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A quantification of the degree of classical chaos manifested in the quantized energy spectra of
two—degree-of-freedom coupled Morse-oscillator systems with sufficiently dense energy levels is at-
tempted by use of Brody’s repulsion parameter which characterizes his nearest-neighbor level-
spacing distribution function. A close relationship is established numerically between the mass-ratio
dependence of the Brody parameter and that of the relative area of the chaotic regions on the Poin-
caré surfaces of section in the corresponding classical system. It is shown that in the strong-
coupling limit the distribution appears to tend to the Mehta-Gaudin distribution from the random
matrix theory, suggesting that in this limit it is almost impossible to distinguish between the quan-
tized version of the classical K system and those of other systems with a fairly small number of reg-
ular trajectories. The present analysis also demonstrates that the Brody parameter serves as a useful
indicator for measuring the degree of mode coupling and for detecting an isolated local mode in the

system.

I. INTRODUCTION

The statistical analysis of energy spectra of complicated
systems has a long history, notably in the field of nuclear
spectroscopy, in the form of statistical or random matrix
theory of spectra, and a large amount of theoretical and
experimental work has resulted.! ~* Recently, the analysis
has attracted a renewed and increasing interest in another
field of research, in connection with the statistical or ran-
dom properties of quantum spectra of nonlinear systems
whose classical motions exhibit chaotic behavior.’~!* So
far, the theory has mainly been applied to simple K sys-
tems such as the stadium system>® or Sinai’s billiard sys-
tem”!3 whose ergodicity in the classical limit has been
rigorously proved. The results obtained have shown that
the nearest-neighbor level-spacing distributions are suffi-
ciently close to the Wigner® or, more precisely, to the
Mehta-Gaudin'> !¢ distribution derived from the Gaussian
orthogonal ensemble (GOE) of random matrices. Along
with the recent rise in interest, stimulated by advances in
laser technology, in high-lying vibrational excited states of
polyatomic molecules, the applications of the theory are
now being directed toward realistic systems.!” 20

In a previous paper'? (hereafter referred to as I), in con-
nection with classical chaos also treated previously in
another paper?! (referred to as II), we obtained quantized
energy spectra and constructed the associated nearest-
neighbor level-spacing distributions for a family of two-
dimensional Morse-oscillator systems interacting through
off-diagonal kinetic-energy terms. In I, although we
found, as a function of mass ratio 8, a certain parallel re-
lationship between the degree of classical chaos and the
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curve profiles of nearest-neighbor level-spacing distribu-
tions, we did not attempt to carry out any test of goodness
of fit of the obtained histograms to particular known dis-
tribution curves, because of rather large statistical fluctua-
tions caused by the small number of energy levels.

The purpose of the present paper, accordingly, is to
compute the energy spectrum by increasing the number of
energy levels and to quantify the degree of chaotic
development reflected in the quantum energy spectrum
from a rather phenomenological statistical standpoint, by
employing the repulsion parameter introduced by Brody*
(hereafter called the Brody parameter) as a generalization
of the Wigner distribution.

Throughout our series of studies, including the present
one, we have used triatomic model systems under the
two—degree-of-freedom approximation given by freezing
the bending vibrational mode. Triatomic systems have
three or four vibrational degrees of freedom according to
whether they are bent or linear. Hence, the increase in the
number of vibrational energy levels below the dissociation
threshold should, in principle, be brought about by incor-
porating the remaining bending vibrational model(s)
neglected in previous treatments. At the present stage,
however, it is almost impossible to carry out a systematic,
three-dimensional treatment including the bending mode
since a three-dimensional model potential function, appl-
icable universally in the same way as the Morse function
for the one-dimensional case, is not known particularly
for the dissociation energy range. Therefore, in this paper
we adopt an alternative approach of increasing the num-
ber of energy levels by raising the values of masses, from
those of ordinary molecular systems up to sufficiently
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large values to allow us to determine the two-level correla-
tion measures with a much higher accuracy. As can be
easily noticed, this procedure is equivalent to making the
system closer to the semiclassical limit by employing a
smaller #. Although the computational results of such a
substitution cannot be compared directly with those of ac-
tual molecular systems, the procedure is expected to serve
sufficiently well for the main objective of the present
study, that is, an understanding of the statistical proper-
ties of the quantum energy spectra of Hamiltonian sys-
tems with strong coupling among different degrees of
freedom in the limit of sufficiently small but finite #.

The outline of this paper is as follows. In Sec. II we
provide the model Hamiltonian and the associated matrix
elements for the present analysis, as well as the definition
of the Brody distribution function which serves as an in-
terpolation formula between the Poisson distribution in
the zero-coupling limit and the Wigner distribution in the
strong-coupling limit. In Sec. IV we present a relation-
ship between the mass ratio and the Brody parameter and
show that in fact a stong correlation exists between the
mass ratio dependence of the Brody parameter and that of
the relative chaotic area on the Poincaré sections in the
corresponding classical system. Section IV is devoted to
some detailed analysis of the origin of such a classical-
quantum correspondence which holds over a wide range
of & values, with the aid of Poincaré sections at certain
typical mass ratios and energy values. In Sec. V a sum-
mary and concluding remarks are presented.

II. MODEL SYSTEM AND THE BRODY
DISTRIBUTION FUNCTION

The model Hamiltonian and associated matrix elements
for the present analysis are given in 12> However, in or-
der to make this paper self-contained and for the conve-
nience of the discussion below, we present them briefly,
together with the definition of the Brody distribution
function. The quantum Hamiltonian of a pair of identical
Morse oscillators coupled via an off-diagonal kinetic-
energy term is written as

H=H,+H,+H,,, ' (1)
with

H;=—(#/2m,)3* /3r} + Vi(ry), i=1,2 )

H, =#u,(3/9r)(8/9r,) , 3)

A=y +u) ", py=mi! (4)

Vi(r))=Dj[exp(—a;r;)—11%, i=1,2 (5)

where H; (i =1,2) are the Hamiltonians of the Morse o0s-
cillators corresponding to the two adjacent bonds symme-
trically located with respect to the central atom having
mass m,, Hy, is the interaction Hamiltonian between
these two bonds representing the so-called kinetic cou-
pling, and r; (i =1,2) are the displacements of the ith
bonds from their equilibrium positions. In Eq. 4),
wy and p, are the reciprocals of the masses of the two end
and central atoms, respectively, and 7 (i =1,2) denote

the reduced masses of the two identical adjacent Morse
oscillators. V;(r;) defined in Eq. (5) are the Morse poten-
tial functions for the ith bond, and the parameters D; and
a; are the dissociation energy and scaling parameters re-
lated to the force constants of the associated bonds.

The eigenfunctions of the coupled oscillator system, Eq.
(1), are approximated in terms of a linear combination of
the following product basis constructed from the two
Morse-oscillator eigenfunctions:

[vv5 > =2_1/2[¢y1(r1)¢,,2(r2)i¢,,l(r2)¢v2(r1)] , (6)
with
¢y (r)=N,x*—*~12exp(—x /2)LF* 2~ 1(x),
O<v<[k—3] )

N,={[a(2k —2v — 1 !]/T(2k —v)}!/?, )
x =2k exp(—ar) , ©)
k=(2mD)""*/(a#) , : 10)

where a combination of + or — sign corresponds to a
symmetrized or antisymmetrized basis function, respec-
tively, and L,,Zk ~2=1(x) is an associated Laguerre polyno-
mial, [ k — 5] denotes a maximum integer not exceeding
the real number k — %, and v, and v, are the vibrational
quantum numbers of the bond modes 1 and 2, respective-
ly. In Egs. (7)—(10) we have suppressed the subscripts
i(=1,2) of r, x, v, k, a, m, and D for notational simpli-
city. With the use of the basis given in Eq. (6), the matrix
elements of the Hamiltonian equation (1) are expressed as

(vivyt |H vt Y=HT

viv) ;v v,
::Iiz);ué;ulvz_|-Iiu'lué;v2vl ’ (1
(vivy” |H |vwy Y=H , .
1¥2°71%2
=HI v, *‘H, ', > (12)
vlvz,vlvz vlvz,vzvl
with
vivhiw, v'lvlsugvz(e%_*_e”z) ’ (13)
+#u, vy | (d/dry) | vy Y v | (d/dry) | vy)
ey, =D;[2(0;++)/k; — (v, + T 2/kF] (14)
Cof [(d/adr) o)) = [ ¢, (r)(d /dr)e, (r))dr, (15)

N, Ny (=1 TUT(2k —vf ) /20!

for v/ s~v; , (16)

0 forv, =v;, i=1,2

where the + and — signs in Egs. (11) and (12) stand for
gerade (hereafter abbreviated to g) and ungerade (similarly
abbreviated to u) eigenstates, respectively, and, in particu-
lar, e, given by Eq. (14) corresponds to the vibrational en-
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ergy in the v;th vibrational quantum state of the ith
Morse oscillator in isolation.

As seen from the form of the Hamiltonian equation (1),
in the present model four degrees of freedom, including
rotational ones, are neglected. At the present stage it is
not clear to what extent the exclusion of these degrees of
freedom can be justified for the higher-energy region in
which we are interested. Clearly, such a neglect of the
other degrees of freedom of the system leads to a decrease
in the number of energy levels and lowers the reliability of
a statistical treatment. As noted in the Introduction, this
potentially unfavorable effect, particularly the neglect of
the bending vibrational mode, is to some extent (at least in
the sense of the statistical treatment) compensated for by
increasing masses in the system. However, in order to ef-
fect a correspondence with classical analysis, this has to
be done in such a way that the mass ratio & remains un-
changed, since that ratio is one of the two system parame-
ters in the corresponding classical system. This is actually
achieved by increasing only the mass of central atom;
namely from the definition of the modified mass ratio
8=(1+4pu,/u,)"!, the dimensionless parameter k, Eq.
(10), which provides the maximum vibrational quantum
number below the dissociation threshold under condition
0<v <[k —+]in Eq. (7), is rewritten as

k=(2mD)'?/(a#)=[(28D)/u,]'"*/(a#) .

From this expression we see that only the mass of the cen-
tral atom has to be varied. Actually, in our calculation,
the largest value of m, has been taken to be 1370 (in units
of atomic weight) at §=0.01, the smallest § value. This
somewhat artificial procedure, however, is considered to
reproduce qualitative features of the level-structure in an
actual physical situation to a considerable extent, as long
as the coupling between the stretching and bending vibra-
tional modes in higher-energy region is strong enough to
be comparable to that between the two stretching modes.

We now present the difinition of the Brody distribution
function employed for the analysis of the nearest-neighbor
level spacings in the later sections. The Brody distribu-
tion function, characterized by the parameter 3, may be
written as

Py(z)=AzPexp(—az'*P), z=s/5 ' 17
with ’
A=1+Ba, a=[TQ2+B)/(1+B)/51'TE, (18)

where s is the nearest-neighbor level spacing and ¥ is the
mean spacing averaged over the energy interval under
consideration, and the parameters 4 and a given by Eq.
(18) are determined from the condition that both the aver-
age of z and the area under the curve must be equal to
unity. The value of parameter 3 is found by a nonlinear
least-squares fit to the given histograms. Since the distri-
bution function (17) was introduced as an interpolation
formula, it tends as —0 to the Poisson distribution

P,(z)=(1/5)exp(—2z),

and, as 3— 1 to the Wigner distribution,

P,(z)= lTiexp( —mz%/4) .
25

It should be noted that the nearest-neighbor level-spacing
distributions for the GOE derived by Mehta and Gaudin
correspond approximately to the Brody distribution with
B=0.953, in contrast to the Wigner distribution with
B=1.0.! In later sections our results are discussed with
reference to the Mehta-Guadin distribution rather than to
the Wigner distribution, since the latter could be regarded
as a close, first approximation to the former.

As stated above, the Brody distribution function is not
derived by a standard procedure on the basis of a particu-
lar random matrix ensemble. Consequently, although in
the next section the existence of a certain approximate
functional relation could be suggested between the Brody
parameter and an averaged fraction of chaotic regions in
Poincaré sections at different energies, in this analysis we
use this distribution function as being empirically effec-
tive in abstracting the essential and major part of the
mode coupling, and we expect that naturally another dis-
tribution function in a different functional form could be
conceived and constructed.?*

III. QUANTUM LEVEL-SPACING DISTRIBUTIONS
AND THEIR MASS RATIO DEPENDENCE

In this section we present quantum energy spectra cal-
culated on the basis of the model Hamiltonian described
in the preceding section and the associated nearest-
neighbor level-spacing distributions using the Brody dis-
tribution function. Our greatest concern in this analysis is
to find out whether or not the Brody parameter character-
izing the level-spacing distributions exhibits, with the
variation of mass ratio 8, the same type of oscillatory
behavior as in regular-chaotic area ratios on the Poincaré
surfaces of section of the corresponding classical sys-
tems.”! In the present calculations of energy, levels, the
same set of parameter values as in I (¢ =3.1 A and D =
5.453 eV, which corresponds to the dissociation energy of
the CO, molecule) are employed, except that the masses
of central atoms are increased so that the maximum vibra-
tional quantum number below the dissociation threshold
of the Morse oscillator for each bond is kept to be 61
throughout all the § values considered. In order to attain
five-decimal-place accuracy on the average (in units of
dissociation energy), 1891- and 1830-dimensional matrices
for the g and u states, respectively, obtained from all
combinations of the two vibrational quantum numbers v,
and v,, are diagonalized, and approximately 430 and 410
eigenvalues are obtained for the respective states. From
the check of convergence conducted by varying the di-
mensions of the matrices, a number of eigenvalues in the
range ~0.9<E < 1.0 (hereafter, energy is expressed in
units of the dissociation energy D) are found to have
four-decimal-place accuracy. For example, at §=0.5, 26
eigenvalues for 1700-dimensional and 7 for 1750-
dimensional matrices have turned out to have the lower
accuracy, and 10 out of these 26 and 1 out of 7 have been
comparable to the smallest value of the level spacings.
Consequently, the accuracy of eigenvalues at higher ener-
gies near the dissociation threshold is expected to be
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somewhat lower than that in lower-energy regions. How-
ever, this poorer convergence observed near the dissocia-
tion threshold is considered not to have a serious effect on
the overall curve profiles of the level-spacing distributions
since the inaccuracy of a small number of eigenvalues is

smoothed by the statistical procedure in deriving the dis-

tribution curves. In fact, in the convergence check it is
found that the change in value of the Brody parameter A3
between the 1891- and the 1600-dimensional cases is
~0.01 for the energy range 0.5<E <1.0 at several §
values. As shown below in Fig. 6, a much more serious
convergence problem is caused by the fact that there are
not enough levels to construct the distribution curves ac-
curately. '

Although the presentation of complete energy-level dia-

grams of the present model system is not our primary
concern in this study, we show these level diagrams in
Figs. 1 (for g states) and 2 (for u states) because, so far,
the level structure of strongly correlated high-lying vibra-
tional excited states has seldom been visualized and these
level distributions are, at the same time, our source of in-
formation for the following analysis. From these dia-
grams it is rather difficult to extract clear-cut information
about the effect of classical chaos on the level structure.
However, even at this stage, we notice a certain difference

in level pattern across the high-energy region, particularly

between 8 = 0.01 for a near-integrable case and § = 0.31
for a strongly coupled case. In particular, a number of
rather wide energy gaps between two adjacent energy lev-
els are observed more frequently for §=0.01 than for
6=0.31. Since the number of energy levels is kept ap-
proximately constant (~410—430) throughout all the &
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FIG. 1. Energy-level diagrams for g states at selected values
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the present analysis, are also shown for a comparison of the lev-
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values considered, this is interpreted as a manifestation of
the so-called level-clustering phenomenon.”” Before
analyzing the mass ratio dependence of the Brody param-
eter, we show in Fig. 3 a staircase plot of the cumulative
level number N and its unfolded version for g states, be-
tween E=0.5and 1.0 at §=0.30. In the figure, the
straight staircase plot has been unfolded by the transfor-
mation E—E,V18

~ 5 .
E=bi'(f(E)—by), f(E)=3 c,E', (19)
i=0

N

4004

300 4

200 A
]

1004

.5 6 .7 .8 .9 1
. E
FIG. 3 Staircase plots of the cumulative level number as a
function of energy for the range 0.5<E < 1.0 at §=0.30. The
plot lying on an arched curve is the original cumulative level
number and that on a straight line the unfolded version obtained
by the use of the relations Egs. (19) in the text.
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where by and b, are the intercept on the N axis and the
slope, respectively, of the straight line connecting the two
endpoints on the (E,N) plane, between which the unfold-
ing is intended; f(E), a polynomial function of degree 5 be-
ing used for the smoothing of the original staircase plot of
the cumulative level number, is determined by a least-
squares fit.

Figures 4(a)—4(c) are plots of the Brody parameter 3
versus the modified mass ratio & between
8=0.01 and 0.75 for the three different energy ranges in-
dicated. From the comparison of Figs. 4(a) and 4(b),
which are for states with the same symmetry, we see that
even before unfolding the overall oscillatory behavior of
the Brody parameter is correctly described. This is con-
sidered primarily because of the fact that the level density
over the energy ranges considered is fairly slowly varying
as a function of energy, and in fact, as estimated approxi-
mately from Fig. 3, its rate of increase is about 10% be-
tween the two successive energy ranges indicated in Fig. 4.
These plots (hereafter called the S—8 plots) should be
compared to Fig. 1 in II, which is reproduced in Fig. 5.
Oscillatory patterns in Fig. 4 correspond quite well to that
in Fig. 5. A close look at these 8—8 plots further reveals
some remarkable features. The first is the location of &
values providing extrema of the plotted curves, which is
regarded as a measure of the sharpness of the classical-
quantum correspondence. From Figs. 4(a)—4(c) we
observe that there are three minima around
8=0.30—-0.33, 0.57—0.60, and 0.71—0.73, and two maxi-
ma around &6=0.45—0.49 and 0.65—0.70. Compared
with Fig. 5, the shift of the positions of the 8 values for
these extrema toward larger values on the § axis can im-
mediately be noted. Detailed consideration of these shifts
is provided in Sec. IV.

Another important point to be noted is the behavior of

relative area

FIG. 5. Approximate relative areas of chaotic (and regular)
regions to the entire surfaces of section on the (5;,9;) plane as a
function of the mass ratio 8 [redrawn from Fig. 1 in II (Ref.
21)]. The upper regions above the solid curve for E=1.0 and
the solid circles for E=0.8 correspond to the relative areas of
chaotic regions for the respective energies. Compared with Fig.
1 in II, for E =0.8, three additional data are supplied for fur-
ther details between §=0.4 and 0.5.

the parameter § around the strong-coupling region, name-
ly around the deepest valleys in the plots. Recent analyses
of level-spacing distributions for billiard systems!>!*
strongly suggest that the distributions are sufficiently well
represented by the Mehta-Gaudin distribution from the
GOE. Accordingly, it is highly interesting and at the
same time desirable to find out to what extent the quan-
tum behavior of the present model system, which is classi-
cally not a K system, tends to that of the classical K sys-
tem in the strong-coupling limit. As is easily noticed
from Figs. 4(b) and 4(c), even after the unfolding pro-
cedure, it is not easy to decide on reliable values of 3 for
the strong-coupling region because of the rather large sta-
tistical fluctuations in S values, introduced principally by
the small number of energy levels employed. Consequent-
ly, we have examined the dependence of the Brody param-
eter on the magnitude of the level number, namely the
manner of convergence of the parameter as a function of
the level number N, between N =110 and 350.

Figure 6 shows some results of this convergence check
conducted for §=0.30. From the figure, we see that con-
vergence is not rapid and even at N =300 the fluctuation
width Ap is estimated as AB=+0.15. However, from the
behavior of the fluctuation curves, the parameter may be
expected to settle at a convergent value somewhere be-
tween B=0.953 from the GOE and B=1.1, an estimated
upper bound. This conjecture leads to the important con-
clusion that a Hamilton system without a classical K-
system property could not be distinguished quantum
mechanically from a complete K system. This conse-
quence, however, is not particularly unexpected, because
in the quantum-mechanical limit the concept of trajectory
in phase space is no longer valid as a result of the so-
called coarse graining of the phase space. In this sense the
present result raises an interesting question about how
useful or how necessary the definition of the term “quan-
tum K system”® is. The result of Fig. 6 also suggests that,
according to the 1/V'N fluctuation law in statistics, at
least about 40000 energy levels are necessary to reduce the
fluctuation width to one-tenth of the present level, which
is sufficient to make a clearer correspondence between
classical and quantum systems. At the present stage,
however, it is almost hopeless to diagonalize such a huge
dimensional matrix to a sufficient degree of accuracy.
Since triatomic systems would be unlikely to have such a
great number of vibrational energy levels below the disso-
ciation threshold, it will be difficult to find a clearer man-
ifestation of classical-quantum correspondence for tria-
tomic systems, unless the rotational degrees of freedom
are incorporated at the same time.

Figures 7(a) and 7(b) show some typical distribution
curves selected mostley from those corresponding to ex-
tremal points on the 8—38 curves in Fig. 4. These figures
actually constitute extended and refined versions of those
reported in Fig. 4 in I, and qualitative conclusions stated
there concerning the positions of maxima in histograms
have now been quantified by the use of parameter 3. As
seen from the curve profiles for §=0.01 and 0.05, the
prediction that the distribution tends to the Poisson type
in the integrable or near-integrable limit is again con-
firmed in the present analysis. This result further tells us
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FIG. 6. Statistical fluctuations of the Brody parameter as a function of the level number N at §=0.30. The three different plots
correspond to the three different energy ranges denoted by the same symbols as in Fig. 4.

that the information obtained from the profiles of the dis-
tribution curves could provide a useful means for measur-
ing the degree of the mode coupling and for predicting or
detecting a local mode in the system. Spectroscopically
this will be quite useful, although it would be highly diffi-
cult to construct, from experimental observations, a spac-
ing distribution consisting solely of energy levels with the
same symmetry class.

In concluding this section we would like to mention the
behavior of the Brody parameter in the interval
0.75<86<1.0, over which we have not extended our
analysis in the present paper. Judging from both the
trend in Fig. 4 and the classical results in II, we expect
that the oscillatory patterns in the 83—§6 plots become gra-
dually more obscure as 8 is increased and the spacing dis-
tribution again tends to the Poisson type.

IV. COMPARISON WITH CLASSICAL RESULTS

In this section we explore is some detail the relationship
between the oscillatory behavior observed in Fig. 4 in the
preceding section and the changes in the approximate area
ratios of the chaotic and regular regions on the Poincaré
surfaces of section in the corresponding classical systems.

Figures 8 and 9 show the mass ratio 8 dependence of
the Poincaré sections at both selected & values (which cor-
respond mostly to extremal 3 values) and energy values,
E=0.5, 0.6, 0.7, and 0.9. Of these energy values, the
first three are those of the lower bounds in the three ener-
gy ranges treated in Fig. 4. The & dependence of both
_regular-chaotic area ratios and the geometrical patterns of
the persisting central islands at E=1.0 is only referred to
as required, because those results have already been re-
ported in II. From an overview of these figures the fol-
lowing general features are extracted. Firstly, by follow-

ing up the patterns in increasing order of 8 at each energy
value except E=0.5, one can notice the oscillatory pat-
terns in the size of the chaotic (or regular) regions (includ-
ing those of higher-order islands surrounding the central
one), although the positions of the 8§ values providing the
minimum or maximum island size vary from energy to
energy. At E=0.5 there is no large-scale chaos observed,
except for §=0.26 and 0.31 for which fairly well-
developed chaotic regions are visible near the boundaries
of the surfaces of section. Secondly, although the size of
the islands generally decreases with increasing energy,
there are certain exceptions; namely, at 8§ =0.31 there
occurs a reversion in island size between £ =0.6 and 0.9,
and at 6=0.57 the size of islands is almost the same be-
tween E=0.7 and 0.9.

We now proceed to elucidate these features in some de-
tail. As already noted in the preceding section in connec-
tion with the relationship between Figs. 4 and 5, when
E =1.0, the position of § giving the smallest island (actu-
ally its area converges to a point) is found at §=0.263 and
the next smallest island at §=0.508, in contrast to the
corresponding minima in Fig. 4 found at §=0.30—0.33
and 0.57, respectively. In II we mentioned the general
trend that the position of the 6 value providing the third-
order resonance point?® moves in the negative 8 direction
on the 8 axis as the energy increases. In order to confirm
this trend we have further explored the variation of § giv-
ing both third- and fourth- order resonance points (actual-
ly the latter is a combination of two second-order reso-
nances as stated in II) in the (§,E) parameter plane.
Presented in Fig. 11 and supplemented with Fig. 10 is the
result of the follow up of these moves on the (§,E) plane.
The third-order resonance point represented by the separa-
trix, Fig. 10.2, at the center of which the point is located
starts at 6=0.384, which can be calculated from the ex-
pression giving the winding number in the E —0 limit:?!
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FIG. 7. Nearest-neighbor level-spacing distributions for (a) g states and (b) u states at typical 8 values selected from Figs. 4(b) and
4(c). In the left-hand and middle columns, the dotted curves correspond to the Mehta-Gaudin distributions and those in the right-
hand column to the Poisson distributions. For all figures, the vertical axes represent the number of spacings and the horizontal axes
the normalized mean spacing z (=s/7%).
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FIG. 8. Poincaré surfaces of section at several selected points on the (8, E) parameter plane. For all figures, vertical axes represent
symmetric stretching normal coordinates (g, in II) and horizontal axes their conjugate momenta (p; in II). Scales of all the coordi-
nate axes are appropriately adjusted so that all the figures have approximately the same size.
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0.52, 0.57, and 0.65.

FIG. 9. Same as Fig. 8 for
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FIG. 10. Topological patterns of typical separatrices appear-
ing in accordance with the increase in 8. Separatrices designat-
ed by 1, 2, and 3 form the lines represented by the corresponding
numbers on the (8, E) plane, as shown in Fig. 11. Separatrices
a, b, and c also occupy certain domains on the same parameter
plane as also indicated in Fig. 11.

b

o /o=y /(y+2)1"% =(1+y)~! (20)

by setting col/a)2=%. Then the point shifts gradually in
the negative & direction and arrives at 8=0.263 at
E=1.0. The fourth-order resonance case characterized
by the separatrix, Fig. 10.3, proceeds similarly, starting at
6=0.60 [which is also calculated from Eq. (20) by setting
@1/w,=~] and arriving at §=0.508 at E =1.0. i

R 2 3 38 .' . . . .9
S
FIG. 11. Movements of the third- and fourth-order reso-
nance points on the (3,E) parameter plane. In the figure, lines
indicated by 1, 2, and 3 correspond to the separatrices designat-
ed by the same numbers in Fig. 10 and three different shaded
areas indicated by a, b, and ¢ also correspond to separatrices
with the same designation in Fig. 10. In the doubly hatched in-
tersection of b and c, the separatrix ¢ (and, accordingly, four
periodic points) lies inside the separatrix b, that is inside the
three periodic points. Dotted lines, except line 1, indicate the
positions on the parameter plane at which three or four periodic
points are absorbed into the boundaries of mapping planes.
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From Figs. 10 and 11 we can now understand the gen-
eral behavior of the geometrical patterns appearing on the
surfaces of section in Figs. 8 and 9. Namely, in Fig. 10
we see that the apex of the triangle-shaped island inside
the separatrix is upward (Fig. 10a) or downward (Fig.
10b) according to whether the separatrix is below or above
line 2 (Fig. 11). This situation is actually observed in pic-
tures for §=0.26 and 0.31, for example, in Figs. 8.2 and

8.6 or in Figs. 8.6 and 8.8. The similar situation, in which

four periodic points are generated above line 3 (Fig. 11), is
also expected for the fourth-order resonance case, and is-
land patterns just after the occurrence of such a bifurca-
tion are, in fact, seen in Figs. 9.1, 9.7, and 9.8. It has been
known that for nonintegrable systems the stochastic layers
or homoclinic tangles centering around the hyperbolic
fixed points always exist along the separatrices, and, gen-
erally with increasing perturbation strength, these layers
develop gradually to form a large-scale or global chaotic
region by the resonance overlap. This means in Fig. 11
that the region with most developed chaos on both sides
of line 2 (we call the region the “third-order resonance
zone”) moves toward the left-hand side on the (5, E) plane,
in accordance with the leftward shift of the third-order
resonance point represented in Fig. 10.2. The fourth-
order case goes in much the same way. However, it is
noted in this case that there is no chaotic development on
the left-hand side of line 3 because, in the bifurcation
from Fig. 10.3 to Fig. 10c¢, four hyperbolic fixed points
turn out to be generated from the origin (the center of the
two crossed lines in Fig. 10.3), and its bifurcation mecha-
nism is thought to be the same as that of the one-
parameter quadratic map on the plane analyzed by
Henon.”’

From the above considerations we can also understand
quite naturally the reason for the reversion in island size,
i.e., the increase in island area with energy, observed from
Figs. 8.7 to 8.5. In particular, we see that Fig. 8.7
represents nothing other than the passage of the third-
order resonance point corresponding to Fig. 10.2. Since
Fig. 8.6 is closer to the resonance point lying on line 2
than Fig. 8.5, it is expected that Fig. 8.5 will have a larger
island than Fig. 8.6 However, it should also be noted that
the islands tend, generally with increasing energy, to be
gradually eroded under the influence of the surrounding
chaotic trajectories, and this is seen in almost all pictures
in Figs. 8 and 9 expect a few. Therefore, the case of Figs.
9.5 and 9.6 is thought to be a result of the balance be-
tween the increase and the erosion of the islands. Con-
cerning this, we point out that along these resonance
zones there is a general possibility of the occurrence of
such a reversion in island size, i.e., a kind of island oscilla-
tion with energy, and actually we observe such cases far
beyond the dissociation threshold at certain & values.?®

We now turn to the question raised in the preceding
section of why the minima in the 8—38 plots in Fig. 4 are
located around 8=0.31—0.33, shifted to the right from
the value of §=0.263. As stated in I, nearest-neighbor
level-spacing distributions now under study cover a fairly
wide range of energies extending from E=0.5to 1.0. Ac-
cordingly, it is obvious that there is no one-to-one
correspondence between a level-spacing distribution and a
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particular Poincaré map defined and drawn for a certian
fixed energy value. This implies that a level-spacing dis-
tribution constructed for a particular energy interval at a
particular 8 should be linked to the behavior of an aver-
aged pattern taken over all the Poincaré maps involved in
that energy interval. By making this correspondence, we
can satisfactorily explain the oscillatory pattern appearing
in Fig. 4. For example, by comparing pictures of Figs.
8.1—8.4 for 6=0.26 with those of Figs. 8.5—8.8 for
8=0.31, we see that the Brody parameters for §=0.31
should generally take larger values than those for §=0.26
since there still persist fairly large islands on the Poincaré
maps at lower energies (Figs. 8.3 and 8.4) for the latter &
value. For §=0.45 and, in part, for §=0.52, at which
there occurs no passage of the resonance zones, fairly
large islands persist up to higher energies. This naturally
contributes to the formation of the peak in the 8—38 plots
around §6=0.45—0.50. Similar arguments are applicable
to a lesser extent to the cases of the peak and valley found
at 6=0.65 and 0.57, respectively. Thus, we can see that
the location of the low-order resonance zone on the (§,E)
parameter space plays an essential role in generating glo-
bal chaos.

At this point we now consider how the above qualita-
tive argument about the classical-quantum correspon-
dence could further be quantified. This could, in princi-
ple, be achieved by finding (i) a method for taking a
unique average of the fractions of chaotic (or regular) re-
gions in Poincaré sections over a specified energy range,
and (ii) an analytical relationship between the parameter 3

and the averaged fraction of chaotic regions in Poincaré
sections. We believe that these two things could be car-
ried out at least for relatively small energy ranges over
which there are no drastic and complicated changes in the
fraction of chaotic regions. For the present system, how-
ever, as seen in Figs. 8 and 9, the fraction of chaotic or
regular regions in a Poincaré section changes rather wide-
ly over the energy range 0.5<E <1.0, in which only
about 350 energy levels are contained. Thus, at the mo-

-ment, the general pursuit of this problem is exceedingly

difficult.

Concerning this classical-quantum correspondence
problem, it is highly interesting to make some comparison
of the present result with those obtained by _use of the
Berry-Robnik distribution®* recently proposed for the
semiclassical limit:

2
Pp(z)=52—2{exp[(p—1)z]erfc(x/;pz/2)} : 21)

with
erfc(x):(Z/\/q_r)fxmexp( —t3)dt

where p is the fraction of the chaotic region on the Poin-
caré section at a given energy with a sufficiently small en-
ergy interval AE, and the variable z is the same as defined
in Eq. (17). Our interest here is to see what result is ob-
tained by reinterpreting the parameter p in Eq. (21) as an
effective fraction averaged over a specified energy range,
not as that of a particular energy.

6= 0.26 6 = 0.52

B = 0.92
30 1 p = 0.95} 301
(0.94)
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FIG. 12. Comparison of the Brody and Berry-Robnik distributions for g states in the energy range 0.6 < E < 1.0. The solid curves
represent Berry-Robnik distributions, whose parameters p are determined by the least-squares fit to the given histograms, and the dot-
ted curves are Brody distributions obtained by the same procedure from the corresponding histograms. The values of p indicated in
parentheses are those obtained directly from the Poincaré sections by taking an average of five different fractions of chaotic regions at

E=0.6,0.7,0.8, 0.9, and 1.0.
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Figure 12 shows a comparison of the Brody and Berry-
Robnik distribution curves for the same histograms as in
Fig. 7(a). The values of p for these distribution curves
have been determined by a nonlinear least-squares fit to
the given histograms in the figures. From these figures
we observe that for strong- or quasistrong-coupling cases
(6=0.26, 0.31, and 0.57) the three parameters—f3 and p
obtained from the Berry-Robnik distributions and the pa-
rameter p obtained directly from the Poincaré sections by
averaging the fractions of chaotic regions—give almost
the same values. However, as coupling is decreased these
parameters begin gradually to take their own values in-
dependently of each other. Of these three parameters, the
one showing the most rapid change with the variation of &
is B, and its sensitivity to the change in 8 is surely a favor-
able factor in using this as an indicator for measuring the
degree of mode coupling, while its distribution curve has a
sharper curvature around its maximum region than the
Berry-Robnik distribution, which is much broader in its
curve profile around the corresponding region. As is
shown in the value of p in Fig. 12, a remarkable feature of
the Berry-Robnik distribution is the large deviation of its
parameter p from that obtained by the averaging in re-
gions where & is small. In particular, at §=0.01, which
corresponds to a near-integrable case, the value p=0.51
obtained from the least-squares fit to the histogram makes
a striking contrast to the value p=0.04 obtained by the
average of five different fractions of chaotic regions at in-
dicated energies. It might be possible that this discrepan-
cy in the two p values in near-integrable regions is caused
by a quantum effect, i.e., an insufficiently small finite #,
but detailed analysis of this discrepancy remains to be
done. Thus, it has turned out that except for strong-
coupling regions we cannot give a simple interpretation to
the values of p from the Berry-Robnik distribution as an
averaged fraction of chaotic regions over the specified en-
ergy interval, although we can, of course, use it as an ad-
justable parameter for measuring the degree of chaos.

Finally in concluding this section, we note that, as also
stated in II, the changes in mapping behavior as a func-
tion of mass ratio 8§ is very close to that in the Henon
map, except for regions where & is small. This implies
that mass ratio performs a greater part of the role played
by the rotation angle in the Henon map, for certain energy
ranges.

V. SUMMARY AND CONCLUDING REMARKS

In this paper we have explored the relationship between
the degree of classical chaos and the behavior manifested
in the quantum level-spacing distributions and attempted
to quantify that relationship in terms of the Brody param-
eter characterizing the strength of the level repulsion. We
found a fairly good correspondence between the oscillato-
ry patterns in approximate fractions of chaotic regions on
Poincaré sections and those in the mass ratio dependence
of the Brody parameter. Furthermore, the origin of oscil-
latory patterns is investigated in some detail and it is elu-
cidated that low-order (namely, third- and fourth-order)

resonance zones shift very slowly toward smaller values of
8 as energy increases, i.e., they are slowly varying func-
tions of energy. Stated another way, they are almost in-
dependent of energy and this fact, in turn, ensures the
classical-quantum correspondence at approximately the
same 8 values despite the fact that there is no one-to-one
correspondence between a particular quantum energy
spectrum and a Poincaré map drawn at a particular fixed
energy. Another remarkable result obtained in this study
is that, throughout the strong-coupling region with mass
ratio §=0.3—0.35 the behavior of level-spacing distribu-
tions for the present model system is not distinguishable
from that of quantum level-spacing distributions for the
classical K system. This would quite reasonably be ex-
pected as a result of the quantum-mechanical coarse gran-
ing of phase space, as stated in Sec. III.

In the present study, the Brody parameter has been
shown to be quite convenient and useful in extracting a
greater part of the magnitude of mode coupling. Howev-
er, as mentioned at the end of Sec. II, the Brody distribu-
tion has been devised empirically to connect the Wigner
distribution with the Poisson distribution, and it should be
interpreted as a practical, effective distribution. Since, at
present, applications- of the Berry-Robnik distribution to
general cases with a wide energy range like the present one
are considered highly difficult,”* we will have to admit the
practical usefulness of the Brody distribution (and its pa-
rameter), as long as it turns out to incorporate a greater
and essential part of the mode coupling. In order to clari-
fy both the validity and the limitations of its applicability,
therefore, its application to a wider class of systems?® is
both desirable and necessary. Also, exploring a possible
numerical relationship between the Brody and Berry-
Robnik distributions for feasible cases would be useful.

Finally, it should also be noted that the Wigner (or
more precisely, Mehta-Gaudin) distribution is based on
the GOE. As is well known, the statistical independence
between the matrix elements, one of the two fundamental
assumptions in the GOE, is a postulate not based on a
physical principle or insight but on the necessity of
mathematical tractability, and the possible choice of the
weight function in the probability density is very wide.
Consequently, there remains the problem of exploring a
probability distribution function that more faithfully re-
flects the characteristics of the Hamiitonian of the sys-
tem, although it will be not an easy task to perform. It is,
of course, expected or highly likely that statistics calculat-
ed by the use of such a distribution as derived from physi-
cally well-founded constraints will give approximately the
same results as those from the GOE. Then, a statistic
based on the GOE will for the first time attain an estab-
lished position as a useful first approximation to the true
ensemble average derived from a physically more plausi-
ble ensemble.
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