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A structural analysis of matrix elements is used to interpret familiar propensity rules.

The concept of "propensity rule" has been introduced
with reference to a transition —or to a class of transitions—which is much more likely than alternative but accessible
ones. Propensity thus amounts to an attenuated version of
a selection rule. Selection rules result from exact sym-
metries or other properties of a system, propensities from
less clearly identified circumstances. The original example
of propensity dealt with radiative vibrational transitions with
Au = 1, which are only favored for a diatomic molecule in a
Morse potential, in contrast to molecules with a quadratic
potential that forbids b ve1 altogether.

Propensity rules occur in numerous other situations as
well. Typically light absorption by atoms in transitions
l l+1 is strongly favored over transitions l l —1. (In

this case a sum rule provides a quantitative index of propen-
sity. ) Transitions in atomic or nuclear multiparticle sys-
tems are classed as "parity favored" when their parity
change is represented by ( —1)~~ in terms of the change of
total-orbital quantum number I.. (Parity unfavoredness
generally stems from an interaction proportional of a vector
product, that is, to a pseudovector of even parity under re-
flection through the origin. 3)

This note illustrates how propensity may emerge from an
analysis of the structure of a relevant matrix element. For
simplicity we consider here explicitly the matrix element of
a radial transition operator T(r),

dr Qr(r ) T(r )P;(r),
with WKB wave functions Qt f ~ sin [f k,f( r )dr ] but oul

type of analysis should apply to broader circumstances.
The essential point emerges from the trigonometric rela-

tion

ljl f( r )P; ( r ) cc cos [ k~ ( r '
) —k; ( r ' ) ]dr

'

t r—cos [kr(r')+ k, (r')]dr'
id P t

The second term on the right of this formula generally oscil-
lates rapidly and accordingly contributes but little to the in-

tegral (1). The main contribution to (1) should thus stem
from whichever range of r occurs, where the product

T(r) cos [k~(r') —kt(r') ] dr' (3)
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FIG. 1. Plot of f f'(n =10, l=0;r')(r') 2f(e=03, i=1;r') dr'
0

showing rapid rise and rapid oscillatory convergence at radial dis-
tances far smaller than the radius ( —104 a.u.) of nonzero overlap
between the hydrogenic orbital f{n = 10) and the continuum orbital
f(» =0.3) [ courtesy of P. Zoller (private communication)].

varies smoothly instead of oscillating.
The propensity rule favoring I I+ 1 for light absorption

by a single electron readily emerges now by entering
kt f J2 [Etf Vj f( r) ] 'l (in a.u.) into the expression (3) .

Note that light absorption implies Ey& EI, while I' I+1
implies V&(r) ) V, (r) owing to a larger contribution of cen-
trifugal repulsion in the final state. This combination of cir-
cumstances minimizes the value of kI(r') —k, (r') in (3),
whereas this value would be boosted in the alternative case
of l l —1 transitions, thus causing (3) to oscillate rapidly
and its integral (1) to remain small.

The example outlined above indicates how propensity
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rules may be traced to the occurrence of a range of station-
ary phase in the integrand of the relevant matrix element, a
range that corresponds to the localization of the rising slope
in Fig. 1. A similar analysis also serves to locate the range
of the independent variable(s), where a particle may gain a
given momentum k&(r) —k, (r) from the action of a transi-
tion operator T(r), namely, the range where the Fourier
representation of T(r) has a large component of frequency

k~ —k;. This argument typically restricts the absorption of
high-frequency radiation to regions where a particle experi-
ences a strong acceleration.

I thank Peter Zoller for a conversation that sparked this
note and for providing me with Fig. 1 before publication.
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