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Hydrodynamic modification of an expanding plasma by laser radiation
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The hydrodynamic modification of an expanding plasma by the ponderomotive force of the laser radia-

tion is calculated without introducing the assumption of the density profile being locally linear from the son-
ic point to the critical density. Intensity dependence of various parameters which characterize the density
profile modification are presented. Our results can reflect the density jump occurring in the critical region
more completely and accurately. In addition, the field structure and the density profile for all regions of
coronal plasma are also studied.

I. INTRODUCTION

II. THEORY

We consider a collisionless, inhomogeneous plasma with
plasma density n =n(x) and plasma flow speed u=u(x).
In the frame moving with the density jump, the hydro-
dynamic behavior of plasma in the critical region is
governed by fo11owing steady-state equations:4'
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Experiments' and particle simulations ' have shown that,
when the incident laser radiation is strong enough, the pon-
deromotive force of the laser radiation can dramatically
modify the hydrodynamic behavior of the plasma in the crit-
ical density region: The density profile close to the critical
point is locally steepened, while connecting regions of nearly
uniform density are formed above and below. Since the hy-
drodynamic modification in the critica1 density region plays
an important role in laser light absorption and scattering
processes, it has become a topic of current interest in laser
plasma interaction research.

In this paper, the hydrodynamic modification of a freely
expanding plasma by the ponderomotive force of a'normally
incident laser light or an obliquely incident, s-polarized laser
light will be studied. In former works, Lee et al. " calculated
the lower- and upper-shelf densities and the flow speed as
functions of incident power, but their calculation did not
characterize the steepened profile between the two density
shelves. Recently, by approximating the plasma density
profile as locally linear from the density at the sonic point
(n, ) to the critical density (n„), Kruer and Estabrook5 fur-
ther investigated the profile steepening, and determined the
scale length for that steepened linear layer. In the following
analysis we will present the intensity dependence of a series
of parameters by removing the locally linear assumption.
With these parameters, we cannot only characterize the hy-
drodynamic modification in the critical region more accu-
rately and complete1y, but also determine the electric-field
structure and the density profile in the coronal region of the
expanding plasma self-consistently.

where (= xylo/c, V= v/c„N = n/n, „, A = eE/mcou„
c, = (ZT, /m; ) '~~ is the ion sound speed, v, = ( T,/m) ' ' is
the electron thermal speed, and e, m, T„m;, Z, co, and E
are the electron charge, electron mass, electron tempera-
ture, ion mass, ion charge number, laser frequency, and
electric field, respectively.

Equations (1) and (2) yield

NV=%,

2(V' —ln V —1)=A,2 —A2 (6)

Multiplying Eq. (3) by A'=RA/8(, and substituting Eq. (4)
into it, we obtain
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The equation can be integrated to yield

(A')'+A' —A'+4N V+ ——2 =0 .1 (7)

Rewrite Eq. (4) in the form
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Substituting it into Eq. (7) yields

1 1(2
BV V V —lnV —1 — ( V —1)2N, 2

V
t 1/2

x * —(V' lnV —1)
, 2

Since the electric field at the upper-density shelf is evanes-

1 QV= —4 V ——
V 8$

At the sonic point where V= 1, 3, and (BV/8(), remain
finite, which requires (BA/ti(), =0, so the sonic point must
be at the maximum of the electric field. ' From Eqs. (1)
and (4), we have '
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cent, A and BA/8( both tend to zero, Eqs. (6) and (8) yield 0. 2 0.4 0. 6

A, =2(V& —ln Vj —1)
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where N2 and V2 are the upper-shelf density and the
upper-shelf flow speed. At the lower-density shelf where
A =0 but BA/9(e0, Eq. (6) yields
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where P= Vt/Vq=Nz/Nt, NI and Vt are the lower-shelf
density and the lower-shelf flow speed.

The steepening of the plasma density profile is usually
characterized by the local scale length

L (x) =
I n(x)/(dn/dx) I

= (llkp) IN/(dN/d4') I
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The scale length at the sonic point can be determined in
another way. Differentiating Eq. (4) with respect to ( and
substituting Eq. (3) into it, we get

Since (dN/dg) = —(N/V)(dV/dg), the local scale length
inside the critical region (except at the sonic point) is readily
determined by using Eq. (8). For example, at the critical
point where N = 1, V = N„

0. 2 0. 4 0-6 Ao

FIG. 1. The Ao dependence of the upper-shelf density, the
lower-shelf density, and the plasma density at the sonic point.

shelf. The scale length of the underdense plasma
L (x) =c,t —c,r, where r is the pulse width of laser. Since
L is much larger than the wavelength of laser in vacuum,
the electric field structure in the underdense plasma can be
derived by using the WKB method:
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At the sonic point where V = 1, N = N„A =2„
(BA/rig) =0, we have

where

e = 1 —N, C = —2~eI —ln[(1 —J~~)/(1+ ~et) ]

ei= 1 —Nt, Ap=eEp/m~~,

and Eo is the electric field of laser in vacuum. According to

kpL, = 2/A, gl —N, (13)

Equations (9)—(13) have established the interdependent
relations between the parameters characterizing the profile
modification. It must be indicated that the above calcula-
tions are valid only in the critical region. In the underdense
region, however, the calculations will lead to the obviously
unreasonable conclusions that A (g) oscillates between AI
and A„while N(g) oscillates between N~ and N, . ' This is
because the derivation of Eqs. (6) and (7) requires A and
A' to be single-valued functions of variable V. Moreover,
in the underdense region, the plasma is expanding to the
vacuum, and is by no means regarded as in steady state
even in the frame moving with the density jump; as a
result, Eqs. (1) and (2) are no longer valid either. Howev-
er, since the ponderomotive modification occurs mainly in
the critical region (i.e., near the reflection point of the light
wave where its momentum is locally deposited), while the
underdense plasma is scarcely affected by the ponderomo-
tive force, the plasma density profile in the underdense re-
gion is well described by the self-similar solution of the
non-steady-state hydrodynamic equations
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N(g) =Ntexp[(gi —g)/kpc r) (14)

where gt=kpxt, xI is the coordinate of the lower-density

FIG. 2. The Ao dependence of the local scale length at the sonic
point and the critical point ( ), and the Ao dependence of the
electric field at the sonic point ( ———).
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FIG. 4. The electric-field structure { ) and the plasma density
profile ( ———) in coronal plasma, where Ap=0. 325, kpL = 100.
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0.4 0. 6 Ao ed by functions in the form f (x) = Ax~, and thus yield the
following scale laws:

Eq. (15), the derivative of A (g) at the lower-density shelf
will be

~'(0t) = 2~o 441 —Nt

while according to Eq. (7), it will be

A (gt) = [A, —4N, (VI+ 1/VI —2)]'i~
From these two equations, we have
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III. CONCLUSIONS

Equation (18), together with Eqs. (9)—(13), can com-
pletely determine the Ap dependence of all the correspond-
ing parameters. Figures 1 and 2 show (1) for any specified
value of Ao, we always have Nq & N„& N, & N~ and (2)
when Ap& 0.5, L, and L„are about the same value, but
when Ap & 0.5, their difference is remarkable. Such a situa-
tion is by no means distinguished by using locally linear as-
sumption. The curves in Figs. 1 and 2 are well approximat-

FIG. 3. The Ap dependence of the distance between the sonic
point and the critical point, and the distance between the upper- and
lower-density shelves.

As = 2.1Ap 8, N, = 1 —0.66Ap

Ni = 1 —0.97A p', Np= 1+0.59A().
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Integrating Eq. (8) with respect to V, and taking V, as the
lower integral limit, and V~, Vi, V,„as the upper integral
limits, respectively, we determine the Ap dependence of
coordinate xq, xl, and x„. In Fig. 3, the distance between
upper- and 1ower-density shelves, and the distance between
sonic point and critical point are presented. The former can
be regarded as the width of the critical region, awhile the
latter characterizes the area ~here the density gradient is
obviously steepened.

The electric-field structure and the density profile in
coronal plasma are described by Eqs. (5), (6), (8), (14),
and (15). From Fig. 4, it can be seen that our calculations
are in good agreement with experiment and particle simula-
tions' '

When an s-polarized light is obliquely incident, the hydro-
dynamic behavior of plasma near the reflection point (where
n = n„cos~ e,oeo is the angle of incidence) is still governed
by Eqs. (I)—(3) only if we define N = n/n„cos~&o,
g=kox cos&o. As a result, it is convenient for the analysis
we present above to be expanded to the s-polarized, ob-
liquely incident case.
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