &=p(r), Vj.
(See Ref. 16 for details. ) Now arbitrarily choose M dis-
joint sets, each containing N functions g~. Each set de-
fines a Slater determinant

i Pk &, k=1, . . . , M. It is easy
to check that the subspace R generated by

~ Pk &, k = 1, . . . , M, satisfies our requirements. ~
Since for any density p, we may find subspaces S (or R)

such that S =- p, we can also find the infimum of the
functional GH (S) under the constraints S ~p. The fol-

lowing important theorem guarantees that this infimum is
attained and permits us to define functionals of p:

Theorem 1. Let p(r) be an arbitrary density and M a
positive integer. Then, (a) the expressions

Gr(p):—inf[Gz(R): dimR =M, R ~p[,
G,(p)—= inf[GH, (S): dimS=M, S p], (6)

3N

f y
j=1 j

H'(It ) is a Hilbert space under the scalar product

&V C.&, = fe*,e,+ f(VV, )'V~ .

H (I~ ) contains exactly those square-integrable func-
tions for which & 0 I

T
I 0 & and & 0 I T+ Hint ~ p & are fi-

nite. Details can be found in Ref. 17. [& i & is the usual
scalar product in L (IR ). For simplicity in notation, we
omit the spin variables. Of course, only the antisym-
metric parts of the spaces L and H' are considered. ]
The proof follows closely the proof of Lieb's Theorem
3.3.

Proof of Theorem 1. (a) By Lemma 2 there exists an
M-dimensional subspace R&H'(& ) such that R =-p.
For such R, both Gz(R) and GH (R) are finite, and thus

the infima are well defined. On the other hand, both
operators T,HO are positive and thus the infima are finite.
(b) Let

are well defined and finite. (b) The above infima are mini-
ma, i.e., they are attained by some subspaces R& and S&,
respectively. m

In order to prove Theorem 1, we need some results
from functional analysis. For any measurable subset Q of
H +, L (0) is the Hilbert space of square-integrable
functions on Q. H'()(t ) is the space of all functions g
in L (H ) which possess a generalized first derivative
such that
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d=infIMGH (S): S ==-p]

M
=inf g (g; IHp I f;): (@; I QJ

)=6J,

y &/; IP( ) I@;&=p( )

Then one can find a sequence of M-tuples
I P~), . . . ,

I)PM�),

n& &, of antisymmetric elements of
H'(8 ), such that

Finally, since
I g,". ), I g;) belong to H'(I ) and this

space is the domain of Ho (cf. Simon' ), it is easy to

prove that Ho I g,". ) —+Hp'l P;) in L (R ). Indeed,
for any g H H',

lim (g I Ho
I

P„' ) = lim (Hp g I
f'„)

n ll

= &Ho"g
I
0'& = &g I

Ho"
I
0'&

But H' is dense in I. , and hence the above holds for any

g H L (cf. Yosida' ), i.e., Hp I P,")~Hp
I 1t;).

But then by the Schwartz inequality,

=lim(Hp g; IH Q")

M
lim g (@,

"
IHo I P,")=d .

n ce;

Since
I f,")is bound. ed, we can select a suitable subse-

quence
I P,") such that

I P,") —+
I f; ) H H'(R ) as

n~ ao(weak convergence). We shall prove that
I g;) is

a minimizing M-tuple for d.
Since p=%, or any e&0 we can ind a bounded

open set AL:R with characteristic function X~, such
that I p(1 —X~) &e/M. If 8=A LR, by the
Rellich-Kondrachof imbedding theorem we can find a
subsequence of M-tuples (which we shall denote again by

I P,")) such that
I g,")~

I P;) as n~co in L (8).
If

p"(r) = &0"
I p(")

I
4"&

then

1 M

i=1

from which we get p,". (r) &Mp(r), and thus

,p 1 —X„&,p,
" 1-&&

N

1 —Xg rj
j=l

But

g I
1 —Xq (r; )

I
) 1 —X~

Hence,

& h ((H,'"y" IH'"y")

X(H' '~/J
I

H' 'tp ) )' '

&A IHo I @ & & lim &0" IHo I
@"'&

and from the definition of d one deduces

d= X &~; IH. l~;&,

G~(S)=G~,(S)+ f p(r) V(r)d r,
and thus

and thus d is a minimum. If
I P,") are Slater deter-

minants, then
I g; ) are also Slater determinants (cf. proof

of Theorem 4.7, Lich ). This means that also the infimum
in (5) is a minimum and completes the proof of the
theorem. 0

Now the theory can be constructed on the following
simple observation: By Lemma 1, we have

1

M (Ep+ ' ' ' +EM ~)= minGH(S)

Now the minimum can be calculated by first taking the
minimum over the set of subspaces having a given density
p, and then minimizing over all p:

minGH(S)= min[ min GH(S)] .
S c

and we get

1 —X =-- ". )1—e, Vs, Vn .

I g;)~ I p;) as n~~ in L, (&), we deduce

f I@;I )1—e, i.e., J I@;I )1. Since norms do not
increase under weak limits, we have; =1.

But this implies that
I

y", &
I y, & strongly in L'(~'~)

and thus (f; I P~ ) =5;J. In addition, by the first part of
the proof of a theorem of Brezis (cf. Theorem 1.3, Lieb ),
one has (p,")' ~p,' strongly in L (I ), and thus

M 2 &4 ip(r) IA&=p«)

T

= min G~ (p)+ f p(r)V(r)d r ' .p, 0

Thus the sum of the first M eigenvalues can be ob-
tained through variation of a functional of p. In this way,
we may calculate this sum from M = 1,2, 3, . . . and then
obtain by subtraction all the eigenvalues of the energy. Of
course, for M = 1 this theory reduces to the HK theory as
modified by Levy.

The variational equation obtained from (8) [assuming
that the functional GH (p) is derivable], under the condi-
tion JP=N, is
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5GH, (p)
+ &(r)=p . (9)

5p r

Equation (9) may take another form, if we define the
kinetic-energy and the exchange and correlation energy
functionals by

T(p) =Gz (Sp), (10)

E„(p)=GII (p) —T(p) ——, J d rd r'. (ll)

Then (9) becomes

(12)

III. RIGOROUS KS THEORY
FOR EXCITED STATES

The procedure for the rigorous derivation of the KS
equations will be as that followed in Refs. 9 and 10 for
the ground state. That is, for the various functionals of
the subspace S we shall define functionals of the subspace
R of the "noninteracting" system. The correspondence
will be made in such a way that the densities of the two
subspaces will be equal.

This can be made as follows.
For any subspace R, let pR(r)=G&, ~(R) be the corre-

sponding density. By Theorem 1, there exist subspaces
RR,SR such that

5T(p) & p p(r')
d

5 P

i.e., an equation similar to those of Hohenberg and Kohn.
Note that the above formulation has the essential advan-
tage that the functionals are defined for any density p,
and not only for U-representable ones.

functionals of R. However, the fundamental advantage of
the definitions (13)—(17) is that they have a meaning for
any R, eigenspace or not, and no hypothesis on the densi-
ty of R is made. We now have the following theorem,
which establishes a variational principle for H(R).

Theorem 2. (a) The following equality holds:

min H(R) =
R

EP+E1+ ' ' ' +EM

(b) If H(Rp)= min+ H(R) for some Rp, then MG&, , (R)
is the sum of densities pp+ ' ' ' +p~ ] corresponding to
an orthogonal set of eigenvectors of H, with eigenvalues

Eo~ E1~ ~EM —1

Proof. (a) Using definitions (13)—(17) we rewrite H(R)
in the form

H(R) =Gz (R) Gz (R~ )—+GH(S~ ) .

But, by definition of Rz, one has

Gr(R) & Gr(R~ )

(18}

(19)

and also, by Lemma 1,

GH(SR) &
Eo+E1+ ' +EM —1

(20)

Inserting (19) and (20) in (18), we deduce

Eo+ ' +EM
H(R)& (21)

To show that equality can be achieved, consider the sub-

space Sp for which, by Lemma 1, we have

Eo+E1+ ' ' +EM
G~(Sp) =

Gr(R+ ) = min t Gz(R'): dimR'=M, R' pR J,
GH, (SR)= min IGH, (S): dimS=M, S =-pRI .

We now define the functionals:

b T(R) =Gz(S~) Gr(R~), —

(13)

(14)

If Sp --pp, next consider the subspace Rz, for which, by

Theorem 1, we have

Gz (R, ) = min I G&(R): dimR =M, R:-ppI,

and calculate H(Rz ). Then from (18}one easily gets

E„,(R)=G H(S~) ——,
' J, d rd r', (16)

pR(r)p~(r')
xc 1nt 2 r rt

H(R)= Gz(R)+AT(R)+ J V(r)pz(r)d r+E„,(R)

p~ (r)p~ (r')
(17)

The physical meaning of these functionals can be seen as
follows: Suppose that R is the eigensubspace correspond-
ing to the first M eigenvalues of the Hamiltonian of a
noninteracting system for some external potential. Sup-
pose further that the corresponding density is also the
density of an eigensubspace corresponding to the first M
eigenvalues of an interacting system, for some other exter-
nal potential. Then it follows easily that the subspaces
Rz and SR defined by relations (13) and (14) are nothing
but the subspaces R and S, respectively. Thus, b, T(R) is
the difference of the kinetic energy of the interacting and
the noninteracting system, and Gz(R) and E„,(R) are,
respectively, the kinetic energy and the exchange and
correlation energy of the interacting system, expressed as

H(Rp ) = Gz.(Rp, ) Gz (Rp, )+GIr—(Sp)

Eo+E1+ +EM

and part (a) of the theorem is proven. (b) Suppose that

H(Rp)= minH(R)= (Ep+ +EM 1) ~

1

R

In order to have an equality in relation (21), relations (19)
and (20) should also be equalities. Thus

1
GH(SR, ) = (E)+ +EM )),

from which we get, by Lemma 1, that S~ has a basis con-

sisting of orthogonal eigenvectors
~ P; }, with H

~ f; )
=E;

~ P; },i =0, 1, . . . , M —1. Consequently,

M —1

=p= g &4 l
p(r)4; & .M,.

Since Rp and S~ have the same density (by definition of
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SR,), we deduce part (b) of the theorem. ~
We have thus defined a functional H(R), by minimiza-

tion of which we can get the sum of eigenvalues
Ec+ . +EM t of the Hamiltonian of a system of in-
teracting particles, as well as the sum of the densities of
the corresponding eigenstates. As we said earlier, in
Ep+E~+ . +E~ ~ each eigenvalue is repeated a num-
ber of times equal to its multiplicity. Thus, if we calcu-
late this sum for M = 1,2, . . . , we can also deduce the de-
generacy of each energy level. (For instance, if we find
that E& +Ep =2Ep, but Ep+E] +E2 )3Ep then the
ground state is doubly degenerate. )

In order to find variational equations for H(R), consid-
er a basis

~
Pt&, . . .

~
PM& of R. Then H(R) can be writ-

ten in terms of P=(
~ Pt &, . . . ,

~ PM & ). But for such P, a

(23)

with

V„,(r) = [E„,(p)+b T(p)] .5
(24)

5p

These equations are similar in form to those obtained by
Kohn and Sham for the ground state. Their main advan-
tage is that they are exact, due to the existence of a correc-
tion term b, T(p), and that they permit calculations of
excited-state energies and densities. In addition, the den-
sity p which is a solution of these equations involves frac-
tionally occupied orbitals. For a more detailed discussion,
we refer the reader to Ref. 5.

IV. . CONCLUSIONS

is defined, and by Eqs. '(15) and (16), the functionals
E„,(P),b, T(P) depend only on «. Thus these functionals
can be written as functionals of «and we have

+ f V(r)«(r)d r

T
~ y, &+ f V,ff(r)P(r)d r

~ P; & =E
~ P; &,

where

(22)

(r) (r')

/r —r'/

Now performing the variation, we deduce, for the mini-
mizing P,

Although the equations of the subspace theory for ex-
cited states, which are equivalent to those of the KS
theory for the ground state, can be rigorously derived, the
main problem, as with all functional theories, is the deter-
mination with sufficient accuracy of the exchange and
correlation energy. P The correction to the kinetic-
energy term is also important. Provided these functionals
can be determined with sufficient accuracy, the subspace
theory can be used for more efficient numerical calcula-
tions, as one may search as a first step to determine the
subspace densities and subspace energy, and as a second
step one can "diagonalize" the effective Hamiltonian and
use the resulting wave functions as starting trial functions
for the self-consistent calculation of eigenstate properties.

We believe that the recent developments in energy-
density-functional theories and the various aspects from
different points of view ' will lead to more exact
functionals and simpler functional theories.
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