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Coulomb T matrix "half-off-shell" at zero momentum, and for large I
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Recently Talukdar et al. [Phys. Rev, A 29, 1865 (1984)] found that the so-called "half-off-shell"
Coulomb T matrix t~I(p, k;k ) were to be (i) singular at p =0 for l ) 0, and (ii) increasing for increasing l.
We point out that both these results are incorrect: (i) From the simple closed formula

rcr(P, k;kz) = (2y/vrP ) exP(3vry/2)Q/" [(Pz+kz)/2Pk]. 0 (P ( k

one can see by inspection that tcI(p, k;k ) =O(p ), for p 0, precisely as the Coulomb-potential matrix
element and the off-shell Coulomb T matrix. (y is Sommerfeld's parameter and QII~ is Legendre's func-
tion of the second kind. ) (ii) For all

peak,

t&I(p, k;k ) tends exponentially to zero as l tends to infinity: as
I exp[ —I lln(p/k) I].

The partial-wave- (PW) projected "half-off-shell" T ma-
trix associated with the Coulomb potential VcI(r) =2ky/r
(y is Sommerfeld's parameter, ky is a real constant) can be
defined by'

rcI(p. k'k ) = (pIVcrlk/+&c, for p&k

where Iki + ) c is the PW Coulomb scattering state at energy
k' ) 0 (Imk [ 0, units are such that t = 1 = 2m ), and p is
the off-shell (peak) momentum. A convenient closed ex-
pression for &p I Vcrlkl+ &c is most easily obtained by PW
projection of the full "half-off-shell" Coulomb T matrix,
which equals'

&plVclk+&c=ky~ 'I'(I+Iy)e ""'«m [p' —(k+ie)']"(Ip —kl'+e')
e)0

where Ik+ &c is the full Coulomb scattering state at positive energy k . By using'

I'(1+@)J PI(x)(z —x) " 'dx = 2(zz —1) & 2e '"&QI"(z), Iarg(z —1) I ( vr, 1=0, 1, . . . ,

(2)

where Qr" is Legendre's function of the second kind, one
easily obtains

&p I VcIlk/+) c=2y(harp) 'e "/zQ/"(u)8, for

peak,

(4)

where u:= (p2+k')/(2pk) and67

In view of the well-known relation

lim [z'+'Q "(z ) ) = e'"&
z
™

(2!+ 1 )!!
one has

lim [p '&p I VcI lk/+ & c]

(6)

e ~ if0&p&k,
1 if0&k&p

-'(2/k)'+' " ~'
(2I + 1)!!

which shows that the PW Coulomb "half-off-shell" T ma-
trix is of the order p' for p 0.

Another convenient closed form for &p I VcI I kl + & c is"

&p I Vc lkl+& ci (mp) 'e "" 1! lim [a''rP, '" 'r (u) —(a') 'rPI '"'~ (u)], for p~k
I'(1+i )I'(1 —i )

I'(/+ I —iy) .to

where

a:= (p —k —ie)/(p+k+ie)
and PI"' is Jacobi's polynomial of degree I. One easily veri-
fies that Eqs. (4) and (8) are equivalent. " From Eq. (8) we
see clearly that

I' (/ + I —I y ) (p I VcI I kI + ) c

properties of Ikl + ) c that it has to be real. Notice that

Im &p I Vcr I k/ + & c /Re (p I Vc& I k/ + & c = tan a 1(k )

where a.I(k) is the Coulomb phase shift.
Let us denote the equation obtained from Eq. (8) upon

replacing both Jacobi polynomials through use of the equali-
ty

is real for real p, k, and y, it follows directly from known
I+n

P, ' '(u ) = /, P, ( —l, I + 1;1+n', (1—u )/2) (10)
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by Eq. (8)'. As far as we know, Eq. (8)' in its essential
form was published for the first time by Dolinskii and Mu-
khamedzhanov.

I. BEHAVIOR AT p =0

Recently Maximon, and subsequently Talukdar, Ghosh,
and Sasakawata derived once more essentially Eq. (8)'
(transliteration: p ~ q and y ~ rl); however, in Eq. (17) of
Ref. 10 the limit for e 0 has been carried out in an ambi-
guous way, viz. , when 0 (p ( k.

It is claimed in Ref. 10 that t«(p, k;k ) for l ) 0 were to
be singular at p =0, and in Sec. III numerical results sup-
porting this claim are reported; see Figs. 1—4 of Ref. 10.
Unfortunately this claim is at variance with Eqs. (4) and
(7), and consequently these numerical data must be con-
sidered incorrect.

It is noteworthy that either term inside the square brack-
ets on the right-hand side of Eq. (8) is O(p ') for p 0,
and hence (highly) singular if l & 0. Apparently, the proper
combination of these two terms effectuates that the pole of
order I cancels, even in such a delicate way that a zero of or-
der I+1 results, at p =0.

This important observation leads us to suggesting two
possible sources of computational error in the numerical
evaluation of the Coulomb half-shell T matrix for small mo-
menta:

(A) The limit for e ) 0 in Eq. (8)' is incorrectly evaluated
in the case 0 & p & k. Note that [cf. Eq. (5)]

Obviously, if these factors e — ~ are not correctly taken into
account, the pole of order I at p =0 in either term involving
the Jacobi polynomial does not cancel, so that in the final
expression for tcI, a pole of order l+1 at p =0 will be
found.

(B) There is numerical inaccuracy due to the delicacy of
the way in which the two terms inside the square brackets in
Eqs. (8) or (8)', each having a pole of order i, taken togeth-
er produce a zero of order I + 1.

Source (A) must have been appreciated by the authors of
Ref. 10, because Ref. 9 gives a careful analysis of this point.
Therefore, we believe that source (B) is the reason for the
false claim made in Ref. 10 on the behavior of tet(p, k;k )
for I & 0 at p = 0.

II. BEHAVIOR FOR I ~ m

In Figs. 5 and 6 of Ref. 10 and the covering text, it is re-
ported that the real and imaginary parts of tet(p, k;k ) were
to be increasing for increasing l, in a certain case even ex-
ponentially (although stated above Fig. 5 is "diverges loga-

e+"'r~(k —p)/(k +p) I'", if 0 & p & k,
lim a'" =
cttt ((k —p)/(k+p)~'~, if 0& k & p

whereas

e &)(k —p)/(k+p)~'r, if 0&p & k,
, I (k —p )/(k +p ) I",lim a' 'v= (12)
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FIG. 1. The quantity tet(p, k;k2):= (p I Vctlki+)c for I = I, as a
function of p. Same parameters as in Ref. 10, Figs. 1—4, bottom.
Solid and dashed lines represent the real and imaginary parts,
respectively, of tcI, The singular behavior near p =k =0.5 fm
cannot be clearly seen on the scale of the figure.

FIG. 2. The quantity t&I(p, k;k ) for p = k/8 and for p = 2k, as a
function of I:I= 0, 1, 2, . . . . The solid line connects the results for
the real parts, which are positive for all I. The dashed line connects
the results for the imaginary parts, which are positive for
I =1, 2, . . . , 10. For I =0 Imtci is negative in both cases, and we
have plotted ~lmtct~. This is the reason for the apparent discon-
tinuity in the slope of these lines at I = 1. This apparent discontinui-
ty is of no significance: Each line merely serves to guide the eye,
and to connect the eleven points for I =0; 1, . . . , 10.
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rithmically") .
Again, this must be considered incorrect, as we shall briefly show. From Ref. 11, p. 136, Eq. (44) or ReI. 12, p. 162, Eq.

(31) we get

Q„"(u)=e' "(rrpk)' lp2 —k2l ' exp[ —(v+ 2 )l ln(p/k) l]v" ' 2[1+0(v ')], as v

where p &k and u: = (p + k )/2pk as before. Thus we obtain from Eq. (4), for I

(13)

2ym,
—t/2emp 2(k2 p2) —1/2(p/k)lie'r —1/2[1+0(l )], if 0 (p ( k(pl Vctlkl+ c= —1/2e — &/2(p2 k2) —1/2(k/p )/+ II &

—1/2'[ I + O (I —I) ] if 0 + k ~ p
(14)

Obviously (p l Vc/lkl + ) c tends exponentially to zero as I tends to infinity, for all p ek, as I '/'exp( —I lln(p/k ) l).
It is interesting to note that either term inside the square brackets on the right-hand side of Eq. (8) is exponentially in

creasing in I, for I ~. By using Ref. 11, p. 142, Eq. (21) or Ref. 12, p. 154, we obtain

—k +kP '" '" = (pk/m)' lk —p l
' exp[(l+ 2 ) l ln(p/k) l]l '2[1+0(l ')], as I ~, for p~k, (15)

p +k 2pk

which clearly tends to infinity as I '/2exp(+ I l ln(p/k) l).
Apparently, the proper combination of these two terms in
Eq. (8) effectuates that the exponentially increasing behavior
disappears, even in such a manner that an exponentially de-
creasing (to zero) behavior results, for I ~. In analogy
with our previous remark, we suggest that this delicate corn-
binatioh of two "singular" (at I =~) terms resulting in a
"very regular" term may be the "explanation" of the in-
correct results reported in Ref. 10.

In this connection, it is interesting to note that the PW
series for (pl Vclk+ ) c, which reduces essentially to

(2I +1)P/(p k)Q/" (u )
j=0

is convergent ( lk+ ) c is the full Coulomb scattering state).

More general series of products of Legendre functions
have been evaluated in Ref. 13; conditions for the conver-
gence of such series follow easily from Eqs. (13) and (15).

For the behavior of the off-she!I Coulomb T matrix
(p lTcilp') at p =0, p =k, p'=k, p = ~, and I =~, the
reader is referred to Refs. 14 and 15.

Finally, for comparison with the numerical results report-
ed in Ref. 10, we show in Fig. 1 the p wave
(I = I)tet(p, k;k ) as a function of p, for parameter values
corresponding to the bottom case of Fig. 2 of Ref. 10. The
regular (linear) behavior near p =0 is clearly seen. Further,
in Fig. 2 we show for the same parameter values tc/(p, k;k )
for increasing I, for p =k/8, and p =2k, respectively. The
correct decreasing exponential behavior, ~ l
x exp( —I l ln(p/k) l), is clearly illustrated. Note that the
same case has been depicted incorrectly in Fig. 6 of Ref. 10.

H. van Haeringen, J. Math. Phys. 17, 995 {1976).
2E. Guth and C. J. Mullin, Phys. Rev. 83, 667 (1951).
H. van Haeringen, Ph. D. thesis, Free University, Amsterdam,

1978 {unpublished); "Stelling" 5. The important and convenient
formula Eq. (3) reported herein was missing in standard tables of
integrals available in 1978; subsequently it has been included as
formula 7.228 (to be corrected: e ' I & e '"~) of the correct-
ed and enlarged edition of I. S. Gradshteyn and I. M. Ryzhik,
Table of' Integrals, Series, and Products (Academic, New York,
1980).

H. van Haeringen, University of Groningen Report No. 150, 1979
(unpublished); 2nd edition: Delft University of Technology Re-
port No. 82-05, 1982 (unpublished), pp. 119 and 185.

5H. van Haeringen and L. P. Kok, J. Math. Phys. 22, 2482 (1981),
Eq. (5).

L. P. Kok and H. van Haeringen, Phys. Rev, Lett. 46, 1257 (1981),
Eq. (7).

L. P. Kok, J. W. de Maag, T. R. Bontekoe, and H. van Haeringen,

Phys. Rev. C 26, 819 (1982).
E. I, Dolinskii and A. M. Mukhamedzhanov, Sov. J. Nucl. Phys. 3,

180 (1966).
L. C. Maximon, George Washington University Report No.

GWU/DP/TRT-82/2 {unpublished).
~ B. Talukdar, D. K. Ghosh, and T. Sasakawa, Phys. Rev. A 29,

1865 (1984).
A. Erdelyi, Higher Transcendental Functions (McGraw-Hill, New
York, 1953},Vol. I.
W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and
Theorems for the Specia/ Functions of Mathematical Physics
(Springer, New York, 1966}.

H. van Haeringen, J. Math. Phys. 23, 964 (1982).
~~H. van Haeringen, Delft University of Technology Report No.

&3-07, 1983 (unpublished), 216 pp.
' H. van Haeringen, J. Math. Phys. 25, 3001 (1984), in particular

Secs. 3, 4, and 21-24.


