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Quantum systems with uniform- and regular-level-energy behaviors
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We consider the problem of identification and characterization of (Hamiltonian operators of) quantum
systems which have a uniform-level-energy behavior (i.e., the level distribution follows a rectangular law)
and a regular-level-energy behavior (i.e., the level energies are distributed according to an inverted semicir-
cle law). Here we find a large class of Hamiltonians with these level-energy behaviors in terms of the ma-

trix elements of their associated Lanczos matrix forms.

A global statistical property which plays an important role
in the study of spectra of quantum systems is the density of
levels (i.e., the number of levels per unit of energy interval)
as a function of the excitation energy. In this Brief Report
we will consider the problem of identification and character-
ization of (Hamiltonian operators of) systems with a com-
mon density of levels.

A pioneering work is that of Wigner! who proved that the
distributions of levels of a random matrix follows a semicir-
cle law. Then one says that the matrix has a semicircular
eigenvalue behavior. This behavior was observed in ran-
dom models of Hamiltonians to describe a large variety of
quantum systems.?”® Recently it has been shown that the
Wigner semicircle behavior has a deterministic origin.>-® In
particular there exists a large class of nonrandom Hamiltoni-
ans with the semicircle law as the asymptotic eigenvalue
density® (AED).

We will discuss the identification of the quantum Hamil-
tonians that have (1) a uniform eigenvalue behavior (.e.,
the AED is a uniform density function) and (2) a regular
eigenvalue behavior (i.e., the AED is an inverted semicir-
cle). We will not find all the Hamiltonians which exhibit
these eigenvalue behaviors but we will identify a large class
of them having these properties in terms of the matrix ele-
ments of the associated Lanczos matrix forms.

For a large number of quantum systems,’"!! the Lanczos
method'? allows us to transform the Hamiltonian operator
into a N-dimensional tridiagonal matrix which is usually
called the Lanczos Hamiltonian. The only nonvanishing
matrix elements of this Hamiltonian are denoted by

H,,=a, ,
m
Hn,n s1=H,+1,,=b, .

The (discrete) normalized-to-unity eigenvalue density
pn(E) of this Hamiltonian is defined by

1 ¥ 1
E) = — E—E)=—Trs(E~- .
pn(E) NIEIS( ) NTI‘ (E—H)
T'he moments around the origin of this function are
,u"N’——--—l TrH’———l NZ El, r=0,1,2, ... . 2)
r N NS0 e ‘

Also, the asymptotic eigenvalue density p(E) and its mo-
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ments around the origin are given by

p(E) = lim py(E) ,

3)

wr=lim w,"™; r=0,1,2, ...

N— oo
Here we will solve the above mentioned problem in terms
of the matrix elements a, and b,. Our first result is the fol-
lowing: If

lim bn 0 ()

n—o n

lim 2~ =g €R,
n—oo N
(R denotes the set of real numbers), then the moments
around the origin of the scaled eigenvalue density
p*(E) =limy— . pn(E/N) are

r

,L,"=—r—‘i—l—, r=0,1,2, ... , (5)

which correspond to a uniform or rectangular density func-
tion over the interval [0,q].

Secondly, we will show that if the matrix elements of the
Lanczos Hamiltonian satisfy the conditions

(i) a,=a €R ,
(i) 0< b2y <b% n=2, 6)
(iii) lim b2=0? ,

n=—"oo

then the energy eigenvalues have a regular behavior in the
interval [a —2b,a +2b], that is,

B L4y —(E—a)1-2 ifa—2b<E<a+2b
p(E)={m

0, otherwise

Thirdly, if the following limiting restrictions

lim a,=a €R, lim b,=b=0 , @)
n—co

n—" oo

then the eigenvalue moments u, of the density p(E) are
given by

[r/2‘] r 2]
[ r—2jn2j X .
M,_12=0a b [2,} [J] , ®)

which correspond to the moments around the origin of an
inverted semicircular density function centered at £ =a and
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with a support interval [@ —2b,a +2b].

Before proving these results let us give some direct conse-
quences of them for those systems with a Lanczos Hamil-
tonian matrix of a rational Jacobi type, that is, when

_ 0u(n) 0.(n)
a,= 0s(n) b, = +[Q.,(n) ] , (9a)
where
[ B
0w =3 cn®" Qu(w) =S dnf= 9b)
i=0 i=0
0.(m=3 en, 0(m=3 finr—" . (90)
1=0 =0

There are several consequences.

() If 6—B8=1 and a—vy <2, then the density p*(E) has
the level eigenvalue moments u, =(r+1)"'(co/dy)’,
which correspond to a uniform density function in the inter-
val [0,co/dp].

(ii) If 9= and a=1v, then the moments of the eigen-

value density p(E) are
r—2}2.
Jll r
[j][Zj]’ r=0,1, ... ,

£l

which correspond to an inverted semicircle density function
over the interval

Leo/do—2~/eol fo, coldo+2~/eol fol .

and centered around E = cy/d.
(iii) If 9 < B and a =1, then

K
&
Jo ]
which are the moments of an inverted semicircle density
p(E) centered around the origin and with a support interval
[ —2+/eo/ fo, 2~/ eo/ fol.
The starting point to prove all these results is the follow-
ing well-known property of the Lanczos Hamiltonian (1):

[r/2]

r

j= 0

’

_ 2k
M2k = )

. M2 =0, k=0,1, ... ,
k M2k +1

the characteristic polynomials {P,(E), n=0,1, ..., N} of

the principal submatrices of the matrix EIy— H, Iy being

the N X N unity matrix, satisfy the recursion relation
P,(E)=(E—a,)Py_1(E) — b2_1P,-,(E) (10)

P_(E)=0, P(E)=1, n=1,2,...,N .

The first and third results can be proved from the follow-
ing theorem!? of the theory of orthogonal polynomials: Let
R ™ be the set of positive real numbers. Let ¢: Rt — R*
be a nondecreasing function such that for every fixed ¢t € R

o(x)

Assume that there exist two numbers, a € R and b =0
such that the coefficients in the recurrence relation (10)
satisfy

| x— oo

, a
lim —2—=aq,

b
n—=o ¢(n) 2 an

. bn
1
e B ()

Then for every non-negative integer r,

N

ZE’: r 1

lim —Aml S b2fa'—2fz-2![2.’“’.] , 12)
" [Tlg(or s J)

where Ej, k=1,2, , N are the zeros of Py(E).

One easily notices that with the choice ¢(x) =x4, 4 =1,
b=0, and taking into account the definitions (2) and (3),
the Egs. (11) and (12) reduce to the wanted Eqs. (4) and
(5), respectively. Similarly, with the choice ¢(x) =1, Egs.
(11) and (12) transform into Eqgs. (7) and (8), respectively.
Then, our first and third results have been proved.

The second result can be obtained in a straightforward
manner from Maki’s theorem of orthogonal polynomials
and Remark 2 of Ref. 14, together with Egs. (3)-(5) of
Ref. 15. The corollaries (i), (i), and (i) are immediate
consequences of the first and third results.

In conclusion, we have identified a large class of quantum
Hamiltonians which have a uniform eigenvalue behavior.
This behavior has been observed in many physical systems
which go from the well-known harmonic oscillator to some
atomic configurations.!® Also, a characterization of some
quantum systems with a regular-level behavior has been
given.
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