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Chaotic behavior in externally modulated hydrodynamic syst'ems
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An amplitude equation for a codimension-two bifurcation point is studied in the presence of a periodically
modulated Rayleigh number. The boundary limits of the convective state and flow patterns above thresh-
old are calculated. It is found that the system exhibits chaotic behavior close to the codimension-two point.
The Lyapunov exponent associated with these trajectories is calculated.

Hydrodynamic systems exhibit a rich variety of phenome-
na arising from the nonlinear nature of the basic equations
which describe them. In particular, they exhibit instabilities
which lead to complicated flow patterns. A canonical exam-
ple of such a'phenomenon is the Rayleigh-Benard instability
in a layer of fluid heated from below. ' Usually in a
single-component fluid this instability leads to a stationary
flow pattern. However, theoretical studies of models associ-
ated with binary mixtures indicate that these systems are ex-
pected to exhibit two kinds of instabilities, leading, respec-
tively, to stationary and oscillatory flow patterns when the
two external parameters which control the system, namely„
the temperature and concentration gradients AT and AC,
are varied. In the experiment, 5 T and AC are coupled by
the thermal diffusion coefficient, which usually is a function
of the average temperature and concentration. Subsequent-
ly the two types of flow patterns have been observed experi-
mentally in, for example, 4 water-methanol and water-

ethanol mixtures. At the point where the two bifurcation
lines intersect, the two types of flow patterns compete, giv-
ing rise to interesting nonlinear phenomena. Such a point is
called a codimension-two (CT) bifurcation point. 8 '2 The
amplitude equation associated with this point has previously
been derived, and the (6C, 5 T) phase diagram was
analyzed. The phase diagram exhibits two transition lines to
the two types of flow pattern, together with other instability
lines separating the two convecting regions (see Fig. 1).

In this paper we are concerned with the effect of external
modulation (e.g. , of the temperature gradient) on the phase
diagram This modulation provides an easily accessible and
controllable parameter, and therefore is very attractive ex-
perimentally. Moreover, simple models corresponding to
these systems may be derived from the hydrodynamic equa-
tions. These models may then be analyzed theoretically in a
tractable way. Previous theoretical studies based on an am-
plitude equation and the Lorenz model were mainly con-
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FIG, 1. Phase diagram of Eq. (1) for f2 ( 0 and Ii=62=0. (a) fl & 0. ID is a second-order line separating the conductive phase (which
exists in the lower left quadrant of the a-b plane) from the oscillatory one. I, is a first-order line separating the conductive and the station-
ary phases. The oscillatory and the stationary phases are separated by a nonlinear second-order line I„. As this line is approached froa the
oscillatory phase, the frequency of the periodic motion goes to zero. (b) f'l ( 0. In this case both lo and I, are second-order lines. The os-
cillatory and the stationary phases coexist in the region bounded by the lines I„l and I„3, The transition between the two phases is therefore
first order. Lines I„l and I„3 are stability limits of the stationary and oscillatory phases, respectively. On the line I„2 a homoclinic saddle
connection of the two unstable limit cycles occurs.
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cerned with the effect of time-dependent heating on the sta-
tionary instability of the single-component fluid. ' ' More
recently, a generalized Lorenz model for binary mixtures,
which includes the effect of external modulation, was con-
sidered, and the linear stability analysis was carried out. ' '
Here we study an amplitude equation of a binary mixture
close to the CT point with external modulation. We are
mainly interested in the nonlinear behavior of the system,
i.e., in studying the flow patterns above threshold. We find
that, unlike the relatively simple phase diagram of the un-
modulated case (Fig. 1), the phase diagram of the modulat-
ed system exhibits a rather complicated pattern of instability
lines leading to chaotic behavior in the vicinity of the CT
point. Let us consider for definiteness a Rayleigh-Benard
system of binary fluid in which the Rayleigh number is
given by R =Rp+R~cos(cut), where Rt is a small pertur-
bation. The following analysis is quite general, and there-
fore also applies to other problems such as, for example,
magnetoconvection. We describe the system close to the
CT point by the following equation:

x = [a + 6~ cos(cot) ]x + [b + c2

cos(cut�)

]x+f~x + f2x x

where x is related to the vertical component of the velocity,
and ~i and ~2 are proportional to R~. The parameters a and
b are functions of the temperature gradient and the concen-
tration. For R~=O (namely, for et=f2=0) this equation
describes the flow of the fluid near the CT point, given by
a = b=0. 'O' The linear part of this equation can easily
be derived from the linearized hydrodynamic equations
which describe the system, considering only linear terms in
Rt. We neglect the effect of R~ on the nonlinear terms f~
and f2, since Rt is assumed to be small while f~ and f2 are
of O(1). For Rt=0 the (a, b) phase diagram has been
analyzed in detail. ' In what follows we restrict ourselves
to f2 & 0. The phase diagram is given by Figs. 1(a) or 1(b),
depending on whether f~ is positive or negative, respective-
ly. For f~ & 0 (corresponding to binary mixtures) there are
two transition lines associated with the convective phase: a
second-order (forward bifurcation) line Ip leading to an os-
cillatory phase, and a first-order (inverse bifurcation) line I,
leading to a stationary phase. The two phases are separated
by a second-order line J„.' ' The frequency of oscillation
vanishes when this line is approached from the oscillatory
phase [Fig. 1(a)]. For ft & 0 (corresponding, for example,
to some cases of magnetoconvection' ), both lines I, and Ip
are second order. However, the two phases are separated
by a first-order line. The stability limits of the oscillatory
and stationary phases are given, respectively, by the lines I„3
and I„i. The two phases coexist between these two lines
[Fig. 1(b)].8 Note that, for e~=e2=0, Eq. (1) is a second-
order autonomous equation, and therefore is not expected
to yield chaotic behavior. However, when modulation is
present, solutions of this equation may exhibit chaotic
behavior, resulting in a rather complicated phase diagram.
In the following we perform the linear stability analysis of
this equation, and study its solutions above threshoM. We
find that the system does indeed exhibit chaotic behavior
close to the CT point.

Linear stability analysis of Eq. (1) near the convective
phase (x=0) yields the following expression for the sta-

to leading order in e~ and ~2. For frequency co=2co p/n,

n & 1, the correction to the expression for the instability
surface is of O(e2), and the resonance effect shows up at
O(e"). When the resonance condition is not satisfied, the
instability surface stays at a = 0 for

A =—T6-(a)2 —4b —1/2ej)2+ (bo) —1/2e)) & 0 (4)

However, when A becomes negative, the surface curves to-
wards the conductive phase, and is given by

—'(~ + a —4b —1/2ef) (co2+ 9a2 —4b —1/26j)

+2b(~ +a ) —1/262(&2+a&&) =0 . (5)

For F2=0 (f~ & 0), the behavior of the instability line I„~
(given by a = b) is very similar to that of the oscillatory in-
stability line a =0. Again, if co=2coo, one finds resonance
effects however for the nonresonating co, the expression for
J„i does not change until ~~ reaches the value given by the
following expression:

2{co4+cu2[10(a—b)2 —16b]+ [3(a —b)2+8b] }2
[2cu2+ 10(a —b) + 16b]

(6)

For greater values of ~i the stability surface is curved to-
wards the stationary phase. The analysis of this line in the
case of e2e0 is more complicated, since the fixed points as-
sociated with the stationary phase become limit cycles. We
have analyzed the stability of the limit cycles; however, the
expression of the resulting critical surface is rather compli-
cated and will be published elsewhere. Consider now the
f» 0 case and take F2=0. By applying the Melnikov
method8 and averaging over the period of the modulation,
one can prove that the nonlinear line I„ is not changed.

In order to investigate the flow patterns above threshold,
we performed numerical integration of Eq. (1). As already
mentioned, the solutions of this equation may exhibit chaot-
ic behavior. If such chaotic regions exist, they should be
most easily found close to the I„ line (for f~ &0), and
between the nonlinear lines I„t and I„3 (for f& & 0). In
these regions the unmodulated system exhibits competition
between fixed points and limit cycles. This competition may
result in a chaotic behavior when modulation is added. In-
spection of the trajectories in these regions shows that this
is indeed the case. A single trajectory wanders chaotically
between the fixed points and the limit cycle of the unmodu-
lated system. Typical trajectories are shown in Fig. 2. In
this figure we consider the f~ & 0 case and take the system
to be close to the I„~ line (eq=e2=0). By increasing
e~ we find a series of period-doubling bifurcations [Figs.

tionary instability surface:

b = ~e, (e, + ae))/(a'+~')
4

Near the CT point (a=b=0) this surface is curved to-
wards the convective phase. The behavior of the oscillatory
instability surface is more complicated. Let ~0 be the fre-
quency of the oscillatory phase at threshold (for e& = F2=0
one has o)p= 4 b ). For pp=2&op one finds resonance ef-
fects' which lead to the following expression for the oscilla-
tory surface:

(3)
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FIG. 3. Plot of the Lyapunov exponent h. as a function of eI (for
e2=0) corresponding to the sequence given in Fig. 2. The sharp
maxima in the region of negative A. indicate the points of period
doubling. Positive A. corresponds to chaotic trajectories.
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FIG. 2. Phase-space trajectories of &e. (1) for fi & 0, F2=0,
a =0.012, b=0.0125, co=0.3123, and several values of ~~. As one
increases eI one finds a series of period doublings (a)-(d). For
large ei (e)-(f) the motion becomes chaotic.

2(a)-2(d)], leading to chaotic trajectories for sufficiently
large aI [Figs. 2(e) and 2(f)1. For the fi) 0 case, Eq. (1)
does not have a nontrivial (x&0) fixed point. '7 We there-
fore add a term f3x' (f3 & 0) to Eq. (1) and study its tra-
jectories near the I„ line. This coefficient has previously
been calculated on the stationary branch of the instability
line. is We find that like the fi & 0 case this system exhibits
chaotic behavior. Note that the chaotic trajectories are rath-
er easily found. For any point (a, b) close to the nonlinear
lines, one seems to be able to vary e~ and ~2 until chaotic
behavior appears.

In order to demonstrate that the observed trajectories are
really chaotic, we calculated the Lyapunov exponent, the
power spectrum, and the correlation dimension D.' It
turned out that, indeed, the trajectories which "looked"
chaotic had a positive Lyapunov exponent and showed
broad bands in the power spectrum. A plot of Lyapunov
exponent values for the sequence given in Fig. 2 is shown

in Fig. 3. In the region of stable limit cycles the Lyapunov
exponent is negative. The sharp maxima in this region cor-
respond to the points of period doubling. This plot is very
similar to that obtained for the logistic map. 2O The calcula-
tions of the correlation dimension' suffered from poor nu-
merical stability. However, they clearly indicate that D ) 2
for the chaotic trajectories, typically about 2.3-2.8 for dif-
ferent points in the phase diagram. For example, for
&~=0.62 in Fig. 2 we find D=2.5+0.2.

In summary, we have analyzed the onset of convection in
some systems in the presence of periodic modulation of the
Rayleigh number. By performing linear stability analysis we
have calculated the stability boundaries of the convecting
phase. We have also found that in such systems it is possi-
ble to find chaotic behavior at the onset of convection, that
may take place via the period-doubling scenario. We hope
that this work will stimulate experimental studies of phase
diagrams of modulated systems which are expected to exhi-
bit chaotic behavior near the CT point.
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