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Bound eigenstates for two truncated Coulomb potentials
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The eigenvalue problem for two particles interacting through the attractive truncated Coulomb potential,
V(r) = —Ze /2(r'+P') t&/, for p =1 and 2 is solved numerically. Energy eigenvalues accurate to within
eight to six significant figures for the states 1s to 4f are calculated as a function of the truncation parameter
P. It is found that the level ordering satisfies E„I)E for l & l . Systematics of the eigenvalues are stud-

nl

ied and it is found that for each l value the energies are well represented by a Ritz type of formula.

I. INTRODUCTION

—Z8V(r)= ', p&0.r+ (2)

This potential avoids the singularity at r = 0 in the
Coulomb potential. It is known that in the quantum-field
theory, the singularity at r =0 in the Coulomb potential is
the crux of divergence difficulties. Indeed it has been sug-
gested that if gravitational interactions of elementary parti-
cles are taken into account, there would be a gravitational
cutoff of Coulomb interactions resulting in a finite theory of
quantum fields. Equation (2) represents a nonrelativistic
expression of this idea. This potential may also serve as an
approximation to the potential due to a smeared charge
rather than a point charge. Mehta and Patil have analyti-
cally studied the s-state eigenvalues for the potential (2);
however, no numerical results were obtained.

When p=2, Eq. (I) becomes

Patil' has made a detailed study of the analytic behavior
of the phase shifts and scattering lengths for the potential

y( )
—Ze

(rn+P~) tl/w

where p=1, 2, 3, . . . and P is a truncation parameter
(&0) intheP 01imit. Thecases p=1and2areofspe-
cial physical significance. For p = I, Eq. (1) becomes

II. NUMERICAL CALCULATION

In reduced units the radial Schrodinger equation for the
potential (I) is

1 d2, 1(/+ I) I+ u =Eu
2 dr 2r (r~+P')'~ (4)

In order to avoid the problems associated with a boundary
condition at r = ~ and the need for variable grid sizes in the
numerical integration we used the transformation

Several authors' 9 have shown that under Kramers-
Henneberger transformation, " the laser-dressed binding po-
tential for the hydrogenic system may be well approximated
by Eq. (3). In such a situation, the truncation parameter P
is related to the strength of the irradiating laser field.

Thus it was of interest to carry out a systematic study of
the bound-state energy levels of potentials (2) and (3). We
report the results of such a study in the present paper. As
the Schrodinger equation for neither of the potentials is
amenable to a general analytical solution, we employ a nu-
merical method to calculate the energy eigenvalues for the
ls —4f states with accuracy varying from eight significant fig-
ures for low levels to six significant figures for higher levels.
The numerical algorithm is discussed in Sec. II. The eigen-
values are presented and discussed in Sec. III.

Z8
(r2+ p2) 1/2

(3) Xr=
1 —x

Such a potential is useful for scattering by a finite-charge
distribution. In particular, for scattering by a uniform
spherical charge distribution, the effective potential is well
simulated by V(r) given in Eq. (3). The Coulomb potential
of the nucleus experienced by a muon in a muonic atom is
modified due to the finite size of the nucleus. The shape of
this modified potentia14' is very similar to that given by Eq.
(3) and this equation can serve as a model potential for
such, and allied problems like isotope shift in atomic spec-
tra. The truncated Coulomb potential (3) has also been
found to be pertinent in the study of the energy levels of
hydrogenlike atoms exposed to intense laser radiation.

yielding

(I —x)s ——(1—x4) + l(/+ I)(I —x)2
dx 2 dx 2X

X
1 —x. t

p —1/p'

u =Eu

This was converted to a differential equation and solved for
E using an iterative method. In some cases in order to ob-
tain better convergence the transformation was slightly
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FIG. 1. The quantity ( —E) i as a function of P i for the 1s
state of potential (3).

modified to

Xr =0.
1 x

FIG. 2. The quantity ( —E) ti~ as a function of the quantum
number n for the s states of the potential (3). The numbers by the
side of the curves denote P values.

where o. was a parameter chosen to improve the conver-
gence.

III. RESULTS AND DISCUSSION

In Tables I and II we show the energy eigenvalues in re-
duced units for the Is 4f states of potent-ials (2) and (3),
respectively, for a wide range of values of P.

An interesting result that emerges from an examination
of the results is the fact that for a fixed n and P, the state
with orbital angular momentum (l+1) is more strongly
bound than the one with l. This level ordering is opposite
to what is observed in ordinary atoms but it is analogous to
the level ordering in muonic atoms. For instance, 2p level
is lower than 2s, which makes the 2s level nonmetastable.
While both the potentials (2) and (3) show level ordering
similar to that of muonic atoms, the shape of the potential
(3) is closer to the potential experienced by a muon in a
muonic atom, and thus this potential appears to be a suit-
able model potential for studying muonic atoms.

Next we study the systematics of the eigenvalues for
these two potentials.

In Fig. 1 we show ( —E) ti~ vs P'i~ for the 1s state of po-
tential (3). It will be noticed that for P ~ 4, the relationship
is almost linear. For a laser-dressed hydrogenlike atom, P is
proportional to I'i~/co~, where co is the laser frequency and I
is the intensity. The relationship shown in Fig. 1 suggests
that for a hydrogenlike atom in the presence of an intense
nonresonant laser field, the quantity (ionization poten-
tial) ti~ should vary linearly with Iti4/co for medium and
large values of the latter quantity.

TABLE III. Values of the parameters a, b, and c in Eq. (10)
for the s states of potential (2).

1

2
3
5

10
20
35
50

100
200

0.968 264 3
1.46S 265 2
1.846 272 7
2.445 988 8
3.530 785 8
5.030 926 6
6.649 839 2
7.925 53

11.10807
15.527 78

1.415 464
1.417537
1.419797
1.424400
1.435 331
1.454183
1.477 263
1.496445
1.545 374
1.611869

—0.029 240 28
—0.054 705 06
—0.075 720 16
—0.109597 54
—0.169736 09
—0.246 348 07
—0.319563 78
—0.371 1133
—0.481 203 5
—0.603 344 7

In Fig. 2 we show ( —E) ' ~ as a function of the quantum
number n for the s states of the potential (3) for several
values of P. It will be noticed that the relationship is practi-
cally linear. The p and d states also show a similar behavior.
Thus, to a first approximation,

( —E) 'i'= a+ bn

It turns out that b is almost J2. Thus,

—1E=
2(n+ p, )'
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TABLE IV. Values of the parameters o, b, and c in Eq. . (10)
for the s states of potential (3).

alkali-metal atoms.
As P increases, there is a slow departure from linearity

for small n (see Fig. 2). The departure from linearity in the
( —E) 'i2, n relationship can be allowed for by a Ritz type
of dependence of p. on n. Thus,

1

2
3
5

10
20
35
50

100
200

0.446 159 1

0.774 951 1
1.044 095 0
1.492 371 5
2.364 414 9
3.659 340 8
5, 124267 3
6.306 35
9.308 77

13.535 74

1.412 585
1.408 889
1.404471
1.395 128
1.373 211
1.336 752
1.302 591
1.276 862
1.224 770
1.175 198

0.048 755 38
0.092 765 74
0.125 466 19
0.170242 23
0.226 552 37
0.262 597 28
0.270 020 41
0.264 631 2
0.236 808 7
0.196475 1

( —E) ' ' = tt + bn + c/n (10)

where a, b, and c are constants. The values of these con-
stants for potentials (2) and (3) are shown in Tables III and
IV, respectively, for s states. These constants were deter-
mined by a least-squares fit of Eq. (10) to the calculated
values for n = 1 to n = 6.

where p, is a constant. Equation (9) is similar to the well-
known expression used for representing atomic terms for
alkali-metal atoms. However, either of Eqs. (2) or (3) is
not a suitable model potential for alkali-metal atoms be-
cause the ordering of s,p, d. . . levels is opposite to that in
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