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Correlations of a zero-temperature two-dimensional charged Bose gas with ln( r) interaction
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Some properties of a two-dimensional charged Bose gas interacting with a ln(r) potential are in-

vestigated on the basis of a self-consistent-field formalism which includes the short-range correla-
tions between bosons through a local-field correction depending on the pair correlation function.
Numerical results for the static structure factor, pair correlation function, spectrum of elementary
excitations, and the response of the system to a static impurity charge are presented. Our results
show the same qualitative behavior as those of the three-dimensional analog but the correlation ef-

fects are somewhat more pronounced in two dimensions.

I. INTRODUCTION

Over the last few years there has been an active interest
of a large number of experimentalists and theorists in
studying two-dimensional systems with Coulomb's in-
teraction between particles. In contrast to the three-
dimensional analog, there are two different well-defined
Coulomb systems in two dimensions. In one case the sys-
tem consists of charges restricted to motion in a plane and
interacting via I/r potential. The second system is made
up of charged particles interacting through the logarith-
mic two-dimensional potential.

The electronic properties of two-dimensional systems,
such as electrons trapped on a liquid helium surface and
electrons in the inversion layers in metal-insulator-
semiconductor structures, have been intensively investi-
gated during the last years. ' In these systems the elec-
trons are bounded perpendicular to the surface in discrete
quantum-mechanical states and interact via a 1/r poten-
tial in their motion parallel to the surface. Many-body ef-
fects in these systems have been studied through the struc-
ture factor, pair correlation function, thermodynamic
functions, plasma dispersion relation, and ground-state
energy, to mention a few.

On the other hand, a system with a logarithmic
Coulomb potential interaction may have applications to
real physical situations as a model of two-dimensional su-
perfluidity, for example. Furthermore, the ln(r) in-
teraction has recently become quite important in the
understanding of dislocations in solids, the Kosterlitz-
Thouless transition, and thin-film superconductors.

The purpose of the present paper is to investigate some
static and dynamical properties of a two-dimensional
many-charged boson gas interacting via logarithmic po-
tential over an extensive range of densities.

We use a self-consistent-field approximation, ' hereaf-

ter called SCFA, proposed by Singwi et al. for the degen-
erate electron gas, which takes into account the short-
range correlations arising from the Coulomb repulsion po-
tential. Strictly speaking, the calculations are a natural
extension of the three-dimensional charged Bose gas sys-
tem recently investigated by the authors. ' The SCFA
method consists of replacing the two-particle distribution
function in the Liouville equation for the one-particle dis-
tribution function f~(r, p;t) by the product of two one-
particle distribution functions and a static pair correlation
function as

f2(r, p, r', p';t)=f, (r, p;t)f, (r', p';t)g(r r'), —
thus terminating the hierarchy of equations. In such a
procedure the short-range correlations responsible for the
local-field corrections are calculated in a self-consistent
way by making the density-density response function
dependent upon the pair correlation function. This ap-
proach is one of the best improvements of the random-
phase-approximation (RPA) formalism and has been suc-
cessfully employed both for quantum and classical sys-
tems.

The SCFA is then applied to calculate the pair-
correlation functions, structure factor functions, elemen-
tary excitation spectrum, and the screening density around
a fixed impurity in a two-dimensional charged Bose sys-
tem interacting via logarithmic Coulomb potential. The
numerical results are compared with those we obtained (as
a by product) in the context of RPA and also with the re-
sults of the three-dimensional analog. As in the case of
the electron gas, we found the correlation effects more
pronounced in two than in three dimensions.

This paper is organized as follows. In Sec. II we briefly
describe the self-consistent-field approximation. In Sec.
III numerical results for the pair correlation functions and
structure factor have been obtained for a large range of
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II. FORMALISM

In the self-consistent-field approximation formalism
corresponding to the ansatz given by Eq. (1), the two-
dimensional charged Bose system interacting via logarith-
mic potential is described by the density-density response
function as

X(q co) =&o(q ~)/[I 0(q)po(q co)] (2)

where go(q, co) is taken to be the zero-temperature
density-density response function of the nointeracting sys-
tem and is simply given by

where p=N/V is the numerical density of the system,
e(q) =Iri q /2m is the free-single-particle energy, m is the
mass of the boson, and fm is the energy of the quasiparti-
cle associated with the frequency co of small oscillations
of the gas about equilibrium.

The effective self-consistent potential Itj(q) is a func-
tional of the static structure factor function S(q) through
the following expression:

It (q) =P(q )[1—G(q) ], (4)

where tI)(q) =2ne /q is the two-dimensional Fourier
transform of the Coulombic particle-particle interaction
potential as obtained from Poisson's equation and G(q) is
the local-field correction which is given in terms of S(q)
as

G(q) = ——f z [S(q—k) —1] .
p (2m)' q~ P(q)

The structure factor, on the other hand, is related to the
imaginary part of P(q, co) by the dissipation-fluctuation
theorem as'

densities. The induced charge distribution around a fixed
charged impurity is calculated in Sec. IV. In Sec. V the
elementary excitation spectrum of energy is determined
from the poles of the self-consistent density-density
response function, and a brief conclusion concerning the
results is presented in Sec. VI.

III. PAIR CORRELATION FUNCTION
AND STRUCTURE FACTOR

8r,
S(q)= 1+ 4 [1—G(q)]4

—1/2

(9)

with the local-field correction G(q) given by

G( q) = ——,
' fdk k [S(k)—1]8(q —k), (10)

where 8(x) is the step function defined as 8(x)=0 for
x &0 and 8(x)=1 for x &0. In the equations above r is
expressed in units of ro ——(~p) ', the average interparti-
cle separation. The density of the system is expressed
through' the parameter r, =ro/ao, where ao is the Bohr
1adlus.

The numerical solutions of the integral equation, Eq.
(9), were obtained by an iterative procedure. From an ini-
tial guess for S(q), we calculated G(q) from Eq. (10) and
the result was inserted in Eq. (9) generating a new S(q),
and so on. In the high-density regime the convergence of
this self-consistent method is very easy to obtain. For
r, &5 the numerical precision in the self-consistent G(q)
was typically one part per million while a much higher ac-
curacy in S(q) was obtained. In decreasing densities the
convergence of the iterative process becomes quite poor.
The results for the self-consistent structure factor S(q),
determined as mentioned above, as a function of wave
vector for several values of r, along with the RPA results
are shown in Fig. 1. It should be noted that the correla-
tion effects which are taken into account in the present
calculation increase with decreasing densities and also
more pronounced as compared to the three-dimensional
case. The overall behavior of S(q), however, is similar to
the three-dimensional analog, ' as well as to the two-
dimensional quantum electron gas.

The pair correlation function g(r) which represents the
probability of finding one particle at a distance r from
another is related to the Fourier transform of the struc-
ture factor S(q) and in two-dimensions is given by

g(r) =1+—,
' f dq qJo(qr)[S(q) —1], (g)

where Jo(x) is the zeroth-order Bessel function of the
first kind and

S(q) = ——f Im+(q, co),
p oo 27T

closing then the self-consistent scheme.
It is interesting to note that the expression for the

density-density response function in the RPA is recovered
if we neglect the -local-field corrections, that is, if we set
G(q) =0 which corresponds to take the effective potential
interaction as g(q) =P(q).

By means of the Kramers-Kronig relation, the integral
in Eq. (6) can be easily performed and the result for the
structure factor function turns out to be

S(q)= [1+2p1t (q)/e(q) ]

which is much simpler than the corresponding expression
for the structure factor function of the quantum degen-
erate electron gas.
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FIG. 1. Structure-factor function S(q) versus qro for various
values of r, . The RPA results (dashed curves) are also plotted
for comparison.
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FIG. 3. Screening density 5p(r) plotted as a function of the
distance from the impurity r/ro for various values of r, . The
dashed curves are the RPA results.

By substituting this external potential into Eq. (11) and
taking its inverse Fourier transform we obtain the follow-
ing expression for the screening density at a distance r:

FIG. 2. Pair correlation function g(r) as a function of r/ro
for several values of r, . Dashed curves are the RPA results.

qJO(qr )
5p(r) = —Zp f dq

z +2[1—G(q)]2

(13)

With the self-consistent results we have obtained for the
structure factor S(q), we have calculated the pair-
correlation function g(r) as given by Eq. (8). The results
we have obtained are plotted in Fig. 2 for various values
of the coupling parameter r, . For comparison the corre-
sponding results of the RPA are also shown. As we can
see, the inadequacy of the RPA is revealed even for small
values of r, with the pair correlation function becoming
negative at small distances. In the SCFA, on the other
hand, g(0) remains positive even for large values of r,
such as r, =9. This result is similar to the three-
dimensional analog but contrasts with the results of the
two-dimensional electron gas with ln(r) interaction where
the pair correlation function g (0) becomes negative for
rs) 2

Once again it may be noted that the correlation effects
in our two-dimensional system are stronger than the cor-
responding three-dimensional model but the qualitative
behavior is similar in both systems.

IV. IMPURITY SCREENING

In this section we investigate the effects of a static im-
purity of charge Q=Ze immersed in the two-dimensional
charged Bose gas. The screening density around a fixed
impurity is given in the linear-response approximation

15

5p(q, co) = —y(q, co)eP,„t(q,co),

where X(q, co) is the density-density response function
which is obtained by the self-consistent solution of Eqs.
(2), (5), and (6), and tI),„,(q, co) is the external potential due
to a static impurity charge given by

4m e
P,„,(q, co) = 5(co) . (12)

aoq

25(q)= —Ze fdq
2 +2[1—G(q)]

4r,

= —Ze (14)

which means that the charged impurity is totally screened
at large distances.

Since there is no exact analytic solution of Eq. (13) even
in the more simple approximation such as the RPA, we
have numerically calculated it as a function of the dis-
tances r from the impurity for several values of the densi-
ty of the boson gas. In Fig. 3 we show the results we have
obtained along with RPA results. It is seen that the pres-
ence of the short-range correlations in the system gives
significant enhancement of the screening density over the
RPA results. We also observe with increasing r, that the
screening density becomes larger at small distances from
the impurity and decreases to zero much faster. The qual-
itative behavior of the induced screening density is similar
to the three-dimensional analog.

V. QUASIPARTICLE ENERGY SPECTRUM

The quasiparticle energy spectrum E(q) =fico(q) is ob-
tained from the poles of the density-density response
function X(q, co) of the system. Thus from Eq. (2) we set

[fico(q) + ir) ] —e(q) —Zpe(q)g(q) =0, (15)

resulting, for the excitation energy, in the following ex-
pression:

E(q)= I[e(q)] +2pe(q)g(q) j'~ (16)

where Jo(x) is the Bessel function of order zero and
length is expressed in units of ro, the average interparticle
separation.

The total induced charge QT is

QT
——e fdr5p(r)
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FIG. 4. Elementary excitation spectrum E(q) as a function
of qro for several r, . The corresponding RPA results (dashed
curves) are plotted for comparison.

E(q) =fico() 1 — +q2 Aq ao
(18)

4~p 4m coo

where coo ——(2rrpe /fi )'~ is the plasma frequency.
As in the three-dimensional system the short-range

correlations give a correction to the RPA results by de-
creasing E(q) while increasing the wave vector q. The
quasiparticle energy reaches a minimum value and in-
creases again asymptotically to the single-particle excita-
tion spectrum at large q. Nevertheless it may be noted
that the correlation effects in decreasing E(q) are much
more pronounced in our two-dimensional system than
those in the three-dimensional analog.

VI. CONCLUSIONS

which can be related to the static structure factor S(q)
through the well-known Feynman's expression

e(q)
s(q)

by integrating the right-hand side of Eq. (6).
The dispersion relation has been numerically obtained

and the results are plotted in Fig. (4) in comparison with
those of RPA. As we can see, the differences with the
RPA results are more pronounced in the low-density re-
gion, where the correlations between particles play a fun-
damental role.

In the long-wavelength limit region, where the oscilla-
tions are weakly damped and well defined as quasiparti-
cles, we obtain the following expression for the energy:

In this paper we have applied a self-consistent-field ap-
proximation which takes into account the short-range
correlation effects, to calculate some of the static and
dynamical properties of a two-dimensional charged Bose
gas interacting with ln(r) potential. Numerical results for
the induced charge density around a static impurity, pair
correlation functions, structure factor, and plasmon
dispersion relation have shown significative differences
from those given by the RPA. It should be stressed that
our results were found to be qualitatively similar to the
three-dimensional charged Bose system. Moreover,
stronger correlation effects appear in our two-dimensional
gas.
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