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Detailed calculations are presented for the energy splittings of the states 2sj/2-2p~/2 and 2s~/2-

2p3/2 for the muonic ions p -Li, p -Be, and p -B obtained by numerical integration of the Dirac
equation. It is shown that there is severe cancellation between the vacuum polarization and finite
nuclear size contributions to the energy differences, leading to transition frequencies which lie in the
visible region of the spectrum. As a consequence of the cancellation, a measurement of the transi-
tion frequency would provide a sensitive probe of nuclear size and structure. The system p - Li ap-
pears to offer particularly good possibilities for performing such an experiment.

I. INTRODUCTION

High-precision measurements of the 2s~/2-2p~/2 and
2s~/2-2p3/2 transition frequencies in the muonic system

p -He + (Refs. 1 and 2) have stimulated extensive
theoretical work on the various quantum electrodynamic
and finite nuclear. size contributions to the energy levels
involved. Theory and experiment have now developed to
the point that if the QED contributions (primarily vacu-
um polarization) are taken as correct, then a precise value
for the nuclear radius can be extracted for use in calcula-
tions of the corresponding electronic 2s~/2-2@~/2 Lamb
shift transition (primarily electron self-energy). The ab-
sorption wavelengths for the p -He + system are
A (2s t/2-2p3/2 )=8116 A and A (2s ~/2-2p &/2 )=8975 A.
Since the QED contributions to the energy nominally
scale as Z, one might expect the corresponding transi-
tions in heavier muonic atoms such as p -Li + and p
Be)+ to lie in the vacuum-ultraviolet region of the spec-
trum. However, order-of-magnitude estimates for these
heavier systems show that there is severe cancellation be-
tween the vacuum polarization and finite nuclear size con-
tributions to the 2s~/2 energy. As a result, the wave-
lengths remain in the visible or infrared regions of the
spectrum where tunable laser sources are available. The
severe cancellation also means that a measurement of the
transition wavelength would provide a very sensitive
probe of nuclear size and structure.

The purpose of this paper is to provide more detailed
calculations of the transition frequencies for the systems

p -Li +, p -Be +, and p -B + as a function of the nu-
clear size. Section II presents a review of the orders of
magnitude of the lowest-order contributions, Sec. III con-
tains the details of more precise numerical calculations,
and Sec. IV presents the results together with a discussion
of possible experiments.

II. ORDERS OF MAGNITUDE
FOR DOMINANT CONTRIBUTIONS

a Z" 5(aZ)
16 8

(2)

and the finite nuclear size correction to the 2s &/z state,

b, EIt (Z /6)(R /a——„)W„,
where 8 is the rms nuclear radius, and the vacuum polari-
zation correction to the 2s~/2-2p&/2 splitting given in the
nonrelativistic limit by '

czZ'
EEvp ——— (k/ )aI(Z"///2a„)%„, (4)

1Sm

where

~ (1+z'/2)(1 —z')'/'
zdz

(1+Pz)"
and k=aao is the Compton wavelength. For /3& 1, I(P)
can be expanded in a convergent power series as

atoms are discussed in order to make clear the physical
significance of the detailed numerical calculations
described in Sec. III.

In the nonrelativistic limit, the energy levels of a muon
of mass m in the field of a point nucleus of charge Z and
mass M are given by the simple Rydberg formula

E„= (Z —/n )Ap,

where A„=e /a„ is the Rydberg constant for a particle
of reduced mass p=m&M/(m„+M) and az ——A /pe is
the corresponding Bohr radius. Since m&/m, =200, A&
is about 200 times larger than the corresponding Rydberg
for an electron, and az is about 200 times smaller than
the electronic Bohr radius ao.

For the 2s ~/q, 2@~/2, and 2@3/2 states of the n =2 level,
the most important corrections are the 2p3/2 2p)/2 fine-
structure splitting,

In this section, the orders of magnitude of the most im-
portant contributions to the energies of light muonic

with To ——1, T~ ———25m/32, and the remaining T„are
given by the recurrence relation
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Ion I(p) AEv p (meV)

TABLE I. Values of I(p) and the lowest-order nonrelativis-
tic vacuum-polarization correction for muonic ions from Eq. (4).
Here p=Zk/2a„and f (p)~1 in the limit p—+0.

A. Numerical solution of the Dirac equation

In units with A'=c= 1, the Dirac equation for a muon
of reduced mass p is

'He
'Li
Li

'Be
11B

185.841
201.069
202.940
-203.478
204.198
204.659

0.678 076
1.467 26
2.221 39
2.227 27
2.980 20
3.733 67

0.284 695
0.114 154
0.061 416
0.061 158
0.037 833
0.025 579

—205.02
—16SS.77
—4665.0
—4682.4
—9255.8

—15 376.0

[a P+PP+ Vtv(r)+ Vvp(r)]Q=EQ, (12}

where V~(r) is the potential due to a nucleus of finite size
and Vvp(r) is the lowest-order Uehling vacuum-
polarization potential. Following Rinker we assume a
Gaussian charge distribution for the nucleus so that

r/r
V~(r)= —(2Ze'/~m) J e "du, (13)

T„=(n +3)(n +4}/[(n —1)(n +5)]T„
For an electron, P=aZ/2 is much less than unity and
I(P)=1. However, for a muon, P) 1 and, as shown in
Table I, I(p) is much less than unity. The consequent
suPPression of b,Evp Plays a crucial role in the near can-
cellation between ~&vp and AEz.

Counting only the terms considered thus far, the energy
splittings are given by

E (2s1/2) E (2p1/2) ~EvP +~ER

with

(t2 1)1/2
X„(x)=J dt 1 + —2xt1

2j.2

with r11
——(2R /3)'/. For a nucleus with charge density

p(r), the vacuum-polarization potential is

Vvp(r)= —(2u /3m. ) J d r', X1(2 r —r2 p(r')

E(2S1/2) E(2p3/2)—=AEVP —BEEFS+ DER

The ratio

b, Ev p/AER ———(2a/51r )I(P)(k/R ) (10)

Since the finite nuclear radius changes the contribution
from Vvp by only a small amount, we assumed a uniform
charge distribution

3Z/4mr, for r &r, ,
with P=Zk/2az is —1.30 for p - Li and —0.82 for
p - Be. Since the ratio would be —1 if the 2p&&2 and
2s~~2 states were degenerate, this explains the reversal in
sign of the 2p»2-2s1/2 energy splitting for these two
cases. Similarly, the ratio

(~Evp ~EFs }/~ER

= —[(2a/5')1(p)+3/8(m, /p)'](AIR)' (l l)

is —1.04 for p -' Be and —0.91 for p -"B. This ex-
plains the reversal in sign of the 2p3/2-2s1/2 energy split-
ting. The closer the ratio is to —1, the more sensitively
the energy splittings depend upon AE~.

The above does not include a number of small correc-
tions discussed in the following section. As will be shown
there, they are too small to affect the qualitative features
of the energy splittings, but must be included in a quanti-
tative comparison with experiment.

III. DETAILED CALCUI. ATIONS

The results of Sec. II were obtained by using nonrela-
tivistic wave functions, and treating the finite nuclear size
and vacuum-polarization potentials as small perturba-
tions. In the present section, these terms are included ex-
plicitly in numerical solutions to the Dirac equation, and
the remaining small corrections due to the muon self-
energy, the higher-order Kallen-Sabrey vacuum-
polarization term, and nuclear polarization are included
by perturbation theory. The calculations of Boric and
Rinker for muonic helium show that all of these effects
are required for a precise comparison with experiment.

0 f ror~r, (15)

TABLE II. Values of physical constants used.

Constant Value

&0

2PlpC

my ~NZe,

137.035 96
0.529 177&& 10 cm

386.159 fm
105.65946 MeV

206.769

with r, = (
—', )

'/ R. Approximate numerical methods
described by Huang, and Fullerton and Rinker were
then used to evaluate (14). Finally, the eigenvalues of the
radial equation associated with (12) were located by stan-
dard methods of numerical integration. Values of the
physical constants used are given in Table II. The results
for several values of R are listed in Table III. The indivi-
dual eigenvalues were located to an accuracy of 1 part in
10 . The errors quoted in Table III are the resulting un-
certainty after subtraction of the nearly degenerate eigen-
values. For the reasons outlined in Sec. II, many of the
predicted energy splittings change dramatically in
response to small changes in the assumed value of the nu-
clear radius. The values obtained for He at R=1.674 fm
are in good agreement with the sum of the Uehling vacu-
um polarization (first iteration plus higher iterations), fine
structure, and finite nuclear size contributions calculated
by Boric and Rinker.
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TABLE III. Calculated 2s-2p splittings of muonic ions by numerical integration of the Dirac equa-
tion (12) including Uehling vacuum polarization and finite nuclear size terms (in meV). Numbers in
parentheses indicate the uncertainty in the final figure quoted.

Ion

4He

Z (fm)

1.644
1.674
1.704

2p )/2-2$ )/

1387.1(1)
1376.9(1)
1366.4(1)

2p3/2-2$1/2

1533.0(1)
1522.8(1)
1512.4(1)

'Li

Li

2.460
2.560
2.660

2.290
2.390
2.490

1483.0(1)
1225.7(1)
959.1{1)

1894.2(1)
1651.3{1)
1398.6(1)

2229.4(1)
1972.1(1)
1705.4(1)

2642.9(1)
2399.9(1)
2147.3(1)

'Be 2.420
2.520
2.620

—525.0(2)
—1320.9(2)
—2147.2(2)

1850.4(2)
1052.7(2)
223.0(2)

10Be

11B

2.350
2.450
2.550

2.320
2.420
2.520

—6976.7(2)
—8832.7(2)

—10755.1(2)

—6478.5(2)
—8319.6(2)

—10227.7(2)

—1160.9(2)
—3017.6(2)
—4940.6(2)

—656.6(2)
—2498.4(2)
—4407. 1(2)

B. Small corrections

The first of the small corrections not included in the preceding section is the muon self-energy given for a point nu-
cleus by

—aza 4

EEsE(2pj) —EEsE(2~,~2)= m„c {(1+I„/M) '[ln(Za) ' —ln(E20/E'2, )+ —,", + —, ——,'(1+0.66)]

—(1+m&/M) cj/8+3maZ( „', ——, ln2+», )+O(a/m)+O(a Z )I,
(16)

where

1 fol 2p3yp q

CJ =
—1 for 2p~~q .

TABLE IV. Summary of small corrections to the 2s-2p spht-
tings of muonic ions (in meV). Column A: Sum of muon self-
energy, anomalous magnetic moment, muon vacuum-
polarization, and hadronic vacuum-polarization terms in Eq.
(16). Column 8: Second-order (Kallen-Sabry) vacuum-
polarization term.

2p1/2 2$]/ 2p 3/2-2$ g/2The above includes the anomalous magnetic moment and
muon vacuum-polarization contributions. The term con-
taining 0.66 in (16) arises from the estimate of Boric and
Rinker of the correction due to hadronic vacuum polari-
zation given by

EHvP —0 666EpvP

Higher-order vertex corrections of order a (Za) and

Ion

4He
~Li

Li
'Be
10'
11B

—10.46
—45.2
—45.9

—128.8
—283.8
—285.3

B

11.55
32.27
32.44
65.3

111.3
111.1

—10.13
—43.5
—44.2

—123.3
—270.5
—272.0

B

11.55
32.27
32.44
65.3

111.3
111.1
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—(Za)'
5ESE(2$1/2 ) 6~

35R
8(3)'"a„

&& [ln(Za) +ln(R /E2O)+ —', ]pc, (17)

a(Za) are negligibly small. For the Bethe logarithm, we
used the nonrelativistic point nucleus value

»(&zo/e2I)=»(&2o/Z R ) —in(eel/Z R )=2.84179 .

We also include the finite nuclear radius correction to the
muon self-energy discussed by Boric. ' For this term, one
replaces (V V) by ( —4mp(r) ) to obtain

cause R ~&/ and the nonrelativistic approximations used
to obtain (16) are no longer valid in this region. However,
for muons, R=k& and the nonrelativistic approximation
is valid in lowest order. The effect of this term is to
reduce the magnitude of the self-energy contribution to
the 2s-2p splittings by about 2Z%. The shifts obtained
from (16) and (17) are listed in Table IV.

The next small correction is the second-order vacuum-
polarization term derived by Kallen and Sabry. ' Their
result can be expressed in terms of a correction to the
Coulomb field of the form ' '

where k& ——km, /p is the muon Compton wavelength.
Lepage et al. " have argued that (17) greatly overesti-
mates the size of the correction in the case of electrons be-

Vvp2(r )= —(Za/r)R 2I (r)

where

(18)

00

( )=— dte '"
(
—"-t-'+ ' t '+ 't-')(t—' 1)'"—

2

+ ( , t '+ ', t —")—(t' —1)'-/'in[8—t(t' —1)]+(——,'t-'+ —,
' t-') J dx f (x) (19)

f(x) = ln[x + (x —1)'/ ]
3x

x (x —1)

ln[8x (x —1)] .
(

2 1)1/2

The energy shift for each state was obtained by numerical
integration of the first-order perturbation expression

f,
"

[ If (r)
I

'+
I g (r)

I
'1 Vvp2(r)r

r + g r r r

where g(r) and f (r) are the large and small components
of the radial Dirac wave functions obtained from the nu-
merical integration of (12). The resulting contributions to
the energy splittings are given in Table IV. The values for
p - He agree with the calculations of Boric and Rinker.
Higher-order vacuum-polarization corrections of order
a (Za) and a(Za) are small compared with the nuclear
polarization uncertainties discussed below, and so are not
Included.

The remaining small correction is the energy shift due
to the polarization of the nucleus by the electric field of
the muon. This is the least certain part of the calculation
because dynamic nuclear polarizabilities are not well
known, and accurate calculations depend upon a detailed
knowledge of nuclear structure. ' ' In fact, for Z ) 10,
the Coulomb energy of the muon is no longer small com-
pared with typical nuclear excitation energies. ' Detailed
calculations of energy shifts have been done by Rinker
only for the systems p - He and p - He, and even these

are accurate to only +20% because of various approxima-
tions made. ' The accuracy of models for the nuclear
response function has also been checked by Rosenfelder's
for the case of ' C. However, the reliability of different
computational methods is still a matter of controversy in
the literature.

Qur approach here is to use a semiempirical formula
based upon an approximate expression for the energy shift
obtained by Rinker, adjusted to reproduce his results for
p - He and p - He. He shows that in the nonrelativistic
closure approximation, the energy shift of the 2s state due
to virtual dipole excitations of the nucleus is given by

a4Z3 (m c )(X p (20)8~' gc

where o. 2 is related to the nuclear photoabsorption cross
section o(E)by.

o' 2 ——I dEE o(E)

and R is an arbitrary cutoff of the order of the nuclear ra-
dius R which must be introduced to avoid a divergence at
the origin. Rinker shows that setting R =R yields the
correct order of magnitude for hE ', but the numerical
value is too large by about a factor of 2. However, the
choice R =2.36R, together with the experimentally deter-
mined values for R and o. z, yields values for AE ' which
are in close agreement with Rinker's detailed calculations
for both p - He and p -He. With the above choice of
R, Eq. (20) becomes
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TABLE V. Estimates of the nuclear polarization energy shift
for the 2s1/2 state of muonic ions.

—za'
b, S) 2

—— (p/M)pc [ '„—+21n(ez)/ego)
6m.

Ion
R

(fm)'
gE 2$

(me V)
——,

' ln(Za)] . (24)

He
4He

Li
Li

'Be
10B
11B

1.87
1.67
2.56
2.39
2.52
2.45
2.42

0 013
0.0074
0.016'
0.0210
0.0366
0.023'
0.027'

—4.9+ 1.0
—3.1+ 0.6
—15+ 4
—21+ 4
—82+ 16

—103+21
—122+24

Although the individual contributions from ~2, and
AS& 2 are comparable in size to the nuclear polarization
uncertainties listed in Table V, they almost exactly cancel
one another, leaving a net contribution of less than 0.2
meV in all cases studied. These terms are therefore not
tabulated separately. As an example, the numerical values
for "Bare ~q, ——14.9 meV and ~~ z

———15.0 meV.

b,E"=—S7.gZ3a, /R mev, (22)

'Reference 19.
"Quoted by Rinker (Ref. 7).
'Value interpolated from the data of Ahrens et al. (Ref. 20) as-
suming an A dependence on atomic weight.
Reference 20.

IV. RESULTS AND DISCUSSION

The total predicted values for the 2p~&2-2$~~2 and
2p3/2 2$$/2 transition energies are listed in Table VI,
along with the assumed value Ro for the nuclear radius.
Also listed are values of the coefficients a and b in the
empirical expansion

bE(R) =bE(RO)+a (R —Ro)+b(R —Ro) (25)

b,B2s- ,', (Za) (r, /k)(p /—Mm, )IJ,c (23)

for a uniform nucleus of radius r, [cf. Eq. (15)] and

with R expressed in fm and o 2 in fm /MeV. The nu-
merical values of Rcr , 2, and b,E ' are summarized in
Table V for ions up to Z=5. ' As discussed by
Ahrens et al. , the value of a 2 is anomalously high for
Be because of a large magnetic dipole contribution at low

energies. The values of b,E ' for both He and He coin-
cide with the two significant figures quoted by Rinker.
However, all the results are assigned the same +20% un-
certainty already present in Rinker's calculation.

In addition to the above, there are further small relativ-
istic nuclear recoil corrections denoted by Boric and Rink-
er ' as

to permit calculation of energy differences for other
values of R near Ro. The uncertainties listed are only
those due to the nuclear polarization contributions. The
results for He agree to within 0.1 meV with the calcula-
tions of Boric and Rinker. ' The transition wavelengths
and the corresponding uncertainties due to both nuclear
polarization and nuclear size are given in Table VII. It is
clear that for all the ions studied beyond He, the wave-
length uncertainty due to the assumed value of the nuclear
radius is much greater than that due to nuclear polariza-
tion. All of the ions have 2s~~2-2p&&2 or 2s&&2-2p3/2 tran-
sitions in the visible (or near-ir) regions of the spectrum.
Assuming that the theoretical description is correct, then
even a crude measurement of the transition wavelength
would determine a much improved value for the nuclear
radius. For ions heavier than "8, the corresponding tran-

a
{meV/fm)

TABLE VI. Calculated transition energies for muonic ions. Rp is the assumed rms nuclear radius,
and a and b are the parameters appearing in Eq. {25).

0 hE(R p) b
Ion (fm) (meV) (meV/fm )

4He
'Li
Li

'Be
10B
11B

1.674
2.560
2.390
2.520
2.450
2.420

~E(2+1/2 2s1/2)
1381.0+0.6'
1228.0+4.0
1659.0+4.0

—1302.0+ 16.0
—8902.0+21.0
—8372.0+24.0

344.0
2620.0
2478.0
8111.0

18 893.0
18 748.0

114.0
468.0
483.0

1518.0
3322.0
3347.0

4He

Li
Li

'Be
10B

11B

1.674
2.560
2.390
2.520
2.450
2.420

AE(2@3/2 2s1/2)
1527.3+0.6
I976.0+4.0
2409.0+4.0
1077.0+ 16.0

—3074.0+21.0
—2537.0+24.0

344.0
2620.0
2478.0
8137.0

18 890.0
18 753.0

114.0
468.0
483.0

1594.0
3316.0
3342.0

'Uncertainty due to nuclear-polarization contribution.
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0
TABLE VII. Calculated absorption wavelengths (in A) for transitions in muonic ions. The first un-

certainty listed for the wavelengths is that due to nuclear polarization and the second is that due to the
rms nuclear radius R.

Ion

4He

Li
Li

'Be
10B

11B

R (fm)

1.674+0.012
2.56 +0.05
2.39 +0.03
2.520+0.012
2.45 +0.12
2.42 +0. 12

A, (2s ~~2-2p ~~2)

8978.0+ 4+27
10097.0+ 33+1072

7473.0+ 18+334
—9520.0+ 116+703
—1393.0+ 3+354
—1481.0+ 4+397

A, (2s &/2-2p3/2 )

8118.0+ 3+22
6275.0+ 13+414
5147.0+ 9+159

11 512.0+ 173+ 1048
—4033.0+ 27+2947
—4887.0+ 46+4286

sitions all lie in the far ultraviolet or x-ray regions of the
spectrum.

An experimental measurement could be done as for
helium' by tuning a dye laser to the 2s&&2-2@~&2 or
2s&/z-2p3/z transition frequency and detecting the prompt
2p-1s x ray that is emitted at resonance. The 2s~~2 state
is metastable with a two-photon decay rate to the ground
state of 1.65&&10 Z sec '. A likely candidate would be
the 2s~/2-2p3/2 transition of Li near 5150 A. For this
ion, the predicted wavelength uncertainty is not so large
as to make the resonance difficult to find and the 2s, /z
state radiative lifetime is 0.83 psec, which is about the
same as for the muon itself. The 2@~is transition ener-

gy is 18.7 keV. A major problem concerns devising a suit-
able source. Bertin et al. ' had to use a pressure vessel
containing 40 atm of helium gas in order to capture a sig-
nificant fraction of the muons in the detection region. It
is probably impractical to achieve such pressures with
pure lithium vapor, but it may be possible to add suffi-
cient lithium to a high-pressure helium buffer gas in a
heat-pipe apparatus ' for an experiment to be feasible.
The helium would thermalize the muons, but they would
be preferentially captured by the more highly charged Li
nuclei. As the muons cascade down, they would tend to
eject the atomic electrons through Auger transitions.

This is important because otherwise the atomic electrons
would induce a rapid depopulation of the 2s, /2 muonic
state through monopole Auger-electron emission.

Another possibility one could consider is a crystalline
source such as I.iH or I.iF. Although the unperturbed
crystal field of cubic symmetry would not depopulate the
2s~~2 muonic state, it seems likely that the violent vibra-
tional excitations that would accompany the processes of
muon capture and electron ejection would produce a rapid
quenching of the metastable state. It would seem that a
gas-phase experiment has the best initial chance of success
if the other technical problems can be overcome. Howev-
er, if a time-resolved signal can be observed from p -Li
ions imbedded in a crystal, it would provide a valuable
probe of vibrational relaxation effects.
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