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The percolation behavior of spherical particles with attractive interactions is studied with use of
Monte Carlo simulations. These systems differ from lattice Ising systems, which have been previ-
ously analyzed, in the necessity to define a shell parameter 8 to specify a connected cluster. For
small values of 8, correlations due to the attractive interactions drastically lower the percolation
threshold in the vicinity of the gas-liquid critical point. For larger values of 8, these shifts are
smaller, but the effects of long-range correlations show up as enhanced finite-size effects. The simu-
lation results are discussed in the light of recent experiments which measure the temperature and
concentration dependence of the conductivity in interacting microemulsions.

I. INTRODUCTION

The concept of a percolation transition is often used in
interpreting the conductivity of disordered systems.! In
systems with completely random distributions of particles,
the percolation transition signifies the existence of an in-
finite cluster which becomes more and more probable as
the volume fraction ¢ approaches its critical value ¢,. In
systems of interacting particles, it is not merely the in-
crease in concentration that determines whether the sys-
tem percolates. Interactions between the particles induce
positional correlations which can give rise to an infinite
cluster even when the concentration of particles is rela-
tively small.>—®

Recent measurements of the conductivity of
microemulsions (spherical dispersions of water in oil with
surfactant at the globule interface) have suggested the ex-
istence of a percolation threshold as a function of both
volume fraction’~? and temperature.” The microemulsion
systems differ from the hard-sphere mixtures in two im-
portant respects: (1) The surfactant-coated globules of
water in oil (radius ~75 A) are much bigger than the oil
molecules. The problem is not one of a mixture of con-
ducting and nonconducting spheres, but rather of percola-
tion of the globules in the continuum oil background. (At
low to moderate ~20% volume fractions, the globules are
spherical and quite monodispersed in some recently stud-
ied systems.!®) (2) Recent experimental’®!! and theoreti-
cal'? studies have shown that attractive interactions be-
tween the globules are crucial in understanding the phase
diagram and scattering data.

The experimental studies of these microemulsion sys-
tems’~® show percolation behavior at small (~7%)
volume fractions—much smaller than predicted by lat-
tice!®* theories.. In addition, recent experiments’ have
shown a sharp rise in the conductivity as the temperature
is changed and the system approaches a liquid-gas phase
transition.!>1*

Motivated by these results we have analyzed the per-
colation behavior of spherical particles with short-ranged
attractions using Monte Carlo (MC) simulations. Previ-
ous studies of attractive systems have focused on lattice
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(spin) models;>~* continuum models have only been stud-

ied in the hard-particle limit.> Some analysis of the prob-
lem of attracting spheres has been performed using cluster
expansions;® however, the approximations involved pre-
clude quantitative agreement with known simulation re-
sults even in the noninteracting limit. ’

The main difference between the continuum and lattice
studies of interacting systems lies in ambiguity in the defi-
nition of a connected cluster in the continuum case.
There are several ways to define off-lattice percolation
problems. (a) Percolation in a binary mixture of closely
packed spheres, where ¢, =0.16—0.18 in d =3.13® The
close packing provides a quasilattice for the conducting
spheres and it is not surprising that the lattice results nor-
malized by the close-packing volume fraction are
applicable.’®® (b) Percolation of a set of points where
connectedness of two points is determined by the existence
of a common face of the corresponding Voronoi polyhe-
dra. Here ¢, =0.15.3® =13 (c) Percolation of a random
set of points, where two points are considered connected if
the distance between them is smaller than some radius r.
Here ¢, =0.35 for d =3, where ¢=4mrin/3 and n is the
density of points.'*% (d) Percolation of hard spheres in a
continuum background where it is required that the
spheres touch in order to conduct. Percolation is expected
to occur near the close-packing volume fraction of 0.65.

Since none of these models is suitable for the colloidal
problem, we define percolation in the system of interact-
ing spheres as follows: The configurations of the system
belong to an equilibrium ensemble at temperature T and
volume fraction ¢=47R%n/3, where n=N/V is the
number density of spheres, N is the number of particles,
V is the total volume, and R is the hard-core radius. To
define connectedness we introduce the parameter §, where
6/2 is the width of a shell around each hard core. If two
shells overlap, the corresponding spheres are considered to
be connected and hence in the same cluster. This parame-
ter is not needed for the definition of interacting percola-
tion on a lattice since two occupied nearest-neighbor sites
are always in the same cluster. We study the percolation
properties of the system of spherical particles as a func-
tion of temperature (or interaction strength), volume frac-
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tion, and shell size. Depending on the ratio of the shell
size to the hard-core radius, the change in ¢, varies from
a factor of 4 down to changes of only 30%. For very
small shell sizes relative to the globule size, the effects of
. the interparticle attractions are large. At infinite tem-
perature, the system percolates only at very high volume
fractions, close to the random-close-packing density
(~65%). As the temperature is lowered!® and the phase
separation is approached, ¢, is drastically reduced. The
magnitude of this reduction depends on the shell size.
For small shells ¢, is reduced from ~65% to ~10%.
For larger shells, we find that the percolation threshold is
only slightly modified by the attractive interactions as the
critical point for phase separation is approached, although
the value of ¢, can be quite low. The modification in ¢,
is of the order of (30—40%) in the direction of lowering
¢, and is qualitatively the same as the results of the lat-
tice calculations* (e.g., for a cubic lattice, bp shifts from
31% to 22% as temperature T is lowered from infinity to
0.96T,).

Our results show that the discussion of a “universal”
percolation threshold of 15% for hard spheres”® and used
in the analysis of microemulsion conductivity is not
meaningful. The observed experimental values for the ¢,
depend on the “shell” through which conduction occurs
as well as on the magnitude of the attractive interactions.
The size of the shell can be estimated from our simula-
tions as discussed in Sec. IV, while the range and magni-
tude of the attractive interactions can be determined from
thermodynamic or scattering measurements (see Ref. 10).

The organization of this paper is as follows. In Sec. II
we discuss the model and the method used in our MC
simulation. The results of these simulations are presented
in Sec. III which shows the change in the percolation
threshold as a function of volume fraction, temperature,
and shell size. A summary and discussion follow in Sec.
Iv.

II. MODEL AND SIMULATION

The MC simulations model a system of spherical parti-
cles with a hard-core diameter, which we take to be 1.
The attractive interaction is modeled as a square well of
width A (relative to the hard-core diameter), so that the
interaction potential ¥ (r) is given by

o forr<l,

V(ir)=
—ekT for 1<r<l1+A,

(1

where r is the interparticle separation. Standard Metropo-
1is!%16 algorithms were used for systems of 108, 500, and
2048 particles in a cubic box with periodic boundary con-
ditions. A table of interacting neighbors was constructed
every 10 MC steps to facilitate the calculation. For small
values of A and for temperatures near the critical point,
20000 MC steps per particle were used to equilibrate the
system and an additional 20000 MC steps per particle
were run for the cluster calculations. Typical runs for
larger values of A~0.1 used 4000—10000 MC steps per
particle.

The model with short-range attractions is motivated by
recent results'” on microemulsions which show that the
neutron-scattering structure factor can be fit with a2 model
of square-well attractions with a short range (3 A) com-
pared to the globule diameter (typically ~60 A). The
physical origin of this extremely short-ranged interaction
is the overlapping of the surfactant tails which protrude
from the globules. The interaction range is limited due to
steric effects.!®!! In Ref. 10 it was shown that the in-
teraction strength € increases linearly with the globule ra-
dius and is sufficient to cause the liquid-gas phase separa-
tion observed in these systems. A mean-field calculation!?
(which keeps high-order terms in the hard-core interac-
tions) shows that the critical volume fraction for phase
separation ¢, =0.13, while the critical value of ¢, defined
by €., is determined by

[(14+AP—1)(e —1) =2 . 2)

The mean-field results are probably an underestimate of
€. due to fluctuations which destabilize the system.

It is difficult to locate the coexistence curve accurately
with the small systems used in our simulations. To check
the mean-field prediction of ¢.=0.13, we computed the
rms potential-energy fluctuations as a function of ¢. Fig-
ure 1 shows the relative potential-energy fluctuations as a
function of volume fraction for A=0.1, e=2 (¢,=2.4 in
mean field) for a 500 particle simulation of 10000 MC
steps per particle. The largest relative fluctuations are
seen to occur in the region of 13% indicating the approxi-
mate applicability of the mean-field result. In Fig. 2 we
present an analysis of the density fluctuations in our sys-
tem as a function of volume fraction for A=0.1 and
€=2.1. The density fluctuations are studied by dividing
the cubic system into either 8 or 27 smaller cubes.!” His-
tograms of the population of each of the smaller cubes
were obtained throughout the runs; a single peak in these
histograms indicates a .one-phase system, while a
multiple-peaked structure indicates a phase separated one.
The runs with volume fractions of 14% showed large
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FIG. 1. Relative potential-energy fluctuation; V is the aver-
age potential energy per particle and AV is the rms fluctuation.
The relative energy fluctuation is plotted as a function of the
volume fraction ¢ for a square-well interaction with range
A=0.1 and for a depth e=2. The simulations were performed
on a system of 500 particles and data were averaged over 10000
MC steps per particle.
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FIG. 2. Histograms of the average number of particles in each of 27 boxes for a 500-particle system for A=0.1 and €=2.1. The
histograms are shown for volume fractions ranging from 6% to 27% and are indicative of the density fluctuations in the system.

variations in the rms fluctuations, indicating that ¢, is in
this neighborhood. These results are in agreement with an
early calculation of Baxter'® using Percus-Yevick theory
and the compressibility equation of state. The existence
of ¢, in the vicinity of ¢=0.15 is in disagreement with a
later calculation of the coexistence curve by Watts et al.'®
using the energy equation of state; their estimate of
¢, =30% is outside the range of error of our simulations.
The MC simulations yield the positions of all the in-
teracting particles at every time step. To study the per-
colation transition which occurs when an infinite (system
size) cluster is first formed, one must first have a precise
definition of the cluster. For lattice problems, two nearest
neighbors are always in contact so that the cluster defini-
tion is straightforward. In a continuum, one must specify
the interparticle spacing at which two globules are con-
sidered to be in the same cluster. In our simulations, we
have specified a shell parameter & which is the size of a
spherical shell around the hard-core diameter. Two parti-
cles are considered to be in a cluster when their centers are
separated by a distance less than 1 + & (8 is in units of the
particle diameter). The physical origin of this shell must
be considered in light of the conductivity mechanism for
each specific case. In the present work, we take 6 as a pa-
rameter and study its role in the percolation threshold.
The actual percolation calculation is performed every
50—100 MC steps per particle. The percolation behavior
is examined by a search for a cluster of particles which

connects any pair of opposite faces of the box. The per-
colation probability P is the fraction of configurations
tested where such a cluster has been found. We compute
P as a function of well depth €, volume fraction ¢, and
shell size 8. Note that in the limit of an infinite system,
the percolation probability should be 1 above ¢, and O
below. The deviation from this behavior, evident in our
simulations (see Figs. 3—8 below), reflects the fluctuations
due to the finite size of our system. The percolation
threshold is determined from the value of ¢ where P =+
or from the maximum slope of P versus ¢.

III. PERCOLATION THRESHOLD

In this section we present the results of the MC simula-
tions and of the percolation analysis. The percolation
probability is shown as a function of the shell §, well
depth €, and volume fraction.

For small values of €, where interactions can be neglect-
ed, the percolation probability is a function of both § and
the volume fraction ¢. This is shown in Fig. 3, where the
percolation probability P is plotted as a function of & for
values of 0.05<¢<0.20. As expected, the percolation
threshold (defined by the point of maximum slope) de-
creases as ¢ is increased. A comparison of these plots and
actual experimental data in a region far from the critical
point will yield an appropriate value of §.

A more compact representation of the data for the
noninteracting system is shown in Fig. 4 where P is plot-
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FIG. 3. Percolation probability P as a function of the shell &
for various values of the volume fraction. These results are for
a 500-particle system with no attractive interactions (e =0).

ted as a function of the scaled variable ¢ =¢(148)>. The
parameter ¢ is proportional to the effective volume frac-
tion including the shell. For small values of the hard-core
volume fraction ¢, the curves for different ¢ all scale and
show a percolation threshold $p =0.35. This effect is
even seen in the 108 particle system, but is of course
sharpest for the 2048 particle simulation. This value for
é, is in agreement with the results for continuum percola-
tion where overlap is allowed;*® for small values of ¢,
most of the effective volume is occupied by the shell so

that the hard-core effects are negligible. We have also .

verified that for small values of the shell (§=0.01), the
percolation threshold in the noninteracting limit is close
to the random-close-packing density ¢=0.65. Although
equilibration is difficult at such high densities, we have
seen no percolation in samples of ¢ <0.50 with §=0.01.
As the interactions are increased, the percolation
threshold is lowered. This is shown in Figs. 5 and 6
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FIG. 4. Percolation probability P as a function of the scaled
volume fraction for the system described in Fig. 3. The scaled
volume fraction §=¢(1+8)°. Note that the scaling breaks
down as the hard-core volume fraction increases and the limit of
overlapping spheres becomes less relevant.
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FIG. 5. Percolation probability P plotted as a function of the
shell parameter & for various values of €. The simulations were
performed on 2048 particles and averaged over 4000 MC steps
per particle. The attraction range A=0.1 and the volume frac-
tion ¢ =0.1.

where P is plotted as a function of & and ¢, respectively,
for A=0.1. The simulations were run on 500-particle sys-
tems for various values of € up to e=¢€.. For relatively
large values of § (e.g., §~0.5), the decrease in the percola-
tion threshold ¢, is of the order of (30—50)%, similar to
the results in lattice systems.2~* We note that in contrast
to the curves for P for small €, the plots of P versus 8 and
¢ are not nearly as sharp. This indicates the increased
sensitivity to finite-size effects due to critical-type fluctua-
tions; the unit of length is now the correlation length and
not the globule size. Our system (with a fixed number of
particles, e.g., 500) is now effectively smaller and finite-
size smearing of ¢, is more pronounced.

In contrast to the relatively small changes in ¢, ob-
served for large values of 8, the effects for small values of
8 (e.g., 8~0.01) are more pronounced; ¢, is decreased
from the neighborhood of the random-close-packing den-
sity, to values near the critical density. This is shown in
Fig. 7 where P is plotted as a function of ¢ for values of
6=0.01, A=0.01 and interaction strengths €e=4.2 and 3.3
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FIG. 6. Percolation probability P as a function of volume
fraction ¢ for A=0.1 and e=2.1. P is shown for various values
of the shell parameter 8. The simulations were run on 500-
particle systems and averaged over 60000 MC steps per particle.
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FIG. 7. Percolation probability P as a function of the volume
fraction ¢ for a very short-range interaction A=0.01 and a shell
parameter §=0.01. The values of € are 4.17 and 3.33 (the criti-
cal value of € is 4.46 in mean-field theory). For e=0, the system
did not show any percolation for ¢ <0.50 and the random-
close-packed value of ¢ =0.65 is shown.

(the mean-field value of €, =4.47). Since we lose sensitivi-
ty to the interactions when 8 <A, we must reduce A to
study the effects of small 8. We note that ¢, has shifted
from ~65% to ~14%. The largest jump in P is in this
neighborhood with a much more gradual increase as ¢ is
further increased, signifying the role of ¢, for phase
separation. The increased correlation length in the neigh-
borhood of the critical point renormalizes the percolation
problem to a percolation of correlated regions or blobs
mean size £(e,¢). These regions are both anisotropic?®?!
and fractal and one would expect their percolation thresh-
old to be lower than that of compact spheres. The per-
colation threshold ¢, is then determined by the condition
that n,&%e,¢)=c where ny, is the number density of blobs
and c is a constant of order unity.

Taking into account the fractal dimensionality of these
regions near the critical point where the fractal dimension
D =d — /v, we find the self-consistent relation for ¢,,

$p=cléle,8,)177.

Another mechanism which tends to lower the percolation
threshold is the anisotropy of the correlated regions. The
critical volume fraction for percolation of elongated ob-
jects?® is lower than that of spherical ones. This mecha-
nism is probably responsible for the initial decrease of ¢,
when e is still far from €,. It is interesting that in Fig. 6
we see that even for A=0.1, for small §=0.1, the percola-
tion threshold is reduced to near ¢, as well; the critical
volume fraction may represent a lower limit to ¢, for
small values of 8.

IV. SUMMARY

We have studied the percolation behavior of colloidal
particles with attractive interactions. In contrast to the
lattice systems, an additional parameter, the shell size §, is
necessary to define percolation in these continuum sys-
tems. Using Monte Carlo simulations we have calculated
the percolation probability as a function of shell size,
volume fraction, and well depth for spherical particles in-
teracting with a square-well potential. For e=0 (i.e., only

hard-core repulsions), we find that we can define an effec-
tive volume fraction #=¢(1+8)>. For small values of ¢,
the percolation threshold is given by ¢=0.35, consistent
with known results for continuum percolation.

These results demonstrate the ambiguity of the value of
#, in continuum systems. The commonly referred to”8
value of 15% for hard-sphere percolation used in the
analysis of microemulsion data is irrelevant. The ob-
served threshold is due to (i) a shell of §=0.4 if the attrac-
tive interactions are neglected and/or (ii) clustering due to
attractions. In either case, the value of ¢,=0.15 should
vary as the surfactant properties are changed (and the
shell size increased or decreased) or as the size of the
globule or temperature (which determine the strength of
the attractions'?) is changed. :

At finite values of € <€, for phase separation, we find
that the percolation threshold shifts to smaller values of ¢
for a given 8 or to smaller values of & for a given value of
¢. We associate this with the formation of correlated
clusters in the interacting system. These clusters are both
anisotropic and fractal-like, and their percolation thresh-
olds should be lower than that of spheres.?! For small
values of & and A, the effects of these correlations are
large; ¢ is reduced from ¢ for random close packing (at
€=0) to ¢ on the order of ¢, (=~13%) for phase separa-
tion. It is at ¢, that the correlations in the system are the
strongest and the percolation threshold is reduced to near
this value. The results are summarized in Fig. 8 where we
schematically show the reduction of the percolation
threshold as a function of temperature for short-ranged
interactions (A <<1). For 1>8> A, the system percolates
at a relatively small value of ¢ even for €=0, so that in-
creasing € has only a nominal effect on reducing ¢,, al-
though the value of ¢, can be arbitrarily small for large

1>3»A

1/e,
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FIG. 8. Schematic plot of the change in the percolation
threshold as a function of € for short-ranged interactions, A << 1
for values of the shell § both much larger and comparable to A.
The coexistence curve is derived from a mean-field theory (Ref.
12). The well depth is € and the volume fraction is ¢.
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8. On the other hand, for §=A << 1, the effect of increas-
ing € is much larger as discussed above. These simula-
tions suggest that the critical volume for phase separation
may be a lower limit for the percolation threshold for sys-
tems with very thin shells, 6 small.

The applicability of these results to experimental sys-
tems depends on the physics of the conduction mecha-
nism and the existence of a static shell parameter 8. Far
away from the critical point, the value of & can be deter-
mined by comparing the percolation threshold with Fig.
4. Assuming constant 8, the reduction of the percolation
threshold near the critical point can be predicted from
Fig. 6 and compared with experiment. Our theoretical re-
sults qualitatively explain the observed® reduction of &, as
the temperature approaches the critical temperature for
phase-separation (see Ref. 15 for an important note) tran-
sition.

Previous scaling arguments’ have indicated that while
the critical exponents for “stirred percolation”’ (i.e., per-
colation in a diffusing system) are modified, the percola-
tion threshold retains its static value. In the present simu-
lations, the dynamics was taken into account only in
terms of an ensemble average being performed by a time
average of the system as it evolved in equilibrium. Future
reports®? will present simulation results which properly
calculate the exponents and thresholds for the stirred case.
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