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Far-infrared resonance spectroscopy and the effective intermolecular potential
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The Kramers equation is solved numerically for circular diffusion in an arbitrary periodic poten-
tial V(8), where 8 is the angular coordinate. In the limit P~O, where P becomes proportional to
the rate of escape from the potential wells, the far-infrared power absorption coefficient shows many
different peaks due to resonance in highly nonlinear systems as described by Bogoliubov and Mitro-
polsky for ordinary, nonlinear, differential equations. The far-infrared resonance spectrum (FIRRS)
is sensitive to the details of V. In structured (associated or hydrogen-bonded) molecular liquids such
as water or acetonitrile, or in liquid crystals, the FIRRS peaks can be resolved experimentally.
These peaks provide, in principle, detailed information on the effective intermolecular potential in

systems of interest such as nematogens. The FIRRS spectrum is sensitive to an applied, uniaxial,
external, static, electric or magnetic field.

INTRODUCTION

There have been numerous attempts' at solving nu-
merically the Kramers equation governing molecular dif-
fusion in liquids and similar rate processes. The first use-
ful solution was given by Reid for diffusion in a cosine
potential of the form:

V = —Vocos[M8( t) ]

where Vo is the effective well depth, M the well multi-
plicity, and 8(t) the angular coordinate for circular dif-
fusion. In this paper the solution is extended to deal with
arbitrary potential V(8), given in general by a Fourier
series. In principle, the details of V(8) may be syn-
thesized from a sum of terms such as (1) using, as a guide,
the results of self-consistent field molecular orbital com-
putation of real intermolecular potentials in the liquid
state,

These details may be compared with experimental data
using the numerical finding by Evans that the far-
infrared spectrum predicted by the Kramers equation be
comes structured with resonance peaks in the limit P~O,
when P becomes proportional to the rate of escape from
potential wells [of type (1) in the simplest case]. The ex-
istence of this far-infrared resonance spectrum (FIRRS)
was first observed by Evans et al. and has been con-
firmed recently by Evans in liquid water and in associat-
ed liquids such as acetonitrile' and nitromethane. These
peaks are shown in this paper to have a firm foundation
in the theory of nonlinear, differential equations,
described, for example, by Bogoliubov and Mitropolsky. "
The peaks from the stochastic, partial-differential Kra-
mers equation vary greatly' in relative frequency and in-
tensity with parameters such as

(i) a = (kT/I ) '~, where I is the effective molecular mo-
ment of inertia;

(ii) /3, the rate of escape from the potential wells;
(iii) the well-depth parameter y, defined by Reid as

y = Vo/2(IkT)'r;

(iv) the multiplicity M.
This paper is arranged as follows. The theory for arbi-

trary V(8) is developed in Sec. I, followed by a discussion
of the numerical results in Sec. II. Section III finally sug-
gests the way to proceed when using FIRRS to estimate
experimentally the effective intermolecular potential in,
for example, water, or an aligned nematogen such as 4-
cyano-4-(n-heptyl) biphenyl (7 CB).

I. THEORY

The Kramers equation for circular diffusion in a poten-
tial V(8) may be written, in the simplest case, as

t)p 8 t)p V' t)p t) kT Bp
t)t 38 I g8 g8 I (2)

Here p(8(t), 8(t), t
~

8(0),8(0),0) is the conditional proba-
bility density function in the phase space of 8 and 8.
Equation (2) is fully equivalent' to the Langevin equa-
tion:

I8(t)+IP8(t)+ V'(8) = W(t), (3)

g 2

p=exp —,QD„(8/a)P(8, t),
4a

(4)

where

D„(8)=exp( —,
' 8 )( —1)" [exp( ——,

' 8 )]

are the Hermite polynomials, with the orthogonality prop-
erty

where W(t) is a Wiener process In these equations V'

denotes differentiation with respect to 8. Paradoxically,
the apparently much simpler Eq. (3) has no known
method of solution (without recourse to a random-number
generator), while Eq. (2) may be solved numerically, using
the methods of differential-difference algebra. The solu-
tion of Eq. (2) takes the general form'~
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D„'~ )
——OD„' —nD„'

(D„')' =nD„'

From (4)

(5)

T

n!(2n}'~, m =n
f D„(8)D~(8)d8= '0

Defining D„'(8)=D„exp( —,
' 8 ), the recurrence relations

follow:
( D„')"(8)=8(D„')' nD—„',

Multiply by D' and integrate with respect to 8(t). The
orthogonality property then gives

~(m ~1)

VI
+ P )~Pm/ =0.

In

The functions P„(8,t) are periodic in 8, and can therefore
be represented in general by a Fourier series:
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P„(8,t)=+A~(t)exp(ip8), p=0, +1, . . . , +oo .

(10)

Similarly, the potential term V is periodic in 0, and can
also be synthesized by a truncated Fourier series. For ex-
ample,

V= —VOI cos8(t) icos[28(t)]+cos[38(t)]

+ . +cos[M8(t)] I

Vo y(eiM8~ iM8)—

M

and, therefore, in (2),

8 i)n
gD,'P+a+ D„'—

i38

or

(D„')' — D„'— cos[28(t)] cos[38(t)]V= —Vo cos8 t /
4.

+
9

=PJ'S„(D„')"——(D„')
n

In Eqs. (5), with the argument (8/a) instead of 8,
V'

&:&~+a&(D:+~+"D'- ~ ) + &Dpi 1 0.BO Ia

=PJ'S„nD„' .

+ + cos[M8(t) j

Vp y(eiM8~ iM8) y~— 2

M

Equation (10) in (9), gives, for the simple case,

(12)

Vp
(e iMe —iMe)

2
'

ge'~ Az (t)+gaip[A& (t)~(m ~1)A& +'(tl]e'~ —iyg[A„M'(t) A„+M(t)]+—pm+A„(t)=0 .
P P P

(13)

The problem is reduced, therefore, to solving this infinite set of linear differentia1 equations with appropriate initial con-
ditions A„(0). Multiplying Eq. (13) by e '" and using the orthogonality property,

27T 1fp =r,"" ""'= 0;f (14)

we obtain

A„(t)liar[A„'(t) ~(m ~1)A„+'(t)] iyM[A„M(t) A„+M(t)—]~pmA, (t}=—0 .

In the more general case of a potential of the form (11) Eq. (15) becomes

A, (t) ~air [A„'(t)~(m ~1)A„+'(t)]—iy[A„& '(t) —A„+ &
'(t)] —2iy[A„&'(t) —A„+~'(t)]

—3iy[A„3 (t) —A„+3'(t)] 4i y[A„:4'(t)——A„+4'(t)]— . +pmA„(t) =0 .
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It is possible to construct differential-difference equations of the type (15) or (16)for any sums or differences of cosines
used to synthesize the periodic potential V(8). The indices r and m are governed by the definitions (10) and (4), respective-
ly. The upper index of the A„ functions cannot be negative, but the lower index takes integer values 0, +1,+2, +3, . . . to
infinity.

To construct the FIRRS spectrum from equations such as (15) or (16) requires Laplace transformation as discussed by
Reid. The Laplace transform of Eq. (16) is

s A„(s) A—„(0)+/3mA„(s)+ipa[A„'(s)+(m + 1)A„+ (s)]—iy[A„~ (s) —A„+& '(s)]
—2ty[A„2 (s) —A„+2'(s)]—3ty[A„3'(s) —A„+3 (s)] 4i7—[A, 4'(s) —A, +z'(s)] — . =0 .

This can be rewritten as a simple matrix equation:

MA(s)=A(0) . (17)

The matrix M is truncated for solution. The column vector A(0) is the vector of initial values; arranged in the order

. . .A „(0);A „+i(0);.. . ;AD(0);. . . , A„ i(0);
A„(0);.. . ;A' „(0);A' „+i(0);.. . ;Ao(0);. . . ;

A,
'

i (0);A,'(0);. . . .

The frequency dependence of the A coefficients is obtained therefore by inverting M in Eq. (16). In this paper this is
achieved with Crout factorization and partial pivoting, with extended precision arithmetic for the inner products on the
CDC 7600 and Cyber 205 computers, using the Numerical Algorithms Group (NAG) routine F04ADF. However, it is
clear that M is a complex, banded, tridiagonal matrix. The process of inversion could therefore be speeded up with rou-
tines designed especially for matrices such as these. It is clear also that adding cosine terms to the potential V(8) "thick-
ens" the y diagonal band, leaving the other two diagonals unaffected. Efficient routines, by the Pisa group, are discussed
in Ref. 15.

„( ) o fficients are related to the far-infrared spectrum through the appropriate equilibrium t o 1 t
ction (ACF). The first step in the calculation is to evaluate the equilibrium orientational ACF:

& cos8(t)cos8(0) &,

subject to thermodynamic equilibrium initial conditions. At a given phase point (8(0) 8(0))

&cos8(t)cos8(0) &s=cos8(0)f fp(t)cos8(t)d8(t)d8(t)

= (2~) ' a cos8(0)f ge ' @"cos8(t)A o(t)d8(t)

(2~)'"
acos8(0)[A i(t)+A &(t)] .

al Phase Points (8'(0),8(0)) are distributed according to the Maxwell Boltzm

« cos8(t)cos8(0) », = & «s8(t)cos8(0) &,

(2') ~

2
ct[ & cos8(0)A ~ (t) &+ & cos8(0)A, (t) & ],

where

(19)

3 2 f f cos8(0)exp — + Xcos[M8(0)] g), e '"e'"d8(Q)d8(()) .
1 8(0) 2y 8(0)

n t(2~) 2(x cx A
(20)

+M [ ( )] s meant to denote a truncated cosine sum for the potential en V(8) [
(12)]. From Eq. (20) it is clear that

&cos8(0)A„(0)& =Q, n~Q

po i phfication of the Problem of solving Eq. (17) for A, (t) and Ao &(t) subject to the initial o d
tions (20).

Equation (20) simplifies to
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(cosO(0)A„(0)) = 1 I cosO(0)cos[r8(0)]exp 2 —gcos[MO(0)] dO(0)y
277

I sinO(0)cos[rO(0)]exp 2 ~ gcos[MO(0)] dO(0) .
2m M

These initial conditions are computed in this paper for all r with numerical quadrature, the NAG routine D01QAF.
This checks that the second integral in the above equation is zero to about four decimal places for all the cosine sums
used in this work. The numerical uncertainty in the above equation from D01GAF is at most one part in 10, sometimes
as small as one part in 10 or 1.0 .

The far-infrared spectrum is obtained approximately from ( cosO(t)cosO(0) ) through the second derivative

G
2 (cosO(t)cosO(0) ),q= cosO(t) cosO(t)

dt2 q dt dt

the rotational velocity correlation function. This is relat-
ed by Fourier transformation to the far-infrared (FIR)
power absorption a(v) [v=ro/(2~c)]. The one-sided
Fourier transform may be carried out using the fact that
it is equivalent to a Laplace transform, and therefore by
using the relation s =ice between the Laplace variable s
and angular frequency cu. In general,

f(t) = s f(s)+sf(0)—+f'(0) .
dt

In our case, by a property of equilibrium autocorrelation
functions,

(0 0[

f'(0) = (cosO(t)cosO(0) )
d
dt t=0

=0.

Therefore, the expression for the FIR power absorption
becomes

a(ru) ~ —s W, (cosO(t)cosO(0) ),q+s ( cos 8(0)),
(21)

Re[a(ro) ] ~ ru W, ( cosO( t)cosO(0) ),q .

Equation (21) links the far-infrared power absorption to
the Kramers Eq. (2). The constant of proportionality in
Eq. (21) involves the complication of the internal field, ir-
relevant to the present paper. A full discussion is provid-
ed in Ref. (14). Finally, the dielectric loss' E"(co) is given
by

e"(co) ~ roW, (cosO(t)cosO(0) ),q .

II. NUMERICAL RESULTS

{b)

'I00 'l 50
i A

200 g(cm )

0 I

0 50 '100 '150 200 r(cm )

pl&. 1. FIRRS spectrum from Eq. (16), a = 8 THz; p=0. 1

THz; y=5 THz. (a),(b),(c) 100)&100matrix for Vas in text. (d)
200 && 200 matrix.

This section provides illustrations of Re[a(v)] from
Eqs. (16)—(21) for various V(8). The purpose is to evalu-
ate the effect on the far infrared spectrum of changes in
the effective intermolecular potential energy V. Checks
for convergence of the solution of matrix Eq. (17) to the
true solution of Eq. (2) are illustrated using various sizes
of M(s) in Eq. (17), 100X100 and 200X200 matrices.
The parameters a, p, and y are kept constant as V(8) is
varied, so that a direct assessment is possible of the influ-
ence of the angular dependence of the effective inter-
molecular potential on the far-infrared power absorption.
The aim of this is to provide a new method of estimating
the effective intermolecular potential in a molecular liquid
or liquid crystal by fitting theoretically the observed
FIRRS peaks, such as those in water. The appearance of
the peaks illustrated in Fig. 1, for example, is also intrinsi-
cally interesting, and may have new physical implications
in several disciplines where nonlinear stochastic processes
are considered —for example, the theory of chemical reac-
tion rates and multiphoton processes in solution. '

Figure 1 illustrates a(v) for the parameters a=8 THz,
p=0. 1 THz, y=5 THz. The intermolecular potentials
are as follows:
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FIG. 2. As for Fig. 1; parameters as in text.

V= —Vocos[28(t) ],
V= —Vo I cos8(t)+cos[28(t)]],

(23a)

(23b)

cos[28(t)] cos[38(t)]V= —Vo cos8 t + +

cos[48(t)]
16

(23c)

The size of M in Eq. (16) is kept at 100X 100 in Figs.
l(a)—1(c) for the purposes of direct comparison. In Fig.
1(d) the size is increased to 200X200 to illustrate the ef-
fect of convergence to the true solution of Eq. (2) for o.'(v).
This is at the expense of an eightfold increase in computer
time.

Comparing Figs. 1(a) and 1(b), it is clear that there are
more FIRRS peaks for potential (23b). The potential en-
ergy of an applied electric field takes the form
V= —(pElkT)cos8(t), where p is the molecular dipole
moment and E the applied electric field strength. There-
fore the effect of an external electric field E on the
FIRRS spectrum is to create more peaks. This has been
reported in the experimental literature for 7CB [4-cyano-
4'-(n-heptyl) biphenyl] (Ref. 8), and acetonitrile. These
preliminary experimental investigations are supported by
the theory of this paper. The spectrum in Fig. 1(a) is fair-
ly "harmonic" in nature, i.e., the peaks on the low-
frequency side are separated by approximately equal inter-
vals. The peaks on the low-frequency side are the more
intense. Again this corroborates the preliminary experi-
mental data ' of Evans, notably in water and acetoni-
trile. ' The simple FIRRS spectrum of Fig. 1(a) becomes
clearly anharmonic in Fig. 1(b) where seven peaks are visi-
ble for a relatively small 100X 100 matrix, dominated by a
doublet at about 160 cm '. lt may be significant in this
context that recent work by G. J. Evans, in cooperation
with Nicolet Development Laboratories, has produced
eight clear peaks in liquid water in the region 160 to 240
cm ' alone: at 161 cm ', 168 cm ', 173 cm ', 191
cm ', 198 cm ', 210 cm ', 221 cm ', and 232 cm
It is hardly necessary to mention that liquid water is high-
ly structured due to H bonding. The molecules are locked
for relatively long periods in potential wells. Escape is
possible only by breaking H bonds. Generalized Kramers
theory [reduced model theory (RMT)] has been applied to

H-bond dynamics by Grigolini et al. ' The Kramers rate
P is expected, therefore, to be small in liquid water.
Equation (2), with the correct potential V(8), should
therefore produce FIRRS peaks in the region 160—240
cm '. This provides us with a new means of looking at
H-bond dynamics in liquid water and similar media.

The more complicated potential of Fig. 1(c) shifts the
whole FIRRS pmfile to lower frequency, again for a
100X 100 matrix. The FIRRS spectrum is therefore sensi
tive to changes in V(8). The more accurate, but much
more time consuming, calculation for Fig. 1(d) (200 X 200
complex matrix inversion), shifts the peaks around slight-
ly in relative frequency and intensity, but, importantly,
produces more of them. The necessity for using very
large matrices can be bypassed by resorting to fast and ef-
ficient continued-fraction solutions ' of generalized Kra-
mers equations developed by Grigolini and co-workers,
and this will be the subject of future work aimed at ob-
taining fully converged solutions to Eq. (2) and complete
FIRRS spectra for a given V(8).

It is interesting to see that in Fig. 2, for a=8.0 THz
(moment of inertia approximately that of water) the
FIRRS spectrum is dominated, for a 100X100 matrix
and V= —Vo I cos8(t)+cos[28(t)) J by three intense peaks
at about 250 cm ', in the region of the experimental
peaks in water noted already. There are already 12 peaks
(Fig. 2) in the theoretical FIRRS spectrum altogether
(y = 10 THz, P=0. 1 THz, solid line), even for a matrix as
small as 100& 100.

In Fig. 3, finally, still for a small 100&100 matrix, a
series of FIRRS spectra from Eq. (16) is illustrated for
a=4 THz; P=0. 1 THz, @=5THz:

(a) V= —Vo I cos8(t) +cos[28(t) ]I,

cos[28(t)] cos[38(t)]b V= —Vo cos8 t + +
9

cos[48(t)]
16

(c) V= —Vo cos8(t)+ cos 28(t)

cos[88(t)]
64

(d) V= —Vo cos8(t)+ cos[28(t) ]
4

cos[128(t)]
144

cos[28(t) ] cos[38(t) ]
4 9

cos[88( t) ]
64

The spectra are "underdeveloped" because of the small
matrix used, but it is clear that the FIRRS peaks from
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detailed fingerprint of the effective intermolecular poten-
tial V(0), especially in associated molecular liquids and
liquid crystals.
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FIG. 3. As for Fig. 1; parameters as in text.

Eq. (17) vary greatly in relative intensity with the type of
potential used. The peak intensity shifts to lower frequen-
cy with increasing the number of terms, the peaks of
greatest intensity being concentrated on the low-frequency
side, with the exception of the simple cases (a) and (e),
where the truncated Fourier-series terms are alternatively
positive and negative.

Provided these peaks can be resolved experimentally, by
choosing the appropriate conditions, they will provide a

III. DISCUSSION

It is clearly important to develop a method for reducing
numerically the intermolecular potential from ab initio
quantum calculations to a form where it could be syn-
thesized by a Fourier series and used in a Kramers equa-
tion akin to (2). The other area of development needed at
present is a practical method for solving Eq. (2) in three
dimensions, using all three Euler angles (8, P, and X) rath-
er than 8 alone. It would then become possible to consid-
er the correlation between molecular rotation and transla-
tion, which appears in the laboratory frame' in the pres-
ence of a parity-breaking force field. ' '

There is a growing amount of experimental evidence
available now to suggest that the far infrar-ed power ab
sorption of molecular liquids is a broad band only when the
parameter 13 is relatiuely big, i e , whe. n . the rate of escape
from potential wells is on the auerage rapid (It ha. s been
shown elsewhere' that the individual theoretical peaks of
Figs. 1—3, for example, merge together into a broad band
as 13 is increased. ) In nematic 7CB, aligned with an elec-
tric field, the FIRRS spectrum has been resolved experi-
mentally. The FIRRS peaks are clearly visible in liquid
water, in liquid nitromethane, and in liquid acetonitrile
aligned with an. electric field. ' The so-called "rattling
modes, " visible in small molecules trapped in P quinol
clathrates and observed in the far infrared by Davies, '

can also be described in principle by a Kramers equation
with P~O. In disordered solids such as the hexa-
substituted benzenes, ' separate far-infrared peaks are
resolved, together with a broad dielectric loss curve at
lower frequencies. [The Kramers equation (2) produces a
broad e"(cu)- vsl og& o~ucurve at low frequencies, superim-
posed on which are the higher frequency far-infrared reso-
nance peaks. ]

More generally, it is now known that generalized Kra-
mers equations and master equations govern rate process-
es in a range of disciplines, ' the principle being that any
development in one area (such as the appearance of
FIRRS peaks) might have real physical significance in
another area where there is interaction between nonlinear
potentials and stochastic terms in the governing rate equa-
tion. The principal feature is that when one removes
linear approximations (e.g., sin8=8) in these equations
some wholly new phenomena emerge from the subsequent
analysis and solution. One well known result' is the
description of multiphoton processes by Bloembergen, us-

ing a rate equation based on nonlinear mechanics. This
will be the subject of future work, based on our analysis of
FIRRS peaks. Another is the self-ordering process in-
duced by the interaction of nonlinearity and noise. The
resonance peaks of this paper surely have significance in
the theory of chemical reactions in solution, where the
dynamical processes are selective, i.e., reaction takes place
only when two molecules or ions approach in the correct
trajectory, i.e., when the potential we11 structure is
correct.
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Finally, we surmise, what would be the equivalent of
FIRRS peaks in the stochastic rate processes of popula-
tion genetics, or the theory of evolution? These processes
are again governed by equations similar to (2). The same
is true for stochastic processes in galactic dynamics, and
in a growing number of other disciplines.

Note added in proof. The nature of these few infrared
peaks has been investigated further by Grigolini and co-
workers, using the Mori continued fraction' for the
Duffing oscillator. In the limit p—+0, the Kramers equa-
tion for the Duffing potential produces transitions corre-
sponding to absorption peaks at regularly spaced intervals:

2ao, 3ao, 4ap, 5ao, . . . ,

where

a =— kT3 p
0

COp

with cop as the natural harmonic frequency of the Duffing
oscillator. Careful resummation of the Mori series leads
to the conclusion that the peaks close to the natural fre-
quency of ~o are, in this case, masked by a residual
linewidth of order precisely ap. The Duffing oscillator
contains the first two terms (effectively) of the Taylor ex-

pansion of cosO. This numerical work by Grigolini and
co-workers is equivalent to using matrices such as M of
the order of 100000&100000 and greater. This means
that convergence is, for all practical purposes, attained.
In the potentials used in this paper, there are many intrin-
sic natural frequencies coo, and the convergence sequence
illustrated in Figs. 1(c) and 1(d) would culminate in a
spectrum composed of a peak for each natural frequency,
each with its sequence of "satellite" peaks masked by the
residual linewidth mentioned in this note. [P. Grigolini
(private communication). ]
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APPENDIX

If sine terms are included in the Fourier expansion for V, so that the expression for V becomes

V= —Vpgcos(MO) —Vpgsin(MO) (A1)

the equivalent Kramers equation in Laplace space becomes

sA„(s) A„(0)+pmA„(—s)+ipct[A, '(s)+(m +1)A, +'(s)]

A„+-~') —) (A„-t'(s)+A„+

It can be seen that the sine terms [sin(MO)] in V add
real coefficients in A„M and A, +st' to the Kramers
equation, and the cosine terms [cos(MO)] an imaginary

part. These terms play the role of generating new peaks
in the FIRRS spectrum with each new term added to the

I

truncated Fourier-series expansion of V(Q). In theory any
periodic function can be represented by a Fourier series,
namely, the intermolecular functions from self-consistent
field ab initio calculations.
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