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Effective forces and rigorous variational principles
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The Rayleigh-Ritz variational principle can be modified to generate upper bounds to the exact
ground-state energy even when the local repulsive core of a two-body interaction V is replaced by
the corresponding T or 6 matrix calculated for a negative energy ( —cu). One obtains this result by
adding a suitable counterterm to the resulting regularized Hamiltonian and selecting co as an addi-
tional variational parameter.

I. INTRODUCTION

The strong repulsion which most often occurs when
two nucleons, nuclei, atoms, or ions meet inside their
"core" region ( r & a ) can make realistic calculations in
nuclear and molecular physics unpractical. Such a strong
repulsion is in most cases expressed in terms of a t'ocal
two-body potential V(r) which is singular when the dis-
tance r between the two particles vanishes. Out of the
core region, the interaction V is usually considered as
(bounded) regular and can be either attractive, repulsive,
or both. In this paper, we shall concentrate on the repul-
sive core region (keeping in mind the potential contains
enough attraction to generate bound states).

One way to handle the divergent matrix elements due to
the singularity of V in the neighborhood of r =0 is to use
a cutoff procedure in which V is converted into a regular-
ized and still local potential depending on a parameter
c. &0 in such a way that V, ~V, in some sense, when
c.~0. One must then study how physical quantities de-
pend on E, and hopefully converge when E~O. It has
been shown ' in particular that, when V(r) is a monoton-
ically decreasing function near the origin r=0 and V, is
defined as

V, (r) = V(r)B(E ' —V(r))+E '6( V(r) —E '),
where 6 is the usual step function, then the energy E(E)
of a bound state g, corresponding to V, lies below the en-
ergy E of the associated bound state lt governed by V and
that the difference between E and E(E) is smaller than
proportional to c.' . Such a convergence property can ob-
viously be used to reduce a large class of unpractical cal-
culations with repulsively singular, local potentials to
easier calculations with finite, local potentials.

There is an important class of problems for which the
regularized interaction V, of interest is not a loml poten-
tial deduced from V by a straight cutoff in coordinate
space, but is rather related to the nonloca/ T matrix mlcu-
lated from V. The regularizing para, meter is then the neg-

ative energy —m = —c ' at which that T matrix is calcu-
lated. The Brueckner method, where the now traditional
6 matrix plays the central role of an effective interaction,
is probably the best example of that class of problems
where the short-range repulsion between particles has been
regularized into a nonlocal interaction. Except for the
presence of a Pauli operator and an average field in the in-
tegral equation which defines the 6 matrix, there is little
difference between the behaviors of 6( —co) and T( —co),
which both restore the bare V when co~ ~. The purpose
of the present paper is to study the corresponding
behavior of binding energies as functions of co.

This work attempts to generalize the results, obtained
earlier ' for local potentials, to the case of nonlocal regu-
larizations. We evaluate the derivative of the binding en-

ergy, taken as a function of the regularization parameter
with respect to that parameter. Furthermore, we suggest
that a solution might be available for two traditional
problems of the Brueckner method.

(i) By defining the best choice of the regularization pa-
rameters or, in other words, by eliminating the ambigui-
ties in the selection of starting energies.

(ii) By relating the method to a rigorous variational
principle yielding an upper bound to the ground-state en-
ergy. Such a variational principle is in demand. Indeed,
whereas Hartree-Fock theory follows from the Rayleigh-
Ritz principle, standard Brueckner-Hartree-Fock mlcula-
tions .do not rely on any variational basis, and they have
been suspected to induce overbinding.

Preliminary definitions and two basic theorems, one
which corresponds to a variational principle, are given in
Sec. II. A reduction of the "nonloml" regularization to a
problem with an alternative local potential follows in Sec.
III, where the counterterm involved in the variational
princi. pie derived in Sec. II is replaced by a simpler,
though cruder counterterm. Section IV contains a
rigorous upper bound to the counterterm for a two-body
bound state, and its generahzation for a many-body bound
state. These results are discussed in Sec. V with a numeri-
cal application, followed by a conclusion in Sec. VI.
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II. DEFINITIONS AND BASIC RESULTS

C( —co) =B B(co+A+—QBQ) 'QB . (2)

A simple differentiation of Eq. (2) with respect to ( —co)
yields

d( —co)
B(co+A—+QBQ) QB .

The right-hand side being a negative semidefinite opera-
tor, we have the following.

Theorem L'

d C( —co)

d( —co)
&0,

which means that C decreases monotonically when —co

increases from —ao to —a.
For the two-body problem, C is readily identified with

the T matrix when Q, 2, and B are 1, t„, and V, respec-
tively the unit and the relative kinetic and potential ener-

gy operators. If Q excludes occupied single-particle
states, if furthermore 3 = t; -+ t~+ U;+ UJ consists of the
total kinetic energy and one-body average potentials, and
if B= V~J is the interaction of the particle pair (ij), then C
becomes the 6 matrix for that pair [see below, Eqs. (1')
and (2')]. (In the following the potentials U; are under-
stood to be energy independent. )

Theorem I extends to many-body operators whenever
they are defined by equations analogous to Eqs. (1) and
(2). [Effective operators in the Bloch-Horowitz theory
fall into this category. In that case, theorem I expresses
the fact that an effective Hamiltonian defined for the
ground-state energy is more attractive (in the operator
sense) than the Hamiltonian defined for an excited state,
provided that no pole of the relevant propagator has been
passed in the meantime. ] Theorem I applies to our main
concern here, the system of X particles governed by the
"effective" Hamiltonian

N N
H(a))= g t(+ g 6;J( —co;J.),

which contains the usual single-particle kinetic energy
operators t; and an effective two-body interaction made
out of 6 matrices, which are denoted here

It will first be shown that the T and G matrices, when
calculated for a real, negative energy, are operators which
decrease monotonically when that energy increases. This
statement is actually a special case of a more general re-
sult valid for homographic transforms of operators. Let
3, B, and Q be, respectively, two Hermitian operators
semibounded from below and a projector which commutes
with A.

Let ( —a) be the smallest of the eigenvalues of AQ and
Q(A +B)Q. Assuming —a & 0, if one chooses co ~ a, the
operators (co+A )Q and (co+A+QB)Q are positive semi-
definite and can be inverted in the subspace conserved by
Q. The implicit equation

C( co) =B——B(co+A ) 'QC( —co)

reduces to

GJ ( —coJ ) ——Vi&
—&ij (co /+ t; +tj + U; + Uq ) 'QG~ ( —coj ),

or

6;J( —co;~ )

V (~"+"ti+tj+U;+ U +QV"Q) 'QV
(2')

The energies ( —t0) —= I
—co,j ] at which the 6 matrices are

calculated may or may not depend on the pairs under con-
sideration. If one chooses N single-particle parameters co;
and defines co,

&
——co;+m~, then H(to) depends on N pa-

rameters rather than N(N 1)/2—. Whatever the number
of independent parameters co, it is clear from theorem I
that H(co), as an operator, is a monotonic function of
each of them. Any discrete eigenvalue E(ro) of H(co) is
therefore also a monotonic function. The limit of H(m)
when all parameters co;J tend towards + oo is the "bare"
Hamiltonian

N NH=gt+ g V;, . (5)
i=1 i j =1i)J

For the sake of simplicity we will now assume that the
N particles described by H(c0) are distinct. (The case of
identical fermions will be discussed later. ). As a further
simplification, it will be assumed in the following that
~,J ——Q,J.c. ', where the set of parameters 0;J ~ 0 has been
chosen in advance and only one variable parameter c. & 0 is
left. As discussed in more detail in Appendix A, the
values allowed to c are restricted to a finite domain,
0 & E & EM. The first condition which defines that domain
is that each parameter ~;J must be larger than the positive
number a,J which was associated, at the beginning of the
present section, to the lowest eigenvalue of
Q(t;+t/+ U;+ &~+ VJ)Q. Additional conditions will be
formulated below.

Henceforth, we will write H(co) as H(s), an operator
depending only on one variable parameter v. A trivial use
of theorem I shows that H(E) and any of its discrete
eigenvalues E(s) decrease when E increases from 0 to EM.
If one follows the behavior of an eigenstate g, of H(e),
the corresponding eigenvalue E(E) can be expected to con-
verge smoothly ' when c—+0, towards the corresponding
eigenvalue E of the 1imit Hamiltonian H defined by Eq.
(5). This statement reads

E=E( )+eJ dc.' dc'

where it can be noticed that the derivative dE/dE is nega-
tive.

Let M(e) be an integrable upper bound of ( dE/de)—
and define the integral

F(E)= J de'M(E') . (7)

It is clear that F(E) is larger than the integral in the
right-hand side of Eq. (6), and thus

E &E(e)+F(E) .

Since F(c,) vanishes when c.—+0, one obtains E as a lower
limit
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E =inf IE(c) +F( e) I .

As discussed in a previous work, such a lower-limit
property, Eq. (9), is very convenient, for E(e) is also a
lower limit when g, is the ground state. Indeed, if P is an
arbitrary trial function normalized to unity, (P ~ P ) = 1,
the Rayleigh-Ritz variational principle reads, for the
ground-state energy,

E{c)

E{a)

E(E)=infI(y~H(E) ~y)I (10)

which gives, upon insertion of Eq. (10) into Eq. (9), the
following.

Theorem II:
E= lnf I ((t

~

H (e)
~ y ) +F(E) I . (1 1)

c,P

This result, Eq. (11), means that e, or the energies co;~,
can be treated as variational parameters as well as the trial
function, provided a suitable counterterm is added to the
Hamiltonian. One must minimize with respect to both c
and P the sum of the expectation value of H(c. ) and that
counterterm F(e). It is obvious from Eq. (11) that this
variational principle yields an upper bound to the exact
eigenvalue. No overbinding need be feared.

If furthermore M(s) were exactly equal to ( —dE/de)
and if P is restricted to products of single-particle wave
functions, one might claim that the energies co;i for which
the lowest minimum of the right-hand side of Eq. (11) is
reached are thus uniquely defined and are the proper pa-
rameters to be used in a Brueckner-Hartree theory.

Actually, as shown in the following sections, the deriva-
tive ( dE/ds) is —not easily estimated. Practical numeri-
cal results depend, hopefully slightly, on the details of the
chosen M(c). Theorem II remains valid, nonetheless.

t

FIG. 1. Variations with respect to the regularization parame-
ter c of the energy E(c) and of energy augmented by the coun-
terterm E{c)+E(e). Parameter c varies between zero (where
the exact eigenvalue E is reached) and a maximum allowed
value c~ (see Appendix A).

Figure 1 illustrates this variational principle.
Finally, one may stress that both theorems I and II are

valid for a large class of potentials VJ. Except for the re-
striction that those potentials must be semibounded from
below ( VJ & —PJ-, Vji, with It j a sufficiently large posi-
tive number to allow for bound states) they can be regular
or irregular, as well as local or nonlocal.

III. AN ALTERNATIVE POTENTIAL

The main quantity under study in this paper is the rate
of convergence of E(c,) (convergence itself has been
proved ' ). Stipulating that the normalization of any
discrete eigenstate is kept fixed when e varies,
t,f, ~ g, ) =1, one obtains that rate from Eqs. (3) and (4)
with the parametrization m,J-

——Q;J.c

dz = g 0;, (g, ~ V;, [Q;, +c(t, +t, +U;+UJ+QV;, Q)] 'QV„~ p, ) .
8E

(12)

Condition (ii) means that an upper bound M(e) for the
modulus of the derivative d8'/dc, can be easily found,
hence a counterterm

a(s)= f de'M(e') .

In the same way as Eq. (8) one obtains

«@'(e)+~ (e),
which becomes, under condition (iii), the following.

Theorem III:
E (E(s)+~ (e) .

The alternative Hamiltonian A (s) which fulfills the
above three conditions provides us with counterterm ~ (c.)
which can replace the previous counterterm F(s). This
result is illustrated in Fig. 2.

In order to construct a projector-free A, let us intro-
duce a variable "pseudoprojector"

Since the presence of (squared) nonlocal propagators and
projectors makes the task of finding an upper bound for
the right-hand side of Eq. (12) difficult, let us consider a
simpler Hamiltonian where neither the differential opera-
tor t nor Q appear in a propagator

N

A (e)= g t;+ Q ~J(e) . (13)
i=1 i,j=1

l )J
To be acceptable, A (e) must fulfill the following three
conditions: (i) A (e) must reduce to Hwhen e~O, (ii) the'
matrix elements generated by d~;J/dc. must be easier to
calculate than those found in Eq. (12), and (iii) the
discrete eigenvalues 8'(s) of A (e) when e varies in its
domain 0 ~ c & cjM must be smaller than the corresponding
eigenvalues E(e).

Condition (i) may be expressed by

E= 8'( )—ef dc' (6')
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FICx. 2. Same as Fig. 1. Script letters indicate quantities cal-
culated with the alternative potential ~.

Q(&)=Q+A(1 —Q), 0&A, &1 . (14)

9;i( 0;~s ', A—, )

= VJ —VJ[Q(k)]'~ IOJs '+t;+tj+ U;+ U~

+[Q(x)]'"v,,[Q(x)]'"~-'
X[Q(A, )]' 'V"

A straightforward manipulation of Eq. (1")gives

When A, ~O, Q(A, ) reduces to Q and when X—+1, Q obvi-
ously becomes the unit operator. Except for those limit-
ing cases, Q(A, ) is not a projector, but still remains a
positive-definite operator. Actually, Q(A, ) suppresses the
Pauli blocking in a progressive way in

S;J( —II;Js ', k) = V;J —V;1 ( Q;J s '+ t; + tj + U; + UJ )

XQ(A)Ã;1( —QJs ', A) .

In order to prove that 8;J is a decreasing function of A.,
let us notice that Q(A. ) commutes, whatever the value of
A, , with the propagator of Eq. (1"), which is assumed to
commute with Q=Q(0). In order to avoid difficulties
with new propagator poles, it is then convenient to limit
the domain of s, so that all the operators

IQ,Js '+t, +tj+U;+U, +[Q. (A)]'~'V;J[Q(A)]'"I

remain positive definite when A, varies from 0 to 1. The
solution of Eq. (1") is then

The potential WJ is projector-free, but still nonlocal,
because of the presence of the derivative operator t; + t~ in
the propagator of Eq. (16). But, for an appropriate
domain of s (see Appendix A), the operator
(Q,js ' —y; —y~+ VJ) is positive and smaller than the
operator (Q,zc,

—'+ t; +tj + U;+ UJ + Vz ) where (—yk )

denotes the lowest eigenvalue of the single-particle Hamil-
tonian Tk + Uk (usually yk )0). Thus the operator

(17)

is smaller than W~J, and a fortiori smaller than G;J. The
preceding equation can also be written, with y=y;+yj,

~(s,r)= V(r)
with g=1+q V(r ) 0—sy

where g is small, not very different from co '=0 'c, . As
mentioned above, a major advantage of the potential
~,J(c, ) defined by Eq. (17) is that it is local whenever Vz
is local, which is the most frequent practical case. It is
easy to check that the three conditions which were re-
quired from A (s) defined by Eq. (13) are now satisfied.
Indeed (i) when v~0, then ~;~ ( s)~V7 and thus
A (c)~H, (ii) the derivative of ~J(s) with respect to s is

(17')

[~;~(c.)]
(II;~ —sy; —sy') )

which is simple enough since it is proportional to the
square of that potential, and finally, (iii) since ~;~(s) is
smaller than W~J (s) which is itself smaller than
GJ( —Q,je '), then A (e) is smaller than H(s). For any
discrete eigenvalue E(s) labeling a bound state of H(s)
there exists therefore a smaller eigenvalue 8'(s) and a cor-
responding bound state of A (s) and both 8'(c, ) and E(s)
have the same limit E when s~O. For the sake of simpli-
city it may be assumed that degeneracies in the spectra of
A (s) and H(s) may be discarded.

In summary, it has thus been shown that the counter-
term demanded by the variational principle established in
Sec. II can be derived from the simpler effective potential
defined by Eq. (17); The purpose of Sec. IV is to give an
estimate of the matrix elements deduced from Eq. (18).
Since in most cases V~ is local, while neither G,z(s) nor
W~(s) are, it must be stressed again that ~z(s) is local.
The search for a counterterm has thus been reduced to a
problem with local potentials.

X(1—Q)'"W,, (15)

where the right-hand side is a negative semidefinite opera-
tor for an appropriate domain of s (see Appendix A). The
operator 9;J which is obtained for A, = 1 thus defines an
effective interaction 8;J which is a smaller operator than
that obtained for A, =O, namely G)J itself. Now Spj is ob-
viously simpler. It reads

V;J(II;Js-'+ t;+ tj+U;+ U~+

(16)

IV. AN UPPER BOUND FOR THE COUNTERTERM

Let us introduce the numbers (see Fig. 3)

0&a"&a'&a

which define four regions for ~. The value of a" is
chosen so that for the innermost region (r &a") ~ is
smoothed whereas for a" &r&a' ~ varies like V. Then,
a' is defined such that V(a') has a "moderate" value (40
MeV for nucleons), and a is the innermost point where V
vanishes. Let =, be the eigenstate of A (c.) corresponding
to 8'(s). If the normalization of:", is always kept equal
to 1, the derivative of 8'(s) is
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1

2

-1

v

a" c ba' a .

and where ~(c,, r ) is only a little smaller than V(r).
Since V(r) is assumed to be positive in the core region,

~(E,r ) is also positive there, and a fortiori
[~(e,r) —8'(E)] is positive when 8'(E) is negative. One
may thus choose g, (r) as real and positive in the core re-
gion because its second derivative g,"(r), as shown by Eq.
(19), will also be real and positive and will correspond to a
curvature which serves to increase g, (r) when r increases
inside that region.

It is now necessary to assume that V(r) is a continuous
decreasing function of r in the core region. This is true in
all practical cases and does not reduce the interest of the
argument. It follows that both ~(E,r) and the "wave
number" k(r)=[~(e, r)]'r are also decreasing functions
of r in the core region. Let now b and c be two numbers
with the condition 0&c &b &a. As proved in Appendix
B and illustrated in Fig. 4, the following inequality holds
when 0&r &c:

FIG. 3. Behavior of the exact {V) and regularized {~)poten-
tials. In Sec, V, a potential built from ~ for r &a' and from V
for r ~ a' is used.

g,(r) & g,(c)L(r),

where the function g is given by

X(r) = Isinh[ck(c)] I 'sinh[rk(c)],

(20)

(21)

and is defined as the regular solution of the differential
equation

(12')
X"(r)=~(E,c)X(r), (22)

To derive an upper bound to the counterterm as well as
to the expectation value (~ & in Eq. (12') one can use the
fact that

I

~
I

is bounded for r ~ a and that I:-,
I

is
bounded in a specific way for r &a. [The reader who is
not interested in mathematical details can skip to the
paragraph following Eq. (42).] If we restrict ourselves to
local potentials VJ the contribution of the outer region
(r &a) is easy to control, since in most practical cases, as
that shown by Fig. 3, the modulus of VJ in the outer re-
gion is smaller than the maximum depth P J of the attrac-
tive part. It is then simple to adjust the domain available
for c in such a way that the modulus of ~;j(E) remains
smaller, in the outer region, than ppj, where p is a suit-
able coefficient larger than 1. [See condition (iv) in Ap-
pendix A.] The contribution of the outer region to the
matrix element (~;~ & will then always be smaller than

2 2.p pij.
In order to study the contribution of the core region,

one may first consider the two-body problem with spinless
particles in a relative s wave. In a system of units where
A /2m = 1, with m as the relative mass, the radial
Schrodinger equation reads

1

2

(,{c)X{r)

g,"(r)= [~(e,r ) —8'(E))g,(r), (19)

where g, is defined, as usual, by a multiplication of:-, by
r. What follows now consists in finding an upper bound
for g, (r) in the core region.

As shown by Fig. 3, there are two parts in ~ in the
core region (r &a'), namely (i) a smoothed part
(0 & r & a"), corresponding to the case when V(r ) ~ ri
hence —,g ' & ~(c,r ) & g ', and (ii) a steep part
(a "

& r & a ') corresponding to the case when V( r ) & g

a"
k

c b-ILa' a

FIG. 4. Behavior in the repulsive region of the radial wave
function g, . Its comparison with hyperbolic sine approximation
g, lc)glr), intermediate estimate g', {c)y{r),and linear extrapola-
tion g,{c)A{r). Hatched area corresponds to less than unity.
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g,(r) & g,(c)q (r), (23)

with the boundary, condition X(c)=1. As proved in Ap-
pendix C and also shown in Fig. 4, the following inequali-
ty holds when c & r & b:

than v P . The only contribution which then remains to
be studied is that of the region 0 & r & a'.

In order to take advantage of inequality (32), one may
notice from Eqs. (26), (28), and (30) that the behavior of
n ( E, c, b) is dominated by the exponential

where the function y is defined as the solution of the dif-
ferential equation

x =exp[2k(b)(b —c)] . (33)

p"(r) =~(s,b)g(r), (24)

with the boundary conditions (i) y(c)=X(c)=1 and (ii)
y'(c) =X'(c). Finally, because of the curvature of g, ( r), it
is clear that, when b & r &a, an additional inequality
holds,

g, (r) & g,(c)k(r), (25)

where iL(r) is just the linear extrapolation of y(r) from
r =b towards r =a. Inequalities (23) and (25) will give
the basis for an upper bound on g, .

From the definitions of y and A, one obtains

It therefore looks reasonable to maximize x with respect
to b and, for that purpose, to choose b only slightly larger
than c. As an ansatz, let this variational parameter b be
given a value b(c) defined by

~[E,b(c)]= —,
' [~(E,c ) +~(s,a') ] . (34)

This locates b between c and a', because ~ decreases
monotonically. It is also clear from Eq. (34) that 2k(b) is
larger than V 2k (c). The next step then consists in find-
ing a lower bound for (b —c), to be inserted into Eq. (33).

From Eqs. (34) and (17') one obtains

y(r) =cosh[(r c)k—(b)]+D sinh[(r —c)k(b)], (26)

where

D=[k(b)] 'k(c)coth[ck(c)],
hence

V(c)—V(b )

V(c) +~(E,a') [1+g V(c) ]
2+ r/V(c) r/~(E—,a') [1+g V(c)]

(35)

and

A ( r) =[1+(r b)Dk(b) ]—cosh[(b —c )k(b)]

+ [D+(r b)k(b) jsin—h[(b —c)k(b)], (28)

V(c) —~(s,a')[I+g V(c)]1+gV c j 2+g V(c) —g~(E,a')[I+g V(c) j
(36)

g,'(c) & [n(s, c,b)) (31)

It will be recalled that cp and k are positive in their respec-
tive domains of interest. Since, according to inequalities
(23) and (25), g, (r) is larger than g,(c) times y(r) or A, (r)
in the domains c & r & b or b & r & a, respectively, - and
since furthermore the normalization of g, is kept equal to
unity, one finds the relation

1=J dr g, (r) & g, (c)n( cE,b), (29)

where

n(E, c,b) = j dr y (r)+ J dr A, (r) . (30)

An upper bound for the wave function g, results at once
from Eq. (29) and reads

(37)

or

V(c) —2 V(a ')

3
(38)

If one assumes that there is a second-order derivative
V"(r) which furthermore is positive in the core region
(this is true in most practical cases), then the modulus

~

V(r)
~

of the first-order derivative is smaller, when

c & r & b, than
~

V'(c)
~

. This can be also seen trivially in
Fig. 3 and yields

I.et a" be defined by the condition V(a")=g '. When
a" &c &a', then gV(c) & 1 and one obtains readily from
Eq. (36) the inequality

It is useful here to stress that b is arbitrary except for
the condition c &b &a. Thus b can be used as a varia-
tional parameter, hence

b —c &
/

V'(c)
/

'[V(c)—V(b)], (39)

g', (c) &inf [[n(c.,c,b)] 'J, c &b &g .
b

(32) hence, together with inequality (38),

The upper bound given by inequality (31) cannot be
used when c, and thus b, are nearly equal to a, because
the integral n(s, c,b) defined by Eq. (30) vanishes when
c~a. Remembering that the contribution of the outer re-
gion to the matrix element (~ ) has been bounded by
p P, one can define a' &a as suggested in the beginning
of this section in such a way that V(a') =v/3 with v&0.
Since it has been assumed that V(r), and thus ~(E,r ), are
decreasing functions of r in the core region, the contribu-
tion of the domain a' & r &a to (~ ) is obviously smaller

b c& —,
'

[
V'(c)

/

'[—V(c)—2V(a')] . (40)

x &exp[ —,
'

~

V'(c)
~

'[V(c)]' [V(c)—2V(a')]J . (41)

In the region a" &c &a', the condition gV(c) &1 also im-
plies, as shown by Eq. (17'), that ~(e,c) is larger than
—,
' V(c). Since, as seen after Eq. (34), the quantity 2k(b) is

larger than V 2k(c), it is then larger than [V(c)]'~ . The
exponential x defined by Eq. (33) therefore obeys the in-
equality
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For most practical cases, this result, inequality (41),
shows that x ' vanishes faster than the divergence of any
power of V (or ~, a fortiori) T. o give only one example,
if V behaves like an inverse power r, with m ~ 2, then
x ' behaves like exp( r' —~ ). It is now clear that the
ln equality

g, (c) & In[8, c,b(c)]I ', a" &c &a' (42)

provides a stringent upper bound to the corresponding
contribution to (~ ). It would provide an upper bound
for any power of ~ as well. The only contribution left
for investigation corresponds to 0&r &a". Since in that
region ~(E,r) is smaller than g ', and also g, (r) is small-
er than g, (a"), the corresponding contribution is obvious-

ly smaller than q tn[E, a",b(a")]I 'a".
To summarize this long argument, there are four con-

tributions to (~ ). The contribution from the outer re-

gion (r ~ a ) and that from a transition region (a' & r & a )

can be easily bounded because
~

~
~

can be uniformly
bounded there by a fixed number pP or v/3. The contribu-
tion from the steep region of ~, defined by a" &r &a'
with ~(a")= —,

'
g ', is smaller than

I

I dc~ (E,c)In[E,c,b(c)]I

The remainder, corresponding to the smoothed part of A,
is smaller than g In[E,a",b(a")]I 'a". We have thus
obtained a handy numerical, and to a great extent analyti-
cal, calculation of the counterterm.

From the many physical aspects hidden in the details of
the mathematical argument set out in this section, we em-
phasize that the exponential convergence imposed by

n(e, c,b) only reflects the physical fact that the stronger
the repulsion, the smaller the wave function. The main
tool in the proof is the nature of the curvature of the wave
function. That curvature demands so fast an increase of
the wave function that the norm function is pushed "ex-
ponentially" out of the repulsive barrier. It is likely that a
larger class of potentials V than that admitted in the
present section could be handled along similar lines. The
class in which V is monotonic and has a curvature of
fixed sign is, however, quite sufficient for practical pur-
poses. It is likely that many results derived in this paper
are also valid for a class of regular potentials.

For partial waves of the two-body problem with a .

larger orbital momentum than the s wave, it is trivial to
find that the same upper bounds to ( ~ ) as those found
for the s wave are valid, because the centrifugal barrier in-
creases the repulsion and thus crushes even more the wave
function.

The reader wiH notice that the exact value of binding
energy plays no role at all (besides being negative) in the
derivation of an upper bound of (~ ). In other words,
the upper bound of (cr ) which has been derived in this
section is uniformly valid for any bound state of this local
potential.

We now consider the 2V-body problem. The derivation
of an upper bound to the X-body counterterm is slightly
more involved and it is the subject of the paper which
precedes this one. But the argument essentially goes along
the same lines. For each pair (ij) one defines the proba-

bility density p(r) for that pair to be at distance r. One
finds an inequality p"(r) ) k(r)p(r) where k is positive.
Hence an upper bound to p is found, in a way identical to
the argument leading to Eq. (32). Thus finally an upper
bound to (~;~) is found.

V. NUMERICAL APPLICATION AND DISCUSSION

To illustrate the method introduced in this paper let us
consider a two-nucleon s wave with a potential given by

r

1 e
V(r) =A —8

r pr
(43)

where 2 =2.8 MeV fm, 8=31.8 fm, and p =0.7 fm
This potential is simply a Yukawa potential to which we
added a r repulsive part in order to test the method of
regularization.

We fixed the value of 8 such that V(r) vanishes at
r=0.5 fm, and that of 2 such that V(r) has a unique
bound state at the deuteron binding energy E= —2.2
MeV. The inverse length p takes here the usual one pion
exchange potential (OPEP) value p=0.7 fm '. The po-
tential V(r) reaches a minimum of —88 MeV at r=0 72.
fm.

As mentioned above we define a' such that V(a') =40
MeV. This choice fixes a'=0.48 fm and the region
a' & r &a thus contains already a certain amount of repul-
sion due to the beginning of the core. Finally, one may
consider Q= 100 MeV and @=50 MeV as typical parame-
ters for the alternative potential and set eM ——0.8 which
defines yM' ——75 MeV.

%'e adopt another manner of regularizing the original
two-body potential. There is no need to regularize V(r)
for r ~a', since this is a perfectly well bounded and
moderate size (by definition of a') part of the potential. It
is therefore reasonable to restrict the regularization of
V(r) to r &a' only. This serves to modify the definition,
Eq. (17'), of ~ into

~(c,r) = . 6(a' r)+ V(r—)6(r —a') . (l7")V(r)
1+gV(r)

(We notice that the introduction of a local approxima-
tion of 6 enables us to regularize V locally, i.e., for specif-
ic regions only. ) The advantage of this new definition of
~ is that (~ ) is smaller, because its defining integral is
taken from 0 to a' only. The change in the definition of
~ does not affect the content of the previous sections.
No complication arises from the discontinuity at r =a of
the potential defined by Eq. (17").

The upper bound to (~ ) based upon Eq. (42) has been
calculated for various values of r/. Although very simple
to obtain, numerical results turned out to give too large a
bound. Therefore Eqs. (41) and (42) provide us with a
mathematical proof of existence of a bound for (~ ), but
not with a practical tool. This does not affect, however,
the main argument of this paper, namely the estimate of a
counterterm, for (i) it is clear that Eq. (42) is not the best
upper bound that mathematicians can derive [indeed, the
difficulty of estimating dr g, (r) forced us to use

00 01= dr g, (r) in the le'ft-hand side of inequality (29),
whereas it can be seen on numerical examples that the
former integral hardly exceeds 10 ], and in some partic-
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ular choices of V a stricter bound for this integral might
be easy to find, then (ii) special cases might be more
adapted to Eq. (42), and finally, (iii) "exact numerical" in-
tegration of the two-body Schrodinger equation governed
by ~ is even easier to obtain than that for V.

Table I gives several values of the two-body counter-
term E—8'(s). The results are gratifying, for the coun-
terterm hardly exceeds a few MeV or even. tenths of MeV.
Other numerical experiments based on reasonable poten-
tials differing from that chosen above give similar coun-
terterms.

It will be noticed that our alternative potential ~, and
the resulting estimate of the counterterm, are defined only
for values of ( —co) which are on the left side of the
"poles." It has been pointed out to us, however, that is
very useful to allow ( —co) to take on values which belong
to a region corresponding to the single-particle energies of
occupied orbitals. In other words, one would like ( —co) to
be in the "hole pole region. " In so far as numerical calcu-
lations for the two-body problem are feasible, nothing
prevents us from calculating a G matrix for such values
of ( —ro), then using that G matrix as an interaction for
two particles and generating the corresponding binding
energy for an N-body system.

All the results of this paper, which have been derived
for distinct particles, can be readily extended for identical
bosons, because the same value of the regularization pa-
rameters Q;~c

' can be associated to all particle pairs.
The question remains as to whether all these results ap-

ply to identical fermions. In that case, the bare interac-
tions VJ from which the 6 matrices are calculated are the
same for all particle pairs. The G matrices can therefore
differ only from each other through the starting energies

'Q,
z and the single-particle potentials U; and U~ (with

the corresponding parameters y; and yj ). This defines for
each pair a parameter g;J and the corresponding ~,z.

Since the G matrices are different, the resulting lack of
symmetry of H(E) and A (E) with respect to exchange be-
tween particle labels might concern us. The difficulty is
only apparent, because H(s) and A (E) must be restricted
to the subspace of totally antisymmetric wave functions in
the same way as their limi. t when c,~O, namely H. In

TABLE I. Values of the two-body counterterm deduced from
the alternative potential ~. First row contains the energy g
which characterizes the cutoff. Then one finds the regulariza-
tion parameter E, the expectation value (~ ), , the coefficient
by which it must be multiplied to generate [see Eq. (12')] the
derivative of the counterterm, and, finally, the counterterm.

other words, under the condition of projection into the
"antisymmetric" subspace, a nonsymmetric Hamiltonian
can describe a system of identical fermions. The N-body
counterterm is then just given by Eq. (12').

By reformulating the above theory in a framework in
which indices such as i and j would refer to single-particle
orbitals rather than particle themselves, however, one
might find a more satisfactory point of view. A second
quantization framework would indeed be better. This
problem is under study and will give rise to a future paper
in the case of success. It must be stressed, however, that
the validity of the counterterm which has been derived
above is not affected by the lack of antisymmetrization
which remains in the theory at the present stage.

VI. CONCLUSION

v, (r) = v(E)e(E r)+ v(r)e(—r s) . — (44)

This is because we have found that the other regulariza-
tions finally amount to the latter, Eq. (44); and clearly the
latter is the simplest possible and retains all the desired
physical and mathematical properties.

Progress can be made in two directions, namely, (i) an-
tisymmetrization at the beginning of the theory, and (ii)
closer bounds than those generated from ~. Better coun-
terterms and large domains for s are certainly to be found.
Our rigorous solution is now under study for further re-
finements.
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APPENDIX A

') max[A~ '(y;+yj+/3J )] .
l,J

(A 1)

The various conditions which define the domain avail-
able for c can be listed as follows:

(i) all operators Q(A;~E '+r;+t~+ U;+ UJ+ VJ)Q
and, if necessary, all operators Q(Q;& e ' + t;
+tz+U;+UJ) must be positive definite in the subspace
conserved by Q;

(ii) all operators tQJE +r;+tz+ U;+ UJ+[Q(k)]'
V~~ [Q(A, ) ]'~2] and, if necessary, all operators
(O,je '+t;+t&+U;+ UJ ) must be positive definite;

(iii) all operators (0;Jc, ' —y; —yj V~1) must be positive
definite; and

(iv) all numbers P,i(Q,JE
' —y; —

y )(0; E
' —y;—yi —13;J )

' must be smaller than pP;J, with p ~ l.
Since t; and tJ are positive and since U;, UJ, and VJ.

(and a fortiori [Q(A.)]'~ Vi[Q(A, )]'~ ) are larger than
( —y;), ( —yJ), and ( —PJ), respectively, it is trivial to
check that all conditions (i), (ii), and (iii) are satisfied if

APPENDIX 8

Since the functions g,(r) and g, (c)X(r) are regular solu-
tions of Eqs. (19) and (22), respectively, and since X(c)= 1,
their VAonskian at point c reads

g, (c)[g,'(c) —g,(c)X'(c)]
C

=g,(c) f dv[~(s, r) ~—(E,c)—8']g,(r)g(r) . (Bl)

The right-hand side of Eq. (Bl) is a positive number,
because 8' is negative, g', and X are positive and curved
upwards, and ~(s, r) is a decreasing 'function of r in the
core region. Therefore the derivative of g(r) is larger than
the derivative of g, (c)g(r) at that point c where the
graphs of those functions cross each other. Before that
point, g,(r) must be smaller than g,(c)g(r).

APPENDIX C

Because of their boundary conditions at point c, g,(r)
and g, (c) y(r) are the unique solutions of the inhomogene-
ous Volterra equations

As regards conditions (iv), they are fulfilled if
g,(r) =g,(c)+(r —c)g', (c)

+f dr'(r —r')[~(e, r') —8']g,(r'), (Cl)

—j. pE )max Q,J' y;+yj + 13rjij p —1
(A2)

[g,(c)y(r) ]=g, (c)+ (r —c )g,(c)X'(c)

+ r'r —r'~cb, c yr' (C2)

which is even more restrictive than (Al) since p & 1 and

P,J )0.
It is clear that conditions (i)—(iv) are not independent

from each other, some of them including the others. De-
pending on the specific problem under study, some of
these conditions (i)—(iv) might become unnecessary, and
the value E~ deduced from (A2) would than appear as a
conservative boundary for the domain of c..

respectively.
As seen just above, both the inhomogeneous term and

the kernel of Eq. (Cl) are larger (when c &r &b) than
those of Eq. (C2), respectively. It is well known that these
equations can be solved by iterations, which involves here
positive quantities only. Each iteration of Eq. (Cl) thus
generates a larger term than the same step for Eq. (C2),
and thus g, (r) must be larger than g,(c)y(r).
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