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Plasma-wave generation in the beat-wave accelerator
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We analytically study the generation of longitudinal plasma waves in an underdense plasma by
two electromagnetic waves with frequency difference approximately equal to the plasma frequency,
as envisioned in the plasma beat-wave accelerator concept of Tajima and Dawson [Phys. Rev. Lett.
43, 267 (1979)]. The relativistic electron fluid equations describing driven electron oscillations with

phase velocities near the speed of light in a cold, collisionless plasma are reduced to a single, approx-
imate ordinary differential equation of a parametrically excited nonlinear oscillator. %'e give
amplitude-phase equations describing the asymptotic solutions to this equation valid for plasma-
wave amplitudes below wave breaking. We numerically compare the behavior of the asymptotic
equations with that of the original equation and with particle-simulation results.

I. INTRODUCTION

Since the original proposal by Tajima and Dawson, ' the
plasma beat-wave accelerator has received much attention
as a possible high-energy accelerator because of the very
high gradients thought to be possible. In this scheme, the
electric field of a longitudinal electron plasma oscillation
with phase velocity U„b near the speed of light c ac-
celerates charged particles to high energies. The plasma
oscillation is resonantly excited by the ponderomotive
force of two collinear beating lasers with frequency differ-
ence co& —co2, approximately equal to the electron plasma
frequency to& in an underdense plasma (to&, to2))co&).
Gradients of order v'n eV/cm are theoretically possible,
where n is the electron number density in units of cm

If the transverse dimensions of the beating laser beams
are much greater than the induced plasma wavelength

kz
' ——(k, —kz) ', the lasers and plasma wave can be

treated approximately as infinite plane waves. Within this
approximation Rosenbluth and Liu analytically studied
the growth and saturation of longitudinal plasma waves in
a cold, collisionless fluid plasma assuming weak laser
strengths (U „/c:eEL/mtoc «1) an—d small-amplitude
plasma waves (b,n/n «1 and hence eE&/mto&c «1 if
Vpb~c).

Because the beat-wave generation of plasma waves is a
resonant excitation, large-amplitude plasma waves can
develop even though the lasers are relatively weak. The
condition eE& /m co&c « 1 can then be violated even
though eEL/mtoc « l. In this paper we analytically
study the beat-wave generation of plasma waves with
phase velocity U~q=c in a cold, collisionless fluid plasma
subject to the more general condition eE&/m. coze & 1. In
practice, particle trapping and wave breaking occur even
if U~q —c in a cold plasma for eE~/mcozc) 1, and the
fluid approximation breaks down.

As a plasma wave is generated by two beating lasers it
can scatter laser light up and down in frequency by in-
teger multiples of co& (multiple Raman scattering). The
scattered light will also beat, inducing oscillations at vari-
ous multiples of co~. However, for laser frequencies

co~~coz, this sideband generation is negligible prior to
saturation of the plasma wave. For example, when
co=5—10~&, numerical simulation codes indicate that as
long as eE&/m~zc &1, less than 5% of the relative laser
power is scattered into sidebands for times up to satura-
tion of the plasma-wave amplitude.

Consequently, to study plasma-wave generation and
saturation analytically we will neglect the scattered laser
sidebands. We then have only two beating electromagnet-
ic plane waves and a plasma wave, all with phase veloci-
ties near the speed of light in an underdense plasma. One
can then reduce the relativistic plasma fluid equations to
an approximate ordinary nonlinear differential equation
for the evolution of the longitudinal plasma wave without
recourse to the customary linearization procedure. Not
surprisingly this equation is equivalent to Poisson s equa-
tion with the electron density being modulated by the
beating lasers and variations in the plasma-wave phase
velocity being neglected. The derivation and asymptotic
solution of this nonlinear equation are the subject of this
paper.

The outline of the paper is as follows. In Sec. II the
equations describing nonlinear waves in a relativistic plas-
ma are reviewed to establish notation. In Sec. III, starting
from the known solution of these equations for a single
light wave in an underdense plasma, the approximate or-
dinary differential equation describing a longitudinal plas-
ma wave driven by two beating light waves is derived.

Amplitude-phase equations describing the asymptotic
solutions of this differential equation are constructed for
small-amplitude plasma waves (eE&lmro~c &&1) in Sec.
IV and large-amplitude waves (eE~/mto~c & 1) in Sec. V.
The numerical solution of these asymptotic equations are
compared with that of the original nonlinear differential
equation. We find that our small-amplitude asymptotic
solution agrees with the previous results of Rosenbluth
and Liu in the time domain. For large-amplitude waves,
our asymptotic solution accurately approximates the nu-
merical solution of the original equation for amplitudes
up to eE~/mcuzc=l. Interestingly, our solutions also
agree very well with two-dimensional particle-simulation
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results for the temporal evolution of beat-wave generated
plasma waves. We conclude the paper in Sec. VI with
some comments regarding the experimental implications
of our results for plasma-wave generation in underdense
plasm as.

II. NONLINEAR WAVES IN A PLASMA

V E=4rte(no —n), VXE= ——1 BB
c 8t

(2.1)

The equations describing nonlinear waves in a cold, col-
lisionless relativistic plasma with stationary ions have
been previously given by Akhiezer et al. The fluid equa-
tions for the electron velocity v, electron density n, and
the fields E and B are

Bp e+(v.V)p= —eE——(v XE),
Bt c

where uz=uz/c. Hence, once Eqs. (2.3)—(2.5) are solved
for the momentum p(r), one can immediately obtain n (r),
E(r), and B(r) for the plasma wave from Eqs.
(2.7)—(2.10).

III. LIGHT WAVES IN A PLASMA

A. One light wave

Equations (2.3)—(2.5) can be used to approximately
describe the generation of a longitudinal plasma wave by
two light waves in an underdense plasma. The method is
suggested by recalling the calculation for a single linearly
polarized light wave in an underdense plasma as given by
Akhiezer et al.

For a single light wave in an underdense plasma,
/3ph —1, and the electron motion is described by the equa-
tions

4m 1 i3E
V B=O, V&&B= — env+-

c c Bt

where p is the electron momentum

d pi p~

d8 V 1+p —p
=0, (3.1)

mvp=
2 2+1—u /c

(2.2)
d', (Pph —1)pz

, (p, —&1+p')+
d9 V 1+p —pz

(32)

=0,

=0,

=0,

where

Pph=
Uph

Uph

2 4me np
2

COp
m

(2.6)

Equations (2.3)—(2.5) describe nonlinear plasma waves
p(r) with a given phase velocity uph. Using these equa-
tions, the electron density n and the fields E and B are
found from Eqs. (2.1) to be

np
n = (2.7)

Pph

Pph pz=np 1+
uz Pph+ 1 +P —Pz

mc dpi' mc dpy

e dr '
epph dr

(2.8)

PlC Py PlC Px
e dr' '

epph dr
(2.9)

and n p is the equilibrium electron density.
The wave motion is a function of the single variable

i.r —U~ht, where i is a unit vector in the direction of prop-
agation, and U~h is the phase velocity. Taking the vector i
along the z axis and defining the normalized momentum
p=p/mc, Akhiezer et al. obtain from Eqs. (2.1) the fol-
lowing equations for the electron momentum (in the ab-
sence of an external magnetic field)

d2 22
px tup Pph Pphpx

dr /3ph 1 P hV1+p —p
d2 22

py ~up Pph Pphpy (2.4)
d1 Pph

—1 P hV 1+p —p

(P,~. &1+p')+ — ' ' (2.5)

where pz can be taken as either p or p~, and

0=(Pph —1) '/ tupr .

With P„h—1, one concludes from Eq. (3.2) that

+1+p —p, =const &0 .

Denoting this constant by C, Eq. (3.1) becomes

d pl pi
dg2 C2

which has a solution of the form

(3,3)

(3.4)

(3.5)

pz
——Rzcos(0/C) . (3.6)

Since the average of p, over an oscillation vanishes, the
constant C is determined from Eqs. (3.4) and (3.6) to be

C'=(1+-,'R', )'" .

The solution for the electron motion is then

(3.7)

R z cos(2cor)
pi =R z cos(cur), p, =

4+1+—,R g

(3.8)

where

(P2 1)—1/2(1+ & R2 )
—1/4 (3.9)

is the frequency of the light wave.
This is the familiar "figure-eight" motion of a single

electron in the field of a plane wave. Since co »cup, low-
frequency plasma oscillations near co& are not effectively
excited, which is the physical content of Eq. (3.4). Ac-
cording to Eq. (2.10) then, E,=O in this approximation.
Finally note that from Eq. (2.8)

E,= — (PphP, —+1+P ), B,=0,
e ph dr

(2.10) Pl COC
Eq (r) = Rz sin(cur),

e
(3.10)
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B. Two light waves

Now let us consider two linearly polarized light waves
with frequency difference co? —co2—co& in an underdense
plasma (co?,m2»co&). The beating of these two waves
will excite a low-frequency longitudinal plasma oscilla-
tion. This oscillation and the two light waves have phase
velocities near the speed of light. Strictly speaking Eqs.
(2.3)—(2.5) are only applicable to a single mode of given
phase velocity, but since the phase velocities are nearly
equal, we will attempt to treat these three waves in the
plasma as approximately a single, coupled longitudinal-
transverse mode p(r). By choosing the initial conditions
such that there is no longitudinal motion at, say v.=0, we
would then see longitudinal plasma motion evolve for
~&0.

Because of the beating between the two light waves, we
expect the quantity +1+p —p, in Eq. (3.4) to become a
slowly varying function of r rather than a constant as for
one light wave. Consequently we define the slow depen-
dent variable

x(r)=+1+p —p, . (3.11)

Recall that dx/dr is proportional to E,(r), so x(r) is
proportional to the electric potential.

Since the phase velocities of the two light waves are
nearly the same, we try a solution of the form

so Rz is the usual quiver velocity parameter "v„,/c" used
as a measure of transverse electron motion in a laser field.
We see that R? is actually a normalized momentum (in
units of mc) rather than a velocity.

Aco= —2R& sin(d'or) sin 7.
2

(3.17)

The corresponding laser electric field is to order b,co/co,

Pl COC
E? = Rz [sin(co?r) —sin(co27))

2711COC Aco
Rq cos(cur) sin

e 2
(3.18)

Using the solution (3.17) in Eq. (2.5) with p~h ——1, we ob-
tain an equation for the slow variable x (r),

1 —X +py2 2

=0, (3.19)
2x

d X

d (Ctlp1 )

where

pz
——4R? sin (d'or) sin2 2 2 2

2
(3.20)

As long as co »co&, the high-frequency part of p? will not
excite oscillations in Eq. (3.19), and x (r) will indeed be a
slow variable as assumed. We may then replace sin (cur)
by its average value of —,, and Eq. (3.19) becomes

motion. We must still determine an equation for x(r)
however.

For simplicity we will specialize to the case of equal-
intensity lasers, the generalization to different intensities
being straightforward. It will be convenient to choose the
overall signs of pz~ and p&2 such that

pj —R? [cos(co?r) —cos(co2r)]

PX =Ps&+Pi2

for the transverse motion, where

(3.12) 1 —x +R? [1—cos(b,cur)] =0
d (co~r) 2x

(3.21)

and

p? ?
—R J ? cos(co?1 ), pJ 2 —R J 2 c(ocds7)2 (3.13)

ro? =co+ =cop(P, 1) '/ x ' (r—),P

co2=co — =cop(P2 1) ' x ' (r) . —
(3.14)

R l1,2 and c01,2 are constants, and 4co =~ ~
—m2

Since x (r) implies a longitudinal density modulation, the
phase velocities p? 2 are space-time dependent, although
they remain near unity if co? 2»co~. The group velocity
bc@/Ak is also approximately C.

The ansatz (3.12) is seen to satisfy Eq. (3.1) in the form

Equation (3.21) describes a parametrically excited non-
linear oscillator (i.e., the excitation appears as a periodic
coefficient rather than an inhomogeneous driving term).
One can easily show that Eq. (3.21) is equivalent to
Poisson's equation with the electron charge density being
modulated by the beating lasers. If R? ——0, Eq. (3.21) de-
scribes free, longitudinal nonlinear plasma oscillations
with phase velocity C. Upon solving Eq. (3.21) for x(~),
one can immediately obtain the longitudinal electron
momentum from Eq. (3.11),

1 —X +pi
p, (r)= (3.22)

2x

the electron density from Eq. (2.7),

d pg
2

+co pg
——0

d~2

to order Aco/co, where

CO~+C02
(p2 1)—?/2x —?/2( )r

(3.15)

(3.16)

n (r)=no 1+ pz

X

and the longitudinal electric field from Eq. (2.10),

E( )
mc dx
e

(3.23)

(3.24)

is a constant, and p is the phase velocity of a light wave
with frequency m. Because Ace«co, the superposition
(3.12) is a very good approximation for the transverse

where p~h of the plasma wave is taken as unity.
Because the plasma oscillation frequency is a function

of amplitude, the actual phase velocity of the plasma
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wave, co&(amplitude)/(k i
—k2), will change. Wave break-

ing will occur if this phase velocity and the longitudinal
electron oscillation velocity approach each other. Equa-
tion (3.21) does not exhibit wave breaking because of the
approximation /3~&

——1. However we can estimate from
the solution of this equation when wave breaking would
occur simply by comparing the ratio co&(amplitude)/b, co

and the longitudinal electron velocity U, /c, assuming
b,co/hk=c. The only significant error Eq. (3.21) should
make is in underestimating the electron density oscillation
which becomes singular at the wave-breaking limit.
Equation (3.21) should be a better approximation for the
evolution of the plasma wave in the time domain than in
the space domain since the frequency of a free plasma os-
cillation is independent of the phase velocity (and hence
wavelength) in a cold plasma.

IV. SMALL-AMPLITUDE PLASMA WAVES

To study plasma-wave generation with Eq. (3.21), we
will use the initial conditions

da R 2

sin@,
d (cour) 4

2
dC g 2

R I I=o.+—„a + 1 ——cos4
d (cozr)

" 4 a

(4.5)

2Rio+ a+ —,4a
da

d (co~~)

(4.6)

In Eqs. (4.5), @=bco~—P is a slowly varying phase, and
o =hco/co& —1 is the relative frequency mismatch between
the laser beat frequency and the plasma frequency. The
constant R z/4 in d4&/d(coze) describes the down shift in
the plasma frequency due solely to the lasers [cf. Eq.
(3.9)]. When this constant is negligible and hco=coz, Eqs.
(4.5) (in the time domain) agree with the amplitude-phase
equations of Rosenbluth and Liu for small-amplitude
driven plasma waves.

Equations (4.5) can be integrated once to yield

2 2 2 2
Ri
4

x (~=0)=1, dx(r)
dv

(4.1)
Rg 1 Rg
4 2 4

cos4= —o+ a + ~ a

These initial conditions correspond to

p, (~=0)=0, n (r=0) =no, E,(v=0)=0, (4.2)

= —,'R f [1—cos(hear)](1 —2y+3y —4y + . ),

(4.3)

with initial conditions y(r=0)=[dy(~)/d~], o
——0. The

asymptotic solution of Eq. (4.3) is straightforward using
the well-known Krylov-Bogoliubov-Mitropolsky (KBM)
method. Since the method is a standard one found in
most textbooks on perturbative techniques, the detailed
calculation need not be given here.

We find that the asymptotic solution of Eq. (4.3) uni-
formly valid for all co~~(O (R z ) is

y(~)=a cosP+O(a ) . (4.4)

so there is no longitudinal electron oscillation at ~=0.
We then wish to solve Eq. (3.21) for r )0, expecting to see
longitudinal motion evolve. The exact analytic solution of
Eq. (3.21) is not known, but one can numerically integrate
it, as well as construct asymptotic solutions. Both ap-
proaches yield insight to the plasma's behavior.

For sufficiently weak lasers (Ri ((I), the plasma-wave
amplitude is small and conventional asymptotic methods
can be applied to Eq. (3.21). For small oscillations about
x= 1 in Eq. (3.21), it is convenient to introduce the vari-
able y(r)=x(r) —1. Expanding Eq. (3.21) in powers of
y (r) yields

d2
+y ——,y +2y ——,y +

d (cour)'

where we assume a (r=0) =0. Although Eqs. (4.6) can in
fact be analytically integrated further to express a (r) and
@(r) in terms of Jacobi elliptic functions, the resulting ex-
pressions are so involved for general values of cr and R f
as to yield little insight. It will be sufficient to describe
the general behavior of a and N.

Initially a (r) grows linearly at a rate

da(r)
d~

= 4Rycop (4.7)

The amplitude saturates primarily because of mismatch
between the driver frequency hco and the free-plasma os-
cillation frequency coo which decreases with amplitude ac-
cording to Eq. (4.5),

coo ——co~(1 —+, a ) . (4.8)

Since there is no damping in Eqs. (4.6), the amplitude a
clearly oscillates in the range —A (a &A, where the sa-
turated amplitude A is a solution of the cubic equation

2

+ o+ A ——R =0.3 32 Rl
3 3 (4 9)

The frequency-response curve A as a function of the shift-
ed frequency mismatch cr+R z/4 is sketched in Fig. 1.

When o = —Ri/4 [i.e., b,co=(1——,
' R z )co&], the ampli-

tude saturates at

a=Ho—:( gRj) i (4.10)

1/3

CO

3Rj

In this case the risetime ~„ from a=0 to a =20 can be
easily calculated by integrating Eqs. (4.6),

1/2
4 2 —v3

'Ty 0' =—
31/4 K

4

Here a (r) is a slowly varying amplitude, and P(r) is a
rapidly varying phase which satisfy the coupled equations =8.5R, "~, , (4.11)
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the normalized electro dn ensity

n (r) X2

no d (ai )'

and the longitudinal electron velocity

(4.16)

u, (r)= U, (~) np dX
n(~) d(co r)~

P

(4.17)

where K&k&
'
is the complete elli tic i

kind with modulus k.
ip ic integral of the first

q y-response curve in Fi . 1The fre uenc- g
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n w en the fre uencq cy mismatch

near t e critical value

4 1/3
3Ag Rq

8 4
(4.12)

For o.)o' the amplitude saturates at.=~+ —4»3~
p

whereas if o. (o' , saturation occurs at

(4.13)

0
R~2
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eE, (r)
) are

= —a sing+ 0 (a ), (4.18)
IQ)pC

n (~) = 1 —a cosP+0 (a ), (4.19)

u, (r)= —a cosP+0(a ) .
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V. LARGE-AM PLITUDE PLASMA WWAVES
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VI. CONCLUSION

The nonlinear asymptotic solution (5.7) for the driven
plasma wave is a very good approximation to the numeri-
cal solution of the exact equation (3.21) for times up to
saturation and amplitudes up to eE&lmcozc=l. Wave
steepening is' correctly accounted for by this solution.
Furthermore our solution agrees well with two-
dimensional particle-simulation results for beat-wave gen-
erated plasma waves in the time domain. The occurrence
of wave breaking for a given laser intensity and frequency
mismatch can be estimated from our equations by com-

R~(cozen) =Rz [1—exp( cozen—/40)]; Rz ——O.SI. Figures
15(c) and 15(d) show the longitudinal electric field as cal-
culated from Eq. (3.19) and the asymptotic solution (5.7),
respectively, with these laser parameters [and using the
appropriate expression for pz(r) corresponding to Ez(r)
in Eq. (5.9)]. The agreement between the plasma simula-
tion and our solutions is excellent. According to our solu-
tions in Figs. 15(c) and 15(d), the longitudinal electric
field saturates near eE, /mco~c=0. 65, while the longitudi-
nal electron velocity and oscillation frequency at satura-
tion are approximately O.SSc and 0.94~&, respectively.

IO' IQ I Q 2 IOI

R~
2

FIG. 17. The negative of the critical frequency mismatch o.*
as a function of the laser-intensity parameter 8z from the nu-
merical solution of Eq.. (3.21).

paring the ratio of the oscillation frequency and laser beat
frequency with the longitudinal electron velocity v, /c.
Our equations indicate that wave breaking generally
occurs for amplitudes near eE~/mco~c=1. 3.

We conclude that our equations, which neglect scat-
tered laser sidebands and variations in the phase velocity,
provide an adequate fluid description of the essential
physics governing the temporal growth and saturation of
large-amplitude plasma waves below the wave-breaking
limit. According to the amplitude-phase equations, the
basic saturation mechanism is frequency mismatch be-
tween the laser beat frequency and the amplitude-
dependent plasma frequency as long as particle trapping is
small. Since the plasma frequency decreases with ampli-
tude, higher longitudinal gradients can be obtained for a
given laser intensity if the laser beat frequency is less than
co& by an amount dependent on the laser intensity. The
risetime to saturation increases as a result, however. Fig-
ure 16 shows the saturated longitudinal electric field
eE~/mcozc as a function of the laser-intensity parameter
R ~2 for different values of the relative-frequency
mismatch o., as calculated from the numerical solution of
Eq. (3.21). The critical frequency mismatch o* as a func-
tion of R & from this same equation is shown in Fig. 17.

The simplicity of our equations facilitates the compar-
ison of different experimental situations. In Table I we

TABLE I. Comparison of resonant and near-resonant excitation of plasma waves by two equal-
intensity beating CO2 lasers (A,

&

——10.6p, A,2 ——10.3p, co/co~=33, no —10' cm ) based on the analysis of
Secs. IV and V. The gradient in the last row is limited by wave breaking. The laser quiver velocity is
U„,/c. The ratio of the laser beat frequency and plasma frequency is Aco/co~. The combined laser in-
tensity is I =2&&cE~»«/8m in units of W/cm .

Uosc

0.05
0.05
0.5
0.5

1

0.99
1

0.86

I (W/cm')

7&& 10"
7&& 10"
7~10"
7~10"

m conc

0.23
0.38
0.8
1.3

Gradient

(GeV/m)

2.3
3.8
8.0

13.0

Energy-absorption

fraction

l%%uo

3%
0.1 %%uo

0.3 Jo
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compare resonant and near-resonant excitation of plasma
waves by two equal-intensity beating CO2 lasers (A,=10')
in a plasma of density 10' cm (0.1% of the critical
density). The energy absorption by the plasma wave
Ez/2E~„„ is seen to decrease with increasing laser inten-
sity. The advantage of having Ace &co& is clear with the
energy absorption increasing about three times over the
case Aco=coz. Indeed, the allowed frequency mismatch in
the last row of Table I is limited by wave breaking. At
lower laser intensities, where no wave breaking would
occur at the critical frequency mismatch, the energy ab-

sorption would be about four times the case b,co=co&. The
calculated energy-absorption fractions in Table I are for
to=33to~ and vary like co for different to.
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