
PHYSICAL REVEEW A VOLUME 32, NUMBER 1 JULY 1985

Relaxation of a system of charged particles
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The relaxation of an isotropic, approximately monoenergetic system of like particles through small-angle
Coulomb collisions is folio~ed numerically. It is found that when energy conservation is ensured, the
results are qualitatively different from those of an earlier study [W. M. MacDonald, M. N. Rosenbluth, and
Wong Chuck, Phys. Rev. 107, 350 (1957)], and show a smaller, global relaxation time. A new interpreta-
tion is advanced for the earlier results.

I. INTRODUCTION

The relaxation to a Maxwellian of a system of charged
particles is of some interest in astrophysics and, latterly, in
controlled thermonuclear fusion research. In one of the
earliest works on this subject MacDonald, Rosenbluth, and
Chuck' (referred to hereafter as MRC) solved the time-
dependent Fokker-Planck equation numerically for an iso-
tropic system of like particles with an initially Gaussian
velocity distribution; the Gaussian distribution was chosen
to represent the shape assumed by a delta function at some
speed P after a very short time. They showed, after about
six Spitzer self-collision times, that awhile the peak of the
Gaussian distribution had quickly relaxed to the equilibrium
Max wellian value, particles with energies several times
belo~ and above the average energy sti11 had densities in
velocity space significantly different from their expected
equilibrium values. The low-energy particles had
"overshot" their equilibrium densities while the high- |

energy particles formed a depleted Maxwellian tail. It was
thought that a much longer time was required for these par-
ticles to relax to thermal equilibrium.

This study and its conclusions have since been incorporat-
ed into several textbooks on plasma physics, motivating
in part this report. It is shown here that these earlier results
could be explained by "numerical cooling, " an artifact of
the numerical scheme used by MRC. The use of a dif-
ferent, energy-conserving numerical scheme in this study
produces qualitatively different results and shows a reduc-
tion in the overall relaxation time.

II. NUMERICAL SOLUTION

The evolution of an isotropic distribution of like particles
through small-angle Coulomb collisions is described by the
Fokker-Planck equation
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The distribution function f has the normalization
I

The dimensionless time 7 corresponding to one Spitzer
self-collision time,

where n is the number density and v the particle speed. T
is the temperature, k the Boltzmann constant, and m the
particle mass.

Following MRC, the following dimensionless quantities
are defined:
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The integrals I2 and I4 are related to the number density
and kinetic temperature, respectively, and should be un-
changed by self-collisions. Using these dimensionless quan-
tities, Eq. (1) can be transformed:
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MRC integrated this equation directly using the difference
equation
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Equation (4) is finite differenced as
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It is apparent that number density is conserved exactly with
this scheme. The coefficient E is evaluated from Eq. (4a).
However, although Eq. (4b) gives an explicit definition of
D, it is not used in its numerical evaluation. D is evaluated
instead from the relation,
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This evaluation anticipates the necessary cancellation in thc
energy moment of the Fokker-Planck operator so that ener-

gy is well conserved; a numerical proof is given in Ref. 6.
The difference equation is solved using Crank-Nicholson

time integration. Following MRC the initial distribution was
chosen to be of the form

h (((:) = 0.01 exp [—10 [ (((:—p )/w ]2}

i.e., a Gaussian centered at p with its width determined
by w.

III. RESULTS

MRC used an initial distribution corresponding to P = 0.3,
~ = 0.3, and 24 uniformly spaced velocity groups with
5/=0. 03. The results obtained with these parameters using
the energy-conserving scheme above are shown in Fig. 1,
together with that obtained by MRC. - The dimensionless
Maxwellian distribution h is given by
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with subscripts referring to velocity groups. The alternative
method used here is based on that of Langdon. Equation
(2) may be rearranged into a form which readily exhibits
the conservation properties of the Fokker-Planck operator:
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FIG. 1. Evolution of an initially Gaussian distribution. Continu-
ous curves: h ((, v } calculated with energy-conserving scheme for
time r corresponding to 0.0 (curve a), 10 (b), 30 (c), 70 (d), 200
(e), and 1000 (f). Dashed curves: h(g, r) from Ref. 1 for r corre-
sponding to 10.39 (curve 1), 30.31 (2), 72.84 (3), and 484.17 (4).
Dotted curve: equilibrium Maxwellian.

The whole range of the distribution has approached to
within 10% of the Maxwellian value by about five Spitzer
self-collision times (7, = 82). The results of MRC are
shown by the dashed lines. Good agreement between the
two sets of results are seen for early time v & v, . However,
for the MRC's results at 7 = 484.17, the low-energy part of
the curve had overshot its Maxwellian value while the
high-energy part formed an underfilled Maxwellian tail. In
contrast, with the energy-conserving scheme, the lower-
energy particles approached their Maxwcllian densities
monotonically. The numerical values of the two sets of
results at about six Spitzer self-collision times are tabulated
in Table I. Note that with the energy-conserving scheme,
the Maxwellian tail had filled up by this time.

The finite-difference scheme used by MRC [Eq. (2)] has
also been employed here to follow their computation up to
r = 1000( = 12', ) (Fig. 2). An apparent explanation for
the overshooting by the low-energy particles at 7 = 484.17 in
Ref. 1 is that it was part of a transient oscillatory process.
Figure 2 shows this is not the case. It is found that the
overshooting and underfilling by the low- and high-energy,
particles, respectively, increases with time, instead of dimin-
ishing. Figure 3 shows the reason for this . behavior. The
number density and kinetic temperature of the particles are
shown as a function of time. It can be seen that while the
number density is well conserved, the temperature is drop-
ping rapidly. The Maxwellians with temperatures as calcu-
lated at time 7 =480 and 1000 agree very well with their
respective numerical results for those times (Fig. 2). The
overshooting and underfilling of the low- and high-energy
particles are seen to be the results of numerical cooling. In
comparison with the energy-conserving scheme above, the
number density is exactly conserved and the temperature
computed at v. = 1000 differs from the initial temperature by
only about 1%.

Figures 4(a) and 4(b) show the evolution of a more
monoenergetic initial distribution, with P = 0.3 and w = 0.01
(i.e., a more sharply peaked Gaussian). A total of 224 velo-
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TABLE I. hjh~ at r =480 for the energy-conserving scheme
(column b), and at v =484.17 from Ref, 1 (column a). . 4

0.03
0.06
0.09
0.12
0.15
0.18
0.21
0.24
0.27
0.30
0.33
0.36
0.39
0.42
0.45
0.48
0.51
0.54
0.57
0.60
0.63
0.66
0.69
0.72

1.07
1.07
1.06
1.06
1.05
1.05
1.04
1.03
1.01
1.00
0.99
0.97
0.98
0.94
0,92
0.91
0.89
0.87
0.85
0.82
0.72
0,76
0,72
0.68

0.98
0.98
0.98
0.98
0,98
0,99
0.99
0.99
1.00
1.00
1.01
1.01
1.01
1.02
1.02
1.03
1.03
1.03
1.03
1.02
1.01
1.00
0.98
0.96
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FIG. 3. Computed number density and temperature as a function
of time for the MRC numerical scheme.

city groups, for /=0. 0—0.72, were used. The nonuniform
kvelocity mesh was finely resolved around the narrow pea

of the initial distribution. The peak collapses very rapidly
and the subsequent evolution is qualitatively similar to the
previous case, with the low-energy particles approaching
their Maxwellian densities monotonically. Again, only
about six Spitzer self-collision times are required for the ini-
tial distribution to reach thermal equilibrium.
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FIG. 2. Evolution of the same initial distribution as in Fig. 1, us-
ing MRC's numerical scheme up to ~=1000. Continuous curves:
h(g, r) for ~ corresponding to 0.0 (curve a), 10 (b), 30 (c), 70 (d),
480 ( ) d 1000 (f). Dashed curves: Maxwellian distributione, an

to 0.0with temperature and density as obtained at v corresponding to
{curve 1), 480 (2), and 1000 (3).

FIG. 4. (a) Evolution of a more monoenergetic initial distribu-
tion, &n ica e y

' d' t d b the dashed lines, for the following times in units
of a self-collision time): 0.02 (curve a), 0.04 (b), 0.08 (c),
0.32 (e), and 0.64 (f). (b) As in (a), for the following self-collision
time(s): 1.0 (curve a), 2.0 (b), and 6.0 (c). Dashed curves indicate
the equilibrium Maxwellian.
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