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The eigenvalue problem for two particles interacting through the attractive truncated Coulomb potential,
V(r) = — Ze?/(rP+BP)Y/P, for p=1 and 2 is solved numerically. Energy éigenvalues accurate to within
eight to six significant figures for the states 1s to 4/ are calculated as a function of the truncation parameter
B. It is found that the level ordering satisfies E,; > Enl, for / < I'. Systematics of the eigenvalues are stud-

ied and it is found that for each / value the eriergies are well represented by a Ritz type of formula.

I. INTRODUCTION

Patil! has made a detailed study of the analytic behavior
of the phase shifts and scattering lengths for the potential

— Ze?
Greanve M
where p=1,2,3, ... and B is a truncation parameter
(> 0) in the 8— 0 limit. The cases p=1 and 2 are of spe-
cial physical significance. For p=1, Eq. (1) becomes
— Ze?
r+p8

V(r)=

V(r)=

, B>0 . )

This potential>? avoids the singularity at r=0 in the
Coulomb potential. It is known that in the quantum-field
theory, the singularity at »r =0 in the Coulomb potential is
the crux of divergence difficulties. Indeed it has been sug-
gested’ that if gravitational interactions of elementary parti-
cles are taken into account, there would be a gravitational
cutoff of Coulomb interactions resulting in a finite theory of
quantum fields. Equation (2) represents a nonrelativistic
expression of this idea. This potential may also serve as an
approximation to the potential due to a smeared charge
rather than a point charge. Mehta and Patil’> have analyti-
cally studied the s-state eigenvalues for the potential (2);
however, no numerical results were obtained.
When p=2, Eq. (1) becomes

Ze '
T ®

Such a potential is useful for scattering by a finite-charge
distribution. In particular, for scattering by a uniform
spherical charge distribution, the effective potential is well
simulated by V(r) given in Eq. (3). The Coulomb potential
of the nucleus experienced by a muon in a muonic atom is
modified due to the finite size of the nucleus. The shape of
this modified potential*> is very similar to that given by Eq.
(3) and this equation can serve as a model potential for
such, and allied problems like isotope shift in atomic spec-
tra. The truncated Coulomb potential (3) has also been
found to be pertinent in the study of the energy levels of
hydrogenlike atoms exposed to intense laser radiation.6-10

V(r) =

32

Several authors’® have shown that under Kramers-

Henneberger transformation,!! the laser-dressed binding po-
tential for the hydrogenic system may be well approximated
by Eq. (3). In such a situation, the truncation parameter 8
is related to the strength of the irradiating laser field.

Thus it was of interest to carry out a systematic study of
the bound-state energy levels of potentials (2) and (3). We
report the results of such a study in the present paper. As
the Schrodinger equation for neither of the potentials is
amenable to a general analytical solution, we employ a nu-
merical method to calculate the energy eigenvalues for the
1s-4 f states with accuracy varying from eight significant fig-
ures for low levels to six significant figures for higher levels.
The numerical algorithm is discussed in Sec. II. The eigen-
values are presented and discussed in Sec. II1.

II. NUMERICAL CALCULATION

In reduced units the radial Schrodinger equation for the
potential (1) is

1 & [ 1U+1) 1

L4 — u=EFEu . )]

2 dr? 2r? (rP+pP)VP

In order to avoid the problems associated with a boundary

condition at r = oo and the need for variable grid sizes in the
numerical integration we used the transformation

poX_ ®)

yielding

(1—x)3§x~——;—(l—x“)2d—:7+ —(-l—i’?‘lz-z(m 1

|

This was converted to a differential equation and solved for
E using an iterative method. In some cases in order to ob-
tain better convergence the transformation was slightly

1-x

4
o

-1/p
]u=Eu. ©)
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FIG. 1. The quantity (—E)Y2 as a function of 82 for the 1s
state of potential (3).

modified to

r=a[ X ] , ' @)

1—x

where o was a parameter chosen to improve the conver-
gence.

III. RESULTS AND DISCUSSION

In Tables I and II we show the energy eigenvalues in re-
duced units for the 1s-4f states of potentials (2) and (3),
respectively, for a wide range of values of 8.

An interesting result that emerges from an examination
of the results is the fact that for a fixed » and B, the state
with orbital angular momentum (/+1) is more strongly
bound than the one with / This level ordering is opposite
to what is observed in ordinary atoms but it is analogous to
the level ordering in muonic atoms. For instance, 2p level
is lower than 2s, which makes the 2s level nonmetastable.
While both the potentials (2) and (3) show level ordering
similar to that of muonic atoms, the shape of the potential
(3) is closer to the potential experienced by a muon in a
muonic atom, and thus this potential appears to be a suit-
able model potential for studying muonic atoms.

Next we study the systematics of the eigenvalues for
these two potentials.

In Fig. 1 we show (— E)~Y2 ys 812 for the 1s state of po-
tential (3). It will be noticed that for 8 = 4, the relationship
is almost linear. For a laser-dressed hydrogenlike atom, B is
proportional to 7Y?/w?, where o is the laser frequency and I
is the intensity. The relationship shown in Fig. 1 suggests
that for a hydrogenlike atom in the presence of an intense
nonresonant laser field, the quantity (ionization poten-
tial) Y2 should vary linearly with /Y4/w for medium and
large values of the latter quantity.
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FIG. 2. The quantity (—E)~Y?2 as a function of the quantum
number » for the s states of the potential (3). The numbers by the
side of the curves denote 8 values.

In Fig. 2 we show (— E)~Y2 as a function of the quantum
number »n for the s states of the potential (3) for several
values of 8. It will be noticed that the relationship is practi-
cally linear. The p and d states also show a similar behavior.
Thus, to a first approximation,

(—FE)~YV2=qg+bn . ®)
It turns out that b is almost /2. Thus,
—1
E=—rs 9
2(n+p)?
TABLE IIl. Values of the parameters @, b, and c¢ in Eq. (10)

for the s states of potential (2).

200 15.52778

B a b c

1 0.968 264 3 1.415464 —0.02924028
2 1.4652652 1.417537 —0.054 70506
3 1.8462727 1.419797 —0.07572016
5 2.4459888 1.424 400 —0.109 597 54
10 3.5307858 1.435331 —0.16973609
20 5.030926 6 1.454183 —0.246 34807
35 6.6498392 1.477263 —0.31956378

50 . 7.92553 1.496 445 —-0.3711133

100 11.10807 1.545374 —0.4812035

1.611869 —0.603 3447
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TABLE IV. Values of the parameters a, b, and c in Eq. . (10)
for the s states of potential (3).

B a b c
1 0.4461591 1.412585 0.048 75538
2 0.7749511 1.408 889 0.092 76574
3 1.0440950 1.404471 0.125466 19
5 1.4923715 1.395128 0.17024223
10 2.3644149 1.373211 0.226 55237
20 3.6593408 1.336752 0.262 597 28
35 5.1242673 1.302591 0.27002041
50 6.306 35 1.276 862 0.264 6312
100 9.30877 1.224770 0.236 8087
200 13.53574 1.175198 0.1964751

where w is a constant. Equation (9) is similar to the well-
known expression used for representing atomic terms for
alkali-metal atoms. However, either of Egs. (2) or (3) is
not a suitable model potential for alkali-metal atoms be-
cause the ordering of s,p,d . .. levels is opposite to that in

alkali-metal atoms.

As B increases, there is a slow departure from linearity
for small n (see Fig. 2). The departure from linearity in the
(— E)~Y2, p relationship can be allowed for by a Ritz type
of dependence of u on n. Thus,

(—E)"M=qg+bn+c/n? , (10)

where a, b, and c are constants. The values of these con-
stants for potentials (2) and (3) are shown in Tables III and
1V, respectively, for s states. These constants were deter-
mined by a least-squares fit of Eq. (10) to the calculated
values for n=1to n=6.
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