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does not explain a single quantitative detail. In fact, as a
class, the closed-shell atoms (Z =2, 10, 18, 36, 54, 86, and
118) do not reside on prominent sites of the HF curve, as
shown in Fig. 2. Strongly pronounced shell effects do ex-
ist in Coulombic potentials where all electrons of a Bohr
shell have identical binding energies. As Fig. 2 of II
shows, in this situation the binding-energy oscillations are
of the order Z with sharp minima and broad maxima,
and the Z values of closed-shell atoms are given by the lo-
cation of the maxima. In real atoms the closing of a shell
is a less dramatic event because energetic degeneracy does
not mean identical but merely approximately equal bind-
ing energies. Therefore, the filling of shells in real atoms
is a mnch gentler process. As we see in Fig. 2, this has
mainly two consequences: The amplitude of the energy
oscillations is of the order Z, not Z; and, while the
closed-shell atoms do show a tendency toward the maxi-
ma and away from the minima, their Z values are no
longer predictable by looking at the plot of the binding-
energy oscillations.

EXPERIMENTAL EVIDENCE

Experimental knowledge of total atomic binding ener-
gies stems from spectroscopic data, the analysis of which
supplies step-by-step ionization energies. Unfortunately,
this has produced binding energies only up to Z =20.
For more massive atoms, the ionization potentials after
the first 20 electrons are rarely known. In short, we can
compare E„,„of (1) with reality only for the first 20
members of the Periodic Table. This is done in Fig. 3,

where E„,denotes the additive supplement of E„„,

Estat +Eosc

—AE ) (4~ 1()
—6)Z19/6

Z 4/3 (3)

This figure displays, besides the experimental data, also
the nonrelativistic HF oscillations of Fig. 2 and, for
Z &31, the results of HF calculations with relativistic
corrections. Please observe two things. First, the experi-
mental values do confirm the existence of binding-energy
oscillations. Second, there is, on this scale, a significant
discrepancy between experiment and the HF values, even
after including relativistic effects. This is a reminder that
the HF model is not exact; it is an approximation, just as
the TF model is. However, the general trend of the exper-
imental crosses is quite well reproduced by the relativistic
HF results, so that we can be sure that the oscillations in
question are of nonrelativistic origin. It is therefore ap-
propriate to compare the outcome of our nonrelativistic
calculation with the HF oscillations of Fig. 2.

For large values of Z, the relativistic corrections are,
evidently, more important than the nonrelativistic oscilla-
tions that we are addressing in this paper. There have
been attempts to evaluate the relativistic supplement to
Eq. (1),' none of which has been really satisfactory, so
far. We shall return to this subject elsewhere and want to
remark now only that the simple estimate"
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accounts rather well for the relativistic corrections to the
HF values in Fig. 3. Since this figure may create the
wrong impression that relativistic effects dominate at
large values of Z, we note that even in uranium the rela-
tivistic correction amounts to less than 10% of the total
binding energy. " According to Scott," a rule of thumb
says that "the error in the total binding energy resulting
from neglecting relativity is roughly (Z/30) %."

For small values of Z, the discrepancy between experi-
ment and the HF values cannot be attributed to relativis-
tic corrections. Instead, we see here the limitations of the
average potential approach. It does not include electron
correlations, which are generally, and quite correctly,
made responsible for the difference between E,„~ and EHF
in Fig. 3. On the other hand, the finite mass of the nu-
cleus does not cause any significant correction to the bind-
ing energy, except for hydrogen where the effect is rela-
tively largest, about one-twentieth of a percent. For
Z =20, calcium, its relative size is smaller than that by
roughly a factor of 200. '

-0.04'

2 5
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FIG. 3. Binding-energy oscillations. Stars are experimental
values for Z =1, . . . , 20. Curve a shows the nonrelativistic HF
oscillation of Fig. 2. Curve b connects HF values with relativis-
tic corrections.

PERTURBATIVE APPROACH

According to I, the nonrelativistic energy of an atom
with nuclear charge Z and % electrons is given by

where
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ETF ——f (dr) — [—2(V+/)] ~

15m.

gN——f (dr) V V+— (5)

The quantum correction to the TF energy is, in the
Fourier formulation of I,

4 g ( 1)k+j
k,j=—oo

dA, Xe2mkA,
0

V e 2"'~v
0

(6)

4 g ( 1)k+j dgge2nikA,
qu

kj = —oo

Note that the sum over k,j is primed in order to indicate
the deletion of the j = k =0 term, which is already
present in (4) as the first term on the right-hand side.

The energy of Eqs. (4)—(6) does not include exchange
effects, which were partly responsible for the last term in
Eq. (1). Consequently, neutral atom binding energies de-
rived from this energy functional do not possess the
correct Z term. Nevertheless, the leading oscillatory
term, the one we are interested in now, will be given
correctly, because energy oscillations that grow out of ex-
change are expected to be smaller by a factor Z
( =Z /Z ) compared to the oscillations produced by
direct electrostatic interaction.

For given Z and N, the energy of Eq. (4) is stationary
for the correct potential V and the correct value of g [cf.
Eq. (9) of I]. Also, ETF alone has a stationary property; it
is optimized, for neutral atoms (Z =N), by the TF poten-
tial VrF and /=0. ' Now recall the observation of I that,
with this g and V, the leading oscillation in Eq„ is rela-
tively small at sufficiently large Z. All this means that
we are justified in evaluating E„, perturbatively by sim-
ply inserting /=0 and V = VTF into (6). In other words,
we are going to extract E„,out of

0
Eq„——— z Xq„c. (9)

[cf. Eqs. (29) and (32) of I]. In Eq. (8), v, (k) denotes the
lines of degeneracy belonging to the TF potential, defined
in Eq. (58) of I and plotted in Fig. 1 of I.

Here then is an outline of the following sections. First,
we study the consequences of the quantization of angular
motion only and exhibit its leading contribution to E„,.
Whereas this can be achieved without any additional ap-
proximation, technical complications force us to introduce
a suitable approximate treatment, as soon as radial quanti-
zation is included. We supply strong evidence in favor of
the chosen approximation by demonstrating that it is
good enough to produce both the leading and the next-to-
leading contributions to E„, from angular quantization.
Then we proceed to apply it to the evaluation of the ef-
fects of radial quantization. We find three different types
of oscillations, which are then investigated separately. Fi-
nally, our semiclassical result is compared to the HF pre-
diction in Fig. 12. The differences are accounted for in
the discussion section.

I-QUANTIZED THOMAS-FERMI MODEL

We start our survey of Nq„(E) and Eq„with a look at
the j=0 terms in the sums of Eqs. (7) and (8). These
terms make no reference to the 6 function that initially
enforced integral values for n„=v——, [see Eq. (25) of I].
Consequently, they give the result of improving the TF
model by quantization of angular motion only, without
having radial motion also quantized. We call this the l-
quantized Thomas-Fermi ( 1TF) model. '

Equation (8) is here reduced to
oo A,

[Nq„(e)]ITF——8 g ( —1)"f dA, Av, (A, )cos(2~kA, ) .
k=1

(10)

After inserting v, (X) from Eq. (24) of I, and changing the
order of integration,

oo ]
[Nq. (E)]nF=8 g ( —1)'—

k=1 7T

A, (r)
X f dr f Ad, A[r2—(e V), —

X d 2~IJv
0

(7)

with ek related to the TF potential via Eq. (24) of I. As
in I and II, we shall prefer to first compute

oo

(e) 4 y' ( 1)k+1 'dg ge2nikA,
0kj =—oo

X cos(2~k A, ) . (11)

0& A, & [2r'(E —V)]'~'=A, ,(r) . (12)

We note that, for given r, the A, integration covers the
range

2mij v (, A, )
e

X
27TlJ

which then produces Eq„ through integration,

(8)
Upon substI[tuting

A, =A,,(r) cos8,

Eq. (11) turns into

(13)
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oo w/2
[&q„(E)]ITF=8g ( —1)"f dr —[I(,,(r)] —f dHcosH sin Hcos[2vrkl, ,(r) cosH] (14)

The definition of A,,(r) in (12) implies

(15)

which is used in recognizing the identity

[A,,(r)] cosH sin H cos[2lrkA, ,(r) cosH]

2 [A,,(r)] cosH sin H cos[2vrkl. ,(r) cosH] + —,
'

[A,,lr)] [cos H sin H cos[2lrkl, ,(r) cosH] I . (16)
dc 3p dO

Since the last term does not contribute to the H integration in (14), the E integration of (9) is now immediate, resulting
in"

m/2

(Eq„)ITF — ——g ( —1) f dr
3 [I(p(r)] f dH cosH sin H cos[2~klo(r) cosH] .

k=1
(17)

The outcomes of the H integrations in (14) and (17) can
be expressed in terms of Struve functions' (which are
close relatives of Bessel functions). For example,

m/2f d H cosH sin H cos[2vrkkp(r) cosH]

1 ( —1) ~o
3 k5/2k=1 rp

2p
&& f dr sin 2lrkI(p ——,~k (r —rp) +-

A,p 4

1

5

2
3 1

H3(2~k A.p(r) ) .
Slr kI(,p r

(18)
aa

( 1)k=V 2 3 g sin(2nkk, p) . (22)
r o3~o k = l (~k)3

The detailed information contained in (17) and (18) is of
no interest to us here; what we want to know is the lead-
ing oscillatory contribution of (Eq„)ITF for Z sufficiently
large that our perturbative evaluation is justified. Recall
that the scaling properties of VTF cause A.Q to be propor-
tional to Z'~ (see paper I). The same holds for kp(r).
We are, therefore, going to use the asymptotic form of
H3,

In anticipation of the sequel we introduce for any c.

[cf. Eq. (42) of I] and, as in II,

(23)

(24)

H3(z) —V 2/(lrz) sin z +—+ z +—+ .
, ( 19)

2 2 1

4 15m

in (18), and then (17), in order to establish the large-Z ver-
sion of Eq. (17):

(Eq„)ITF= 3 g ~~2 f dr
3 [Ao(r)]3

/
5/2 Q 3

&& sin 2~kko(r)+—

(20)

The last step in finding the leading lTF oscillation is the
stationary phase evaluation of the radial integration. Ac-
cording to Eq. (38) of I, kp(r) has a maximum at r =rp,
around which

[cf. Eq. (37) of I], so that the ITF contribution to E„, is
expressed by

pvp aa
( 1)k

( —E„,)ITF
—— . g sin(2~kA, p)+ .

(~k)
(25)

the ellipsis is a reminder of the omitted oscillatory terms,
which have amplitudes that are smaller than the displayed
leading one, by powers of Z'

We recognize the sum over k in (25) to be of the type
listed in (29) of II. This, and use of the numbers reported
in (61) of I, which we supplement with

2

kp = =3.739 20Z (26)
AQ

produces finally

2
Ct)p

A,p(r):—A.p
—— (r —rp )

4 A.Q

Consequently, the leading contribution to E„, from
(E „)ITF is

where

X =0.927 992Z'/

=0.320594(k,p)( —, —(A,p) )+ .
1TF

(27)

(28)
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to be of lesser order in Z'
When introducing the approximation (29), we were not

specific about v,". Evidently, inasmuch as (29) is the be-
ginning of a power series in A,,—A, , we have

II
V~ =—82

v, (A, )
BA

(33)

which we need for c, =0. This second derivative has been
worked out in the Appendix of I, with the result

ovo =0.193647 (34)

However, Eq. (29) is not a power series in A,,—A, ; it
stops at the quadratic term. We are therefore well advised
to not use v,

" of (33) since it could lead to a poor approxi-
mation for A, not close to A, Two basic properties of
v, (A, ) offer themselves for providing a suitable value for
vo'. One is the TF number count, Eq. (33) of I,

Al o
Z =XTF(s=O) =4 J dA, Avo(A, ) . (35)

For vo(A, ) of (29) this means

=4(v', ) —1, (41)

so that, for the TF potential,
~ ~

p~p
=4(vo) —1=14.0184 .

k p

(42)

v, (A, ) be such that it reproduces the leading TF term of
%(E)=XrF(e)+Xq„(e) correctly'? Yes, in principle, but
one adjustable parameter cannot do all these things. We
have to make a choice, and we opt for the upper value in
(40) when including radial quantization in the following
sections. Here, for the /TF model only, (34) is the most
natural value, but the other choices would not produce
significant changes (see below).

For the numerical evaluation of the amplitude of the
next-to-leading lTF oscillation in (32) we need A, o and vo
for the TF potential. Differentiation of Eq. (72) of II,
combined with both Eq. (40) of I and Eq. (23), produces
immediately

2 3 I 1 4Z Tkovp —
6 A pvp (36)

Equations (75) and (76) of II can be slightly rewritten in
the forms

or

A,pvp' =4vp —6Z /A, p =0.242 8 10 (37)
=1—2(v', ) ——,

'
(v,') co, (43)

The other one is the initial slope, for which we write and

'v, —:— v, (A, )
a

A, =p (38)
co, =2

~ 3+r, —
2 [r, V(r, )]—(v', )

a notation that is to be contrasted with that of (23). Ac-
cording to Eq. (49) of I, 'v, equals unity for e &0, while it
is —', for E=O for the TF potential. This property of the
TF potential, however, can hardly be taken seriously,
since it refers to the unrealistically slow decrease of the
potential at large distances. Any realistic potential has
Vp= 1.

Inserting (29) into (38) produces

(44)

1 d2
2 ( r V) = — ( —2 V) ~

r dr
(45)

If we now employ the differential equation obeyed by the
TF potential,

thus

I g 1I
V~ =V~ —A, ~V~ (39) and utilize the defining equation of r, [Eq. (35) of I], then

(44) appears as

II I
A,pVo =Vp —Vo= '

0.937 68 for 'vp ——1,
0 43768 for vo= 2

(40)

4 dE, 77

Thus for c.=0, '

(46)

So we have a choice of three (or even four) values for
vo'. Which one to use? As far as the /TF model is con-
cerned, one can easily imagine continuing the power series
that begins in (29), and certainly the vo' of (34) would then
produce the correct amplitude of the next-to-leading ITF
oscillation. However, as soon as radial quantization is in-
cluded, imagination will not do. We have to stick to (29)
as it stands in order to be able to handle the calculation
technically. This will become clearer in the next section.
There we shall also see that an important role is played by
the slopes vp and 'vo—we had better have their values
right. This chooses vo' of (40) where the physical option is
for 'vp ——1. Fine, but should not the approximation for

1 d
4 dc

= —(vo) (47)

which inserted into Eq. (40) produces
~ p

= [(vo) —1] =7.587 81 .
kovp

The last ingredient in writing (32) analogously to (27) is

cos(2mkAO) =—„——,( —, —(Ao) )
1 1 1

tr
(49)

which supplements (29) of II. Here, then, are the two
leading lTF energy oscillations:
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=0.320594(A,p)( —, —(A,p) )
lTF

0,06

+0.287 660Z 0.04

(50) 0.02

I

The numerical factor of the next-to-leading oscillation
here goes with the natural lTF choice for vp', Eq. (34).
The other values of vp' in Eqs. (37) and (40) would replace
this number by 0.285 469, 0.254497, or 0.276783, respec-
tively.

Figure 5 demonstrates that, as anticipated at the end of
the preceding section, the next-to-leading ITF oscillation
constitutes a small correction to the leading one. The sum
of both has the overall characteristics of the leading /TF
oscillation [see the paragraph following Eq. (28)], the
main difference appearing at Z' '&2. It is reassuring
that (50) is somewhat better in this range than is (27). (In-
cidentally, the use of the other values of vp' would not
cause a visible change in Fig. 5.)

So much about the lTF model, i.e., the j =0 terms in
the sums of Eqs. (7) and (8). It is time now to turn to the

—0.02

-0,04
1

Z
1/3

FIG. 5. Next-to-leading t'TF oscillation (curve a) and leading
plus next-to-leading lTF oscillation (curve b), compared to HF
oscillation (curve c).

j&0 contributions. For these, the arguments that led to
(17) [and then (20), etc.] cannot be repeated. We shall,
therefore, right from the start introduce the approxima-
tion for v, (A, ) given in Eq. (29).

FRESNEL INTEGRALS

The —1 that comes with e xp[2mij v(A.)] in E, q. (8) does not contribute to the j&0 sum because what is summed over is
odd in j. Consequently, we have

oo
( 1)k+j

[&q„(s)]jap=4 g g . . J dk k expI2rI'i [kA, +jv (A, )] I
j(+0) k = —oo

oo oo
( 1 )k +j

=4Re g g . . f dl, k, exp[2vri [kA+jv, (A)]j
j=i k= —~

(51)

The last form has the advantage that, after inserting v, (A, )

from (29), the term quadratic in A, in the exponent has a
definite sign. With this v, (A, ), the combination
kA, +jv (A, ) has a maximum at X=A, given by

&=&,+ „(k—jv', )=, [k —j(v,' —k,v,")] .
J&c J&c.

(52)

Here and in the sequel we leave the dependence of A, on s,
j, and k implicit.

In the last version of (52) we recognize 'v, of (39), so
that A, and A, —A,, are related to 'v, and v,', respectively, in
an identical manner:

within the range covered by the A, integration only if

j v, (k&jv, . (54)

j &k &1.93768j (55)

Consequently, for such j and k the value of the A, integral
in (51) is expected to be large. Here we see the importance
of using an approximation for v, (A, ) which possesses the
correct slopes at both ends, as we anticipated in the
preceding section when opting for vp' of Eq. (40). As
mentioned there, the physically preferable value for 'vp is

unity, so that, for v =0,

(53)

The significance of these equations consists in their in-
forming us that A, , the point of stationary phase, lies

is the range of k for which 0 & A & kp.
After utilizing A, in writing

kA, +jv, (A) =kA, +jv, (A) ——,jv,"(A,—k)

= kA, ,+ —,
' jv,"(A,,—A, ) ——,

' jv,"(A,—A, )

Eq. (51) becomes

(56)
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oo ao
( 1)k+j

[Nq„(E)]j~o——4 Re
'lT'lJ

expI2~i[kk, + —,
' jv,"(A,,—A, ) ]] I di, k, exp[ —~ijv,"(A,—X) ] (57)

The weight factor A, in the integral can be equivalently replaced by

1 a
2&lJVE

which allows an immediate partial integration. At this stage we have

(58)

( 1)k+j exp[2vrijv, (0)] ex—p(2mikA, , )
[Nqu(s)]j~o=4 Re

27TlJV~

+Re px[2~i [kX.+jv, (X)]I J dXexp[ mi—jv,"(AX,)—] (59)

The remaining integral is of Fresnel type. Its standard
form is' f(z)- 1 3 +. . . for z»1,

~z m'z'

E(z)= f dtexp( ——,nit )=C(z) —iS(z), (60)

where the letters E, C, and 8 refer to the exponential, the
cosine, and the sine functions that are integrated. C(z)
and S(z) are, of course, real functions. The oscillatory na-
ture of E(z) is made explicit in writing, for z & 0,

E(z) = —,
' (1 i) +i—h (z) exp( —, vriz ),— (61)

where the slowly varying function h (z) obeys the differen-
tial equation

h'(z) = h (z) =vrizh (z) —i
d

dZ

1 15
g (z) — — + . for z »1 .~'z' ~4Z'

(65)

The leading asymptotic terms represent highly accurate
approximations already for relatively small z. This is
demonstrated both in Table I and in Fig. 6, which also il-
lustrates our statement that h (z) [i.e., f (z) and g(z)] is a
slowly varying function compared to the exponential in
(61).

As defined in (60), E(z) is an odd function of z. There-
fore, jf we take h (z) to be an odd function,

and is subject to h(z &0)—:—h( —z), (66)

h(0)= —,'(1+i) . (63)

In terms of the real and the imaginary parts of h (z) these
two equations are expressed by

which is consistent with (62) (for z&0), the extension of
(61) to include negative values of z then reads

It (z) =f(z)+ig(z),

f'(z) = —~zg (z), g'(z) =rrzf (z) —1,
f (0)=g(0) = —, .

(64)

0.8

E(z) = + —,
' (1—i) + ih (z) exp( ——,

' viz ), (67)

The asymptotic expansion of f(z) and g(z) can be ob-
tained either by repeated partial integrations in (60) or,
equivalently, by iterating (62). The outcome is

0.4

TABLE I. Deviation of leading asymptotic forms from f (z)
and g (z) = f '(z) /~z. —

0.2

1

2
3

5
6

Deviation from f (z) (%)

13.7
1.64
0.36
0.12
0.05
0.02

Deviation from g(z) (%)

64. 1

7.82
1.78
0.58
0.24
0.12

0
0

FIG. 6. Fresnel integrals C(z) and S(z); auxiliary functions
f (z) and g (z) together with their leading asymptotic forms.
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where the lower sign applies for z &0. Note that h (z) is
discontinuous at z =0, where (62) does not apply. Of
course, E(z) itself is perfectly continuous.

For the evaluation of the integral in (59) we introduce
E(z) through the identity

exp[ r—rijv,"(A, A—, ) j= E(V 2jv,"(A —A)) .
V'2jv" dA,

(68)

This results in

( 1)k+j exp[2rtijv, (0)]—exp(2mikA, , )
[Nq„(s)] j~o=4Re g g ' ' '+ exPt2~i[kX+jv, (X)]I

7TlJ 27TlJVq V'2jv,"

X [E(+2jv,"(A,,—A, ))+E(V 2jv,"A,)]

expI2vri [kA, +jv, (A, ) —~ jv,"A. ] I =exp[2mijv, (0)] (71)

which involve solely the maximum value of v„ therefore
supplying v oscillations. Third, there are the constants of

The insertion of (67) now shows that Nq„(E) consists of
three distinct parts which are characterized by their oscil-
latory behavior, i.e., by the argument of the exponential.
First, we have from the oscillatory part of the first
E(. )

expI2ni [kA, +jv, (A, ) —2 jv,"(A,,—A, ) ]]=exp(2nikk, , )

(70)

[Eq. (56) for A, =A,,]. The periodicity of these terms is
given by the maximum value of A, ; they lead to A, oscilla-
tions. Second, analogously the second E( . . ) provides
terms proportional to

(69)

1

(67) in the E(. . . )'s of (69); because of the two signs in
(67) these constants add up to a null result, unless the ar-
guments of the two E(. )'s agree in sign. This is the
situation if

0(A, &A, , (72)

which is the requirement that k lies within the range
covered by the X integration. %'e have found earlier that,
as a consequence of (53), this is equivalent to (54). Ac-
cordingly, in this part of N„„(s)—referred to as "mixed
A, , v oscillations" —the sum over k is, for each j, limited to
a finite range.

The following sections will deal separately with these
three different types of oscillations. We shall see that
only the A, oscillations are significant for the relatively
small values of Z'~ (namely, 1, . . . , 5) that we are con-
cerned with.

A, OSCILLATIONS

The A, oscillations of N(s) are given by

00 k+j
[N„,(s)]k——[N„,(E)]t&F+2Re g g e '[I+ rrV2j vX h( V2jv,"(A,,—A, ))]

j=i k(~o) (rrj)
(73)

where we have included the /TF oscillation of Eq. (30) and omitted the nonoscillatory k =0 terms, such terms being of
no interest to us here. As a consequence of the jump of h (z) at z =0, [N», (E)]k is discontinuous for those values of E

for which A,, equals one of the A, . Since the whole Nq„(E) is certainly continuous, this discontinuity is not a physical ef-
fect, but rather a product of the mathematical separation into the three types of oscillations. In anticipation of the later
observation of a compensating discontinuity in the A, , v oscillations, we shall, for the moment, pretend that all arguments
of h (and its derivatives) are nonzero for s (0.

Before exhibiting the real part of (73) explicitly it is advisable to employ the differential equation for h [Eq. (62)j in
the form

aa ( 1)k+j
[N„,(s)]k=[N», (s)]trF+2A, , g g +2/(jv,")f(z, ) cos(2~kA,),

j=1 k (~0)
aa

( 1)k+j—2 g g kV 2/(jv,")g(z, )sin(2nkl, ,)—j= 1 k (~0)

aa
( 1)k+j

g'(z, ) cos(2n.ki, ,),
v. j=i k(~oi (~j)

I+rrV 2jv,"Ah(V 2jv,"(A.,—A, ))=ih'(V 2jv,"(A,,—A, ))+@V2jv,"A,,h(V 2jv,"(A,,—A, )) .

Then we arrive at

(74)

(75)
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where z, has the significance

z, =+2jv,"(A,,—A, ) =+2/(jv, ")(jv', —k); (76)

the last equality uses (53).
The three double sums of (75) have differing large-Z

behavior. The asymptotic forms of f and g, given in (65),
combined with the Z dependences A,„k—Z '

v,"-Z ', and z, -Z', imply that these three terms
describe A, oscillations with amplitudes proportional toZ', Z, and Z ', respectively. However, these simple
Z dependences of the amplitudes hold only for very large
Z; more precisely, they hold when the asymptotic forms
of f and g can be used for all j and k to be summed over.
For the rather small values of Z' we are interested in,
there are j,k pairs (mainly the ones with k =2j) for which
z, is not in the asymptotic domain. In other words, while
the asymptotics of f and g identify the double sums of
(75) to belong to the leading A, oscillation, the next-to-

I

f(z) = +f(z),

g (z) =
~ 3 +g(z)
1

(77)

We illustrate this unification for the leading X oscillation.
It is given by [Eqs. (30) and (77) in (75)]

leading one, etc., the extrapolation to the small-Z' range
is not done correctly if one sticks to these asymptotic
forms. Instead, this extrapolation is supplied by use of
the full f(z, ) and g(z, ). Note that the important step in
arriving here was the decomposition of the Fresnel in-
tegrals into the rapidly oscillating exponential and the
slowly varying h (z).

The lTF (or j =0) part of (75) is united with the j&0
contribution after splitting f and g into their asymptotic
forms and the small z correction by writing

oo
( 1)k ( 1)k+j

[X„,(E)]k= —2A, ,v,
' g cos(2Irkk. ,)+2k., g(Irk) j=1 k(~0)
GC

( 1)k+j
+2&, g g . V'2/(jv, ")f(z, ) cos(2Irkl, ,)+

j=1 k(~0)

WJ VE —7Tk
cos(2vrk A., )

(78)

where the ellipsis represents the nonleading A, oscillations. The second term in (78) can be rewritten with the aid of the
first equation of (24) of II,

2A,, g
j=1 k(&0)

1
cos(2Irkl, ,) =A,, g cos(2IrkA, , ) g ( —1)J( 1)k

7TJ VE —&k k (~0) j (&0) Irk /v', rrj—
oo

( 1)k ( 1)k cos(2IrkA, , )
=2k,,v', g cos(2IrkA, ,) —2A, , g(Irk) S111(&k /vE )

the first sum over k exactly cancels the lTF term of (78). At this stage we have

( 1)k cos(2~k A., ) ~
( 1)k+2

[&„,(&)]&=—2&,g, +2k, , g g V 2/(jv,")f(z, ) cos(2IrkA, ,)+. . .
sin(Irk/v, ') 'k

~~o~ 1 I Irk
(80)

The observation that the first term here is the leading A, oscillation in the situation of linear degeneracy [see Eq. (25) of
II] identifies the second one as its correction due to the quadratic nature of (29). Indeed, for v,"~0 [z,~co,
f(z, ) ——z, ], only the first term of (80) surv'ives.

The steps that led to Eq. (80) can be repeated for the next-to-leading A, oscillation. The result is

( 1)k sin(2Irkk) 1 ( 1)k c so(~ k/v)[~„,(E)]&—[Eq.(80)]+ g + g —sin(2Irkl, , )
(Irk) sin(Irk lv', ) v', k sin (rrk/v', )

A, ~V~ cos (Irk/v, ')+ —,
' sin (Irk/v', )

+ g ( —1) sin(2rrkA, , )
(v')' k=1 sin (rrk/v, ')

oo
( 1)k+j—2 g g A+2/(jv, ")g(z, ) sin(2IrkA, ,)+ .

k (&0) j=1

again, for v,
"—&0, it reproduces the respective two terms of the linear degeneracy result, Eq. (25) of II.

From these A, oscillations of %(E), the A, oscillations of the energy are obtained by integration, as described by Eq. (9).
We calculate the two leading terms by partial integration, in the spirit of Eq. (31). This produces

Ease 1
sk sin(2Irklo)+ I&3 g ck cos(2mkko)+

J A, k(&0) k~0
(82)
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where the Z-dependent coefficients sk and ck are given by

z4/3 1 ~o ( —1 )" 1 ~o ( —1 )" + ( —1 )1 +2/( )f( )
(m k) sin(

hark

/vp ) go

hark

J, ~j

[Eq. (76): zp ——1/ 2/(J'vp')(jvp —k)] and

(83)

Z cI=3/3 1

4A,p

kpAp ( l )k
~ 2

—2
3(mk) sin(hark/vo)

novo ( 1, )k cos(hark/vp)

4zovp novo (~k)»n (~k/vo)

1)k cos (nk/vo)+ —, sin (rrk/vp)

4/o( vp )
3 'rrk sin3(mk /vp )

~k . , ~j
A,pl, p 1 f(zp )—1

mk +2jv"
—&oV'2/(J vo')g(zo)—

novo/~o 1 f (zo)
+

mk mj
(84)

Please note that, because vp ——1.93. . . , very large values of j and k are required to obtain zo=0. These terms do not
contribute significantly to the Fourier sum of Eq. (82). Therefore, our disregarding of the consequences of the discon-
tinuity of h (z) at z =0 is, for all practical purposes, harmless (not to mention the possibility that vo is irrational).

Of course, it is not the individual sk and ck that are significant, but the combinations sk —s k and ck+c k. Before
we comment on these, let us first answer this question: What has happened to the term proportional to v p' which is pro-
duced by the second partial integration on the leading k oscillation of Eq. (80)? The answer is that it has been discarded
after being recognized as belonging to a smaller order in Z'/ . Here is how it goes. The contribution to —E„,in ques-
tion is

1 novo ( —1)" ( —1)J—E = ' ' . g 2
cos(271 kAp) g V 2/(J'vp')[f (zo ) +zp f (zo) ]+4 novo' k(~o) (~k)' Kj

(85)

The observation that, for zo&0,

1
f(zo)+zo f'(zo) =f (zo)+zo f'(zo) = g"(zo) (86)

shows that (85) is not the small-Z'/3 correction to an
asymptotic term [note that it is g, not g, in (86)], so that
the use of g "(z)—1/z identifies (85) to be of order
Z'/ —two factors of Z'/ smaller than the oscillations
considered in (82). This fits together with the remark
made above [after Eq. (32)] that knowledge of vo' is not
needed as long as we are concerned only with the two
leading energy oscillations.

According to Fig. 6 and Table I, f(zo ) and g (zo ), the
differences between f and g and their asymptotic forms,
are large only for small values of their arguments. In
fact, they are very large for zp=O, i.e., for j=k/vo. In
Fig. 7 this is a lattice point close to the z0 ——0 line. Conse-

f (zp (0)= ——,
' +0(zp), (87)

we evaluate this j= k/2 term by using

f(zo) =f(zo)—
7TZ0

1 1+
2

1/2
V0

(2—vp )

(88)

This results in

quently, the sI, and cI, with positive even k are the ones
which will differ most from their asymptotic values for
the small Z' of interest. We use this insight for an ap-
proximate evaluation of sk by discarding the sum over j
in Eq. (83), unless k is even and positive, in which event
we keep the j =k/2 term. Further, since the z0 of this
term is small and negative and since

Z (Sk S —k)=
( 1 )k/2

mk

~0 1 1
for k odd,

go (hark) sin(mk/vo)

~0 1 1

go (mk) sin(~k/vp)
)k/2

(2—vo) Qkvp'
for k even .

(89)

The numerical version of this is (recall that vp ——1.93768)
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Sk S —k=

0.025 15
for k odd,

k sin( l.621k)
r

0.025 15

k
1

1
k/P 20.43 k/2 1.990Z'

sin(1. 621k) k v k
for k even.

(90)

gn the latter situation the first two terms in the large parentheses are big, but with opposite signs, and tend to cancel, re-
flecting the circumstances that (89) is finite for vo~2. A handier approximation is obtained by making explicit the
small difference between 2 and vo, as illustrated by

1 k/'2 1 0 1 o
1 )k/2 +—m.k

sin(mk/vo) r/k 2 —vo 6 2vo

With this, Eq. (89) yields
r

( 1)(k ()/2 0.025 15
for k odd

k

(91)

Sk S —k= '
0.01601

k
0 05003 ii6 0.000427

k 5/2 for k even

(92)

A similar evaluation, proceeding from Eq. (84), gives

(k+))/p 0.051 83 0.00029
k3

for k odd,

ck +c
0.033 00 0.011 17 )/6 0.077 80 I/2 0.01001+ Z + ' —0.00002 for k even .

k4 k" k 5/2 k

(93)

1 2 5 =
j

Evidently, the approximations employed in arriving at
(92) and (93) are such that these expressions are reliable
only if neither k nor Z'/ is large. [The failure for large
Z is also demonstrated by the fact that the exact sk and
ck become Z independent for Z~ oo, whereas the even-k
ones do not in (92) and (93).] However, this does not seri-
ously limit the applicability of these formulas; the Z
values of interest are not large (Z': 1~2.2), and the
sums over k in (82) converge rapidly, so that sk and ck
are needed only for the few first k's. Both these points
are illustrated in Figs. 8 and 9 for the sk and in Figs. 10
and 11 for the ck. In addition to the fast convergence of
the Fourier series (82) and the high quality of (92) and
(93), please observe also that in this range of Z the next-
to-leading A, oscillation is not dominated by the leading
one. They are both of comparable size. Another interest-
ing feature is the growing importance of the even- k terms
for increasing Z. This is a consequence of vo =-2. For ex-
ample, when Z becomes very large, the ratio
(sz —s z)/(s& —s &) is 2.48, so that then the dominant
period of the oscillations is halved. This effect is even
more pronounced for the next-to-leading A, oscillation, as
is visible in Fig. 10 and is numerically expressed by
(c2+c 2)/(c&+c ~)= —77.9 for Z —+op. However, be-
ing suppressed by a factor of Z', it is nevertheless small
compared to the leading A, oscillation for such enormous
values of Z.

v OSCILLATIONS

FIG. 7. Curves of constant zo/Z ' on the j, k lattice.
Crosses mark the lattice points that enter in Eqs. (83) and (84).

The v oscillations of N(E), as obtained from (69), are
given by
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ao a&
( 1)k+j

[N„,(e)] =4Re
j=1 k= —oo- 77lj

1 A, .~(~ . „~) 2vijv, (0)

2'(TEJv 1/ 2jv
(94)

Here the discontinuity of h(z) at z=0 does not matter, since we encounter the combination zh(z). In view of
A, =(k —j)/(jv,") [Eq. (53) with 'v, —= 1], the A, =O terms are given by k =j. The k&j terms can be rearranged by utiliz-
ing the differential equation (62) that is obeyed by h (z) for z&0. At this stage, we have

2 ~~ ( —1)J 2mijv (0)

v,
"

j ) (mj)
—( —1)'+ g ( —1)"—.&'(V2/(j,")(k —j))

k (&j)
(95)

Now, by setting m—:k —j and using h'( —z) = j) '(z), this is turned into

cos[2~jv, (0)][N„,(E)],=—
v,

"
j ) (vrj)

2mij v (,0)

+ „Re g g ( —1) —j)'(Q2/(jv, ")m)
m=)

(96)

In this form the first sum over j is immediately identified as the leading oscillation. Its similarity to the leading ITF os-
cillation of Eq. (30) is used in writing down the leading v oscillation of the binding energy:

sin [2' vp(0) ]
( —E„,)„=—,+ '

v(I'vp(0) j=) (~j)
(97)

This is of the shape of the leading ITF oscillation [Eq. (25) and Fig. 4] with the period shortened by the fraction (recall
that 'v, = 1)

AsQ

vp(0) XQVQ 2 XQVQ

1

2 (VP+ vp)

1

1.468 84
(98)

and the amplitude reduced by the factor

vp'vp(0) i(,pv()

2 1

vpl(vp)' —1]l(vp)' —(vp)' —(vp)'+ vp+1]

In Eq. (99) we made use of A,pvp' ——vp —vp=vp —1 and

v()(0) = [—,
'

A,,(v', +'v, )]dc
= —,[vI)&p+(vI)+1)&p] = —,&0(v()+1)[(v()) —(v())' —(v())'+v()+ 1], (100)

where the last step employs (48).
Since, according to Fig. 4, the leading ITF energy oscillation has an amplitude of about 0.015Z, Eq. (99) implies

that the size of the leading v oscillation of (97) is about 0.001Z . This is so small compared to the A, oscillations of the
preceding section that we shall neglect it entirely. Inasmuch as the discarded subsequent k oscillations are expected to be
larger than the leading v oscillation (in the small-Z range of interest), this procedure is thoroughly justified.

MIXED A, , v OSCILLATIONS

Finally, the mixed A, ,v oscillations of N(s) [Eq. (69)] are

oo
( 1)k+j

[N.„(.)],„=4R.e
&2jv,"

2mi [kA, +jv, (A, )]
e 1 —l

co
( 1 )k+1

&jv,"
cosI2m[kA, +jv, (A, )]+—„' ~I, (101)

where the summation over k covers the range

j =j'v, &k(jv,' . (102)

The lower limit for k does not depend on c, because
'v, —= 1, whereas the upper one does. In particular, when
jv,' crosses an integer value, the range of the k summation
gains one value. In this situation, A, equals k, and the
discontinuity of f N„,(e)]k „is given by

1)j(v,'+))
4g

&j Qjv,"
27rj v,'A, ,+—,(1.03)

where the summation over j includes all values for which
jv,' is an integer. (For example, when v,

' = —', these are all
even j's. ) If we now look back at Eq. (73), we see that the
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f 21
I

2[(v' ) — vE( )2]+(k JV—E

2jvE
kA, +jv, (A, ) =
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Both curves agree in a number of details. First, they
have the same phase and period, which, as we have
learned, is given by A, o, the maximum v'alue of the angular
quantum number in the TF limit. Then their amplitudes
are about the same. Further, they both show rather sharp
structureless minima, while the maxima possess an evolv-
ing double structure.

There are two major differences between the HF curve
and the semiclassical one. The less serious one is that the
semiclassical curve is shifted down by what looks like a
constant in Fig. 12. The reason thereof is that our calcu-
lation picked out only the oscillatory contributions of
EqU smooth terms have been consistently disregarded.
Incidentally, adding terms to the semiclassical binding en-

ergy, such as aZ ~ +bZ ~, that shift curve a of Fig. 12
up may also slightly relocate its extrema to the further
benefit of the comparison with the HF curve. The second
difference between the two curves is the more pronounced
double structure of the semiclassical maxima. Inasmuch
as they are produced by the interference of the leading
and the next-to-leading A, oscillations, which have maxima
at different values of Z'~, it is possible that matters
change when Eq. (82) is improved by the inclusion of
terms with amplitudes proportional to Z, . . . . Such
higher-order oscillations could well effectively modify the
leading oscillations so that they acquire small, Z '

dependent, phase shifts. We have seen such phase shifts
in II when studying Coulombic degeneracy [recall the re-
mark made about (y ) after Eq. (16) of II]. In short, the
quantitative aspects of the double structure are likely to
change slightly as soon as further oscillatory contributions
are included. Also, up to now, the experimentally avail-
able data do not tell us what these binding-energy oscilla-
tions look like in detail in the real world.

One could wonder how a different choice of vp' would

have affected the final outcome. It is clear from Eqs. (83)
and (84) that smaller values of vo' move us closer to the
asymptotic region, while a larger vp' causes the sums over
the various f(zo), etc. , to constitute a larger correction of
the asymptotic sk and ck. Consequently, the smaller the
vo' the more we see of the asymptotic half-period struc-
ture. This is illustrated in Fig. 13, where the semiclassical
prediction is plotted for nine different multiples of our
first-choice vp', covering the range from 0.6'' to 1.4''.
Although the largest of all these values is more than twice
as big as the smallest one, the curves do not change
dramatically. They all have the same overall appearance,
the main difference being in the size of the double struc-
ture of the maxima. Therefore, we see no reason for arbi-
trarily revising our selection of vo'.

As we have remarked earlier [after Eq. (40)], the chosen
approximation for v, (A, ) is such that it does not reproduce
the correct value of NTF ( E =0), namely Z. Instead, it
gives only 91% thereof. This, however, does not discredit
our approximate v, (A, ), because its job was not to mimic
the smooth part of Nq„(e) and Eq„, but to yield the oscil-
latory terms correctly. And for those, NTF(E) is unimpor-
tant, whereas the slopes of v, (A, ) at A, =O and A., are of
crucial influence. It is rather difficult to obtain the
smooth E„„of(1) by employing an approximation for
v, ()I,), because the dependence on c, has to be correctly
represented for a very large range of E. Indeed, E„„has
been derived with different methods. On the other hand,
the binding-energy oscillations stem from the electrons
filled in last, which is to say from the range of E close to
e=O. There, such an approximation for v, (A, ) is justifi-
able, and, as we have seen, works just fine.

Our approximate v, (A, ) is such that close to A, =A,, it
agrees with the TF line of degeneracy, while it deviates
considerably for A, =-O. Why have we been so concerned
with one end of the line and not with the other? The
reason is that the shape of v, (k) near A, =A,, is determined

. by the potential around I" =r„ i.e., in the dense interior of
the atom. Here the TF potential is very realistic for suffi-
ciently large Z. In contrast, when A, =-O and c(0, the
value of v, (A, ) is to a great extent related to the potential
at far distances. There the TF potential is seriously in er-
ror, as it falls off much too slowly. In other words, for
A, =A,, the TF lines of degeneracy are trustworthy, whereas
they are not for X=—0 when c(0. Therefore, any special
effort, aiming at an accurate agreement between the ap-

1.2
0.04—

(.4

proximation for v, (A, ) and the exact TF line of degenera-
cy, is not called for beyond the region of A, -=v, . Please
observe that, consistent with these remarks, all
parameters —such as /Wp, vp, kp, vp, Xp, and also vp'—
entering the final result of the semiclassical calculation
are entirely given by the potential and its derivatives at
l' = rp.
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FIG. 13. Dependence of the semiclassical binding-energy os-
cillation on the choice for vo'. Plots are for vo' equaling
0.6,0.7, . . . , 1.4 times vo ——(vo —1)//I. o ——1.01044/Z''

CONCLUDING REMARKS

We labored mightily to produce a semiclassical result
that is not essentially different from the previously known
HF prediction. Why did we choose to do so? Because
now we have an understanding of the physical origin of
the nonrelativistic binding-energy oscillations. Although
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the HF method produces the curve of Fig. 2 [strictly
speaking, not even that, since E„„of(l) is not a HF re-

sult], it provides no insight whatsoever for the origin of
these oscillations.

The HF method is designed for the investigation of in-
dividual atoms with given nuclear charge and number of
electrons. In contrast, the semiclassical approach is
meant to deal as a whole with the Periodic Table. It is
therefore capable of producing E„„of(1) and also of il-
luminating E„,: It has told us that the period of the os-
cillations is directly related to the largest angular quan-
tum number, that the amplitude is proportional to Z
and how the double structure of the maxima comes about.
This remarkable achievement of the semiclassical method
demonstrates that it is sufficiently refined to describe
atomic properties that are attributable not only to the cen-
tral bulk of electrons, but also to the relatively few outer

electrons. This points to possible future applications. For
example, the calculation of atomic electric polarizabilities
requires a good description of the loosely bound electrons
at the edge of the atom. So far, it has been notoriously
difficult to handle these electrons with sufficient accuracy
in TF-type statistical models, although certain improve-
ments have already been made. The new semiclassical
method is likely to take the next step in this direction.
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