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We analytically study the generation of longitudinal plasma waves in an underdense plasma by
two electromagnetic waves with frequency difference approximately equal to the plasma frequency,
as envisioned in the plasma beat-wave accelerator concept of Tajima and Dawson [Phys. Rev. Lett.
43, 267 (1979)]. The relativistic electron fluid equations describing driven electron oscillations with
phase velocities near the speed of light in a cold, collisionless plasma are reduced to a single, approx-

imate ordinary differential equation of a parametrically excited nonlinear oscillator.

We give

amplitude-phase equations describing the asymptotic solutions to this equation valid for plasma-
wave amplitudes below wave breaking. We numerically compare the behavior of the asymptotic
equations with that of the original equation and with particle-simulation results.

I. INTRODUCTION

Since the original proposal by Tajima and Dawson,' the
plasma beat-wave accelerator has received much attention
as a possible high-energy accelerator because of the very
high gradients thought to be possible. In this scheme, the
electric field of a longitudinal electron plasma oscillation
with phase velocity v,, near the speed of light ¢ ac-
celerates charged particles to high energies. The plasma
oscillation is resonantly excited by the ponderomotive
force of two collinear beating lasers with frequency differ-
ence w;—®,, approximately equal to the electron plasma
frequency w, in an underdense plasma (w;,@;>>wp).
Gradients of order V/n eV/cm are theoretically possible,
where n is the electron number density in units of cm .

If the transverse dimensions of the beating laser beams
are much greater than the induced plasma wavelength
kp‘lz(k,—kz)_l, the lasers and plasma wave can be
treated approximately as infinite plane waves. Within this
approximation Rosenbluth and Liu? analytically studied
the growth and saturation of longitudinal plasma waves in
a cold, collisionless fluid plasma assuming weak laser
strengths (v, /c=eE; /mwc <<1) and small-amplitude
plasma waves (An/n <<1 and hence eE,/mw,c <<1 if
Uph ~c).

Because the beat-wave generation of plasma waves is a
resonant excitation, large-amplitude plasma waves can
develop even though the lasers are relatively weak. The
condition eE,/mmpc <<1 can then be violated even
though eE; /mwc <<1. In this paper we analytically
study the beat-wave generation of plasma waves with
phase velocity vpp~c in a cold, collisionless fluid plasma
subject to the more general condition eE,/mw,c <1. In
practice, particle trapping and wave breaking occur -even
if vpp~c in a cold plasma for eE,/mw,c>1, and the
fluid approximation breaks down.>

As a plasma wave is generated by two beating lasers it
can scatter laser light up and down in frequency by in-
teger multiples of w, (multiple Raman scattering).* The
scattered light will also beat, inducing oscillations at vari-
ous multiples of w,. However, for laser frequencies
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® >>w,, this sideband generation is negligible prior to
saturation of the plasma wave. For example, when
©~5—10w,, numerical simulation codes indicate that as
long as eE,/mw,c <1, less than 5% of the relative laser
power is scattered into sidebands for times up to satura-
tion of the plasma-wave amplitude.’

Consequently, to study plasma-wave generation and
saturation analytically we will neglect the scattered laser
sidebands. We then have only two beating electromagnet-
ic plane waves and a plasma wave, all with phase veloci-
ties near the speed of light in an underdense plasma. One
can then reduce the relativistic plasma fluid equations to
an approximate ordinary nonlinear differential equation
for the evolution of the longitudinal plasma wave without
recourse to the customary linearization procedure. Not
surprisingly this equation is equivalent to Poisson’s equa-
tion with the electron density being modulated by the
beating lasers and variations in the plasma-wave phase
velocity being neglected. The derivation and asymptotic
solution of this nonlinear equation are the subject of this
paper.

The outline of the paper is as follows. In Sec. II the
equations describing nonlinear waves in a relativistic plas-
ma are reviewed to establish notation. In Sec. III, starting
from the known solution of these equations for a single
light wave in an underdense plasma, the approximate or-
dinary differential equation describing a longitudinal plas-
ma wave driven by two beating light waves is derived.

Amplitude-phase equations describing the asymptotic
solutions of this differential equation are constructed for
small-amplitude plasma waves (eE,/mw,c <<1) in Sec.
IV and large-amplitude waves (eE, /mw,c <1) in Sec. V.
The numerical solution of these asymptotic equations are
compared with that of the original nonlinear differential
equation: We find that our small-amplitude asymptotic
solution agrees with the previous results of Rosenbluth
and Liu in the time domain.? For large-amplitude waves,
our asymptotic solution accurately approximates the nu-
merical solution of the original equation for amplitudes
up to eE,/mw,c~1. Interestingly, our solutions also
agree very well with two-dimensional particle-simulation
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results for the temporal evolution of beat-wave generated
plasma waves. We conclude the paper in Sec. VI with
some comments regarding the experimental implications
of our results for plasma-wave generation in underdense
plasmas.

II. NONLINEAR WAVES IN A PLASMA

The equations describing nonlinear waves in a cold, col-
lisionless relativistic plasma with stationary ions have
been previously given by Akhiezer et al.® The fluid equa-
tions for the electron velocity v, electron density n, and
the fields E and B are

ig+<v-V)p:—el-:—f(vxm ,

ot
V-E=4re(no—n), VXE=—~8 @.1)
¢ ot
V-B=0, VxB=—Topyy LOE
c c at
where p is the electron momentum
mv
_ _ 2.2
P Vii—v?/c?

and ng is the equilibrium electron density.

The wave motion is a function of the single variable
?-r—vpht, where 7 is a unit vector in the direction of prop-
agation, and vy, is the phase velocity. Taking the vector 7
along the z axis and defining the normalized momentum
p=p/mec, Akhiezer et al.® obtain from Egs. (2.1) the fol-
lowing equations for the electron momentum (in the ab-
sence of an external magnetic field)

Toe b Bopx o
dr’ Brzﬂl— 1 BVl +p*—p:
Ty, b Pwrr (2.4)
dTZ th_ 1 Eph 1 +P2 —pP:z
d? 0, Boyp:
L Bup—V14p)+—EEEE 0, (2.5)
dr? TP BenV 1+p>—p;
where
2
Uph z , A4me‘ng
_— =t —— = 2.
Bph ¢ y T t Uph, a)p m ( 6)

Equations (2.3)—(2.5) describe nonlinear plasma waves
p(7) with a given phase velocity v,,. Using these equa-
tions, the electron density n and the fields E and B are
found from Eqgs. (2.1) to be

nOBph Pz
n=———=ng |1+ —ri——5—", 2.7)
Bon— 2 BonV 1+p*—p,
mec 8px me 4py
__mc __mc 9Py 2.8
Ex e dr’ " ey dr 28
d d
mc 4Py mc 4Px
E—_meaPy g mc @Px 2.9
Y e dr Y eBpn dT i
g—_nc d V1+pd), B,=0, (2.10)

== dr e
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where u,=v,/c. Hence, once Egs. (2.3)—(2.5) are solved
for the momentum p(7), one can immediately obtain n (1),
E(r), and B(r) for the plasma wave from Egs.
(2.7)—(2.10).

III. LIGHT WAVES IN A PLASMA

A. One light wave

Equations (2.3)—(2.5) can be used to approximately
describe the generation of a longitudinal plasma wave by
two light waves in an underdense plasma. The method is
suggested by recalling the calculation for a single linearly
polarized light wave in an underdense plasma as given by
Akhiezer et al.®

For a single light wave in an underdense ' plasma,
Bpn~1, and the electron motion is described by the equa-
tions

dzpi PL
+ :O N (3.1)
d02 1+p2’_Pz
d? (Bon—1)p,
———(p,— V1 4p?)+ —2——""=0, (3.2)
402 Pz +p7)+ Mt ' —p,

where p, can be taken as either p, or p,, and

0=(Bon—1)""%w,. (3.3)
With B,,~1, one concludes from Eq. (3.2) that

V1+p?—p,=const >0 . (3.4)
Denoting this constant by C2, Eq. (3.1) becomes

fgj + 5 =0 (3.5)
which has a solution of the form

p1=R cos(6/C) . (3.6)

Since the average of p, over an oscillation vanishes, the
constant C? is determined from Egs. (3.4) and (3.6) to be

C?=(14++R1)'2. 3.7
The solution for the electron motion is then
R? cos(2w7)
pL=R, cos(wT), p,=—F*""—, (3.8)
4/ 1+ 1R?
where
o=0,Bp—1)"1"214FR})"1/4 (3.9)

is the frequency of the light wave.

This is the familiar “figure-eight” motion of a single
electron in the field of a plane wave.” Since @ >>0p, low-
frequency plasma oscillations near w, are not effectively
excited, which is the physical content of Eq. (3.4). Ac-
cording to Eq. (2.10) then, E,~O in this approximation.
Finally note that from Eq. (2.8)

Eﬂﬂ:—"lﬁxl sin(wr) | (3.10)
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so R, is the usual quiver velocity parameter “v, /c” used
as a measure of transverse electron motion in a laser field.
We see that R, is actually a normalized momentum (in
units of mc) rather than a velocity.

B. Two light waves

Now let us consider two linearly polarized light waves
with frequency difference w; —w,~w, in an underdense
plasma (w;,w;>>w,). The beating of these two waves
will excite a low-frequency longitudinal plasma oscilla-
tion. This oscillation and the two light waves have phase
velocities near the speed of light. Strictly speaking Egs.
(2.3)—(2.5) are only applicable to a single mode of given
phase velocity, but since the phase velocities are nearly
equal, we will attempt to treat these three waves in the
plasma as approximately a single, coupled longitudinal-
transverse mode p(7). By choosing the initial conditions
such that there is no longitudinal motion at, say 7=0, we
would then see longitudinal plasma motion evolve for
7> 0.

Because of the beating between the two light waves, we
expect the quantity V'14p*—p, in Eq. (3.4) to become a
slowly varying function of 7 rather than a constant as for
one light wave. Consequently we define the slow depen-
dent variable

x(1)=V1+p*—p, .

Recall that dx /dr is proportional to E,(7), so x (1) is
proportional to the electric potential.

Since the phase velocities of the two light waves are
nearly the same, we try a solution of the form

(3.11)

pPi=pi1+pi2 (3.12)
for the transverse motion, where
pr1=R;coslwT), pi=R,cos(w,7) (3.13)
and
o=+ ATCU =cup(/3%—— D12 12y
(3.14)
r=0— B2 =0y (1) x V)

Here R,;, and w;, are constants, and Aw=w0;—,.
Since x (7) implies a longitudinal density modulation, the
phase velocities 8, are space-time dependent, although
they remain near unity if w;,>>w@,. The group velocity
Aw/Ak is also approximately c.

The ansatz (3.12) is seen to satisfy Eq. (3.1) in the form

dzpl 2
-0 (3.15)
PRI
to order Aw/w, where
w:f"—fzif"—z=m,,<ﬁz—1)—”2x-”2(r> (3.16)

is a constant, and 3 is the phase velocity of a light wave
with frequency w. Because Aw <<w, the superposition
(3.12) is a very good approximation for the transverse

motion. We must still determine an equation for x(7)
however.

For simplicity we will specialize to the case of equal-
intensity lasers, the generalization to different intensities
being straightforward. It will be convenient to choose the
overall signs of p,; and p,, such that

pr=R [cos(w;7)—cos(w,7)]

= —2R, sin(wT) sin (3.17)

Ao
2
The corresponding laser electric field is to order Aw/w,

maoc

E = R, [sin(w,7)—sin(w,7)]

2mawc .
= R cos(wT)sin

(3.18)

Ao
2

Using the solution (3.17) in Eq. (2.5) with B,,=1, we ob-
tain an equation for the slow variable x (7),

2 1_x2+ 2
dx XA _,, (3.19)
d(w,T) 2x
where
2 2.:2 . 2| Aw
pi=4R{sin“(wT)sin —2—7 (3.20)

As long as o >>w,, the high-frequency part of p, will not
excite oscillations in Eq. (3.19), and x (7) will indeed be a
slow variable as assumed. We may then replace sin%(w7)
by its average value of +, and Eq. (3.19) becomes

d*x 1—x2+R?[1—cos(Aw 7)]

d(w,7)? 2x?2

0. (321

Equation (3.21) describes a parametrically excited non-
linear oscillator (i.e., the excitation appears as a periodic
coefficient rather than an inhomogeneous driving term).
One can easily show that Eq. (3.21) is equivalent to
Poisson’s equation with the electron charge density being
modulated by the beating lasers. If R, =0, Eq. (3.21) de-
scribes free, longitudinal nonlinear plasma oscillations
with phase velocity ¢. Upon solving Eq. (3.21) for x (7),
one can immediately obtain the longitudinal electron
momentum from Eq. (3.11),

1_x2+p2
pz('r)=Tl— , (3.22)
the electron density from Eq. (2.7),
n(r)=ng 1+€Ci , (3.23)
and the longitudinal electric field from Eq. (2.10),
E,(r)=1mc 4% (3.24)
e dr

where B, of the plasma wave is taken as unity.
Because the plasma oscillation frequency is a function
of amplitude, the actual phase velocity of the plasma



wave, w,(amplitude)/(k, —k;), will change. Wave break-
ing will occur if this phase velocity and the longitudinal
electron oscillation velocity approach each other. Equa-
tion (3.21) does not exhibit wave breaking because of the
approximation fB;,=1. However we can estimate from
the solution of this equation when wave breaking would
occur simply by comparing the ratio w,(amplitude)/Aw
and the longitudinal electron velocity v,/c, assuming
Aw/Ak~c. The only significant error Eq. (3.21) should
make is in underestimating the electron density oscillation
which becomes singular at the wave-breaking limit.
Equation (3.21) should be a better approximation for the
evolution of the plasma wave in the time domain than in
the space domain since the frequency of a free plasma os-
cillation is independent of the phase velocity (and hence
wavelength) in a cold plasma.

IV. SMALL-AMPLITUDE PLASMA WAVES

To study plasma-wave generation with Eq. (3.21), we
will use the initial conditions

dx (1)

= :1’
x(7=0) dr

=0. 4.1)
7=0

These initial conditions correspond to
p(7=0)=0, n(r=0)=ny, E,(r=0)=0

so there is no longitudinal electron oscillation at 7=0.
We then wish to solve Eq. (3.21) for 7> 0, expecting to see
longitudinal motion evolve. The exact analytic solution of
Eq. (3.21) is not known, but one can numerically integrate
it, as well as construct asymptotic solutions. Both ap-
proaches yield insight to the plasma’s behavior.

For sufficiently weak lasers (R] << 1), the plasma-wave
amplitude is small and conventional asymptotic methods
can be applied to Eq. (3.21). For small oscillations about
x=1 in Eq. (3.21), it is convenient to introduce the vari-

(4.2)

able y(7)=x(7)—1. Expanding Eq. (3.21) in powers of
y (1) yields
d2
——y;+J’~%y2+2y3—‘§‘y4+ e
_d(w,T)

=3RI[1—cos(Aw7)](1—2py +3y2—4y34 -+ ),
4.3)

with initial conditions y (r=0)=[dy(7)/d7],—0=0. The
asymptotic solution of Eq. (4.3) is straightforward using
the well-known Krylov-Bogoliubov-Mitropolsky (KBM)
method. Since the method is a standard one found in
most textbooks on perturbative techniques,® the detailed
calculation need not be given here.

We find that the asymptotic solution of Eq. (4.3) uni-
formly valid for all w,7<O (R 8/3) is

y(r)=a cosp +0(a?) . (4.4)

Here a(7) is a slowly varying amplitude, and ¢(7) is a
rapidly varying phase which satisfy the coupled equations
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2

da 1.
—  — _ “sind,
d(a)PT) 4 sin
i 4.5)
do 3 2 Ri 1
—ottat+—E [1-Lcosad
d(w,n CTawa T i e

In Egs. (4.5), ®=AwT—¢ is a slowly varying phase, and
o=Aw/w,—1 is the relative frequency mismatch between
the laser beat frequency and the plasma frequency. The
constant R2/4 in d®/d (w,7) describes the down shift in
the plasma frequency due solely to the lasers [cf. Eq.
(3.9)]. When this constant is negligible and Aw=w,, Egs.
(4.5) (in the time domain) agree w1th the amplitude-phase
equations of Rosenbluth and Liu? for small-amplitude
driven plasma waves.
Equations (4.5) can be integrated once to yield

2

2 2

da Ri|_ |1 o R L3
d(w,7) 4 2 4 6 ’
(4.6)
R} 1| R
Tcosd)-_—? (I+T a+at

where we assume a (7=0)=0. Although Egs. (4.6) can in
fact be analytically integrated further to express a(7) and
®(7) in terms of Jacobi elliptic functions, the resulting ex-
pressions are so involved for general values of o and R?
as to yield little insight. It will be sufficient to describe
the general behavior of a and ®.

Initially a(7) grows linearly at a rate

da(T)

—1R?
dr “4lep'

7=0

4.7)

The amplitude saturates primarily because of mismatch
between the driver frequency Aw and the free-plasma os-
cillation frequency wy which decreases with amplitude ac-
cording to Eq. (4.5),

wo=w,(1—5a?) . (4.8)

Since there is no damping in Egs. (4.6), the amplitude a
clearly oscillates in the range — A <a < A, where the sa-
turated amplitude A4 is a solution of the cubic equation
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3 4—¥Ri=0.

R 2
o+ —= 4.9)

A3
+ 4

The frequency-response curve A as a function of the shift-
ed frequency mlsmatch o+R1/4is sketched in Fig. 1.
When 0= —R?%/4 [ie., Aw= (1—+R? ), ], the ampli-

tude saturates at
a=A,=(£R}H13. 4.10)

In this case the risetime 7, from a=0 to a =4, can be
easily calculated by integrating Egs. (4.6),

_ RI| 4 2-13 16 |'° _,
TTITT T [T 4 3R? @Dp
~8.5R* 0, ", 4.11)
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FIG. 1. Frequency-response curve 4 as a function of the
shifted frequency mismatch o+R2/4, in Eq. (4.9). The fre-
quency o* is given by Eq. (4.12), and the amplitudes Ao, 4,
and A4 _ are defined by Egs. (4.10), (4.13), and (4.14), respective-
ly. The upper dashed curve represents amplitudes obtained by
adiabatically decreasing the frequency mismatch, while the
lower dashed curve represents unstable amplitudes.

where K (k) is the complete elliptic integral of the first
kind with modulus k.

The frequency-response curve in Fig. 1 exhibits a
jump phenomenon when the frequency mismatch
0=Aw/w,—1 is near the critical value

4 173 )
« 3 | 3R] R7
7 4| 3 4
For o0 > o*, the amplitude saturates at
a=A4,=4"34,, (4.13)
whereas if o <o*, saturation occurs at
a=A_=2"134,. (4.14)

Larger amplitudes can be reached when Aw <, because
the free-plasma oscillation frequency w, decreases with
amplitude, and hence the driver and oscillator are nearer
in resonance for finite amplitudes. One finds from the
analytic integration of Eqgs. (4.6) that the saturation rise-
time 7, however increases to infinity at o*. Beyond this
point the mismatch o is so large that the driver is not
strong enough to increase the amplitude sufficiently and
reduce wg toward Aw. The amplitude then saturates at a
lower level just as it does when Aw > w,.

It is straightforward to numerically compare these pre-
dictions of the asymptotic solution to the behavior of the
exact nonlinear equation (3.21) for the driven plasma os-
cillation. For our purposes it will be easier to numerically
integrate Eqs. (4.5) for a and @ rather than use the
lengthy analytic expressions. We will compare the evolu-
tion of the following three quantities: the normalized
longitudinal electric field

eE, (1) __dx
moyc  d(w,r)’

(4.15)

the normalized electron density

2
n(T)=1+ dxz’ 4.16)
no d(w,T)
and the longitudinal electron velocity
UZ(T) o d2x
u,(r)= = R (4.17)
z c n(7) d(w,r)?

as calculated by numerical integration of the exact equa-
tion (3.21) and the asymptotic solution (4.4) and (4.5).
With y(7) given by Eq. (4.4), the asymptotic expressions
for these quantities, valid for all w,7 <O (R 782y are

eE, (1) . )

———=—asing+0(a“), (4.18)
mwpe

2T g cosp+0(a?), (4.19)
no

u,(1)=—a cos¢+0(a?) . (4.20)

The initial conditions used in the numerical solution of
Egs. (4.5) are a (7=0)=0 and ®(7=0)= —7/2.

Specifically let us consider two interesting examples: (i)
R, =0.05, 0=0 and (ii) R; =0.05, o~0", corresponding
to relatively weak lasers (Rf =2.5%1073). For case (i),
the longitudinal electric field, electron density, and elec-
tron velocity as calculated numerically from the exact
equation (3.21) and asymptotic solution (4.4) and (4.5) are
compared in Figs. 2—4. Numerical integration shows that
initially da /d(wpr):6><10"4, as predicted by Eq. (4.7),
and that the amplitude saturates near a~0.23 when
T~4500, !, as would be expected from Egs. (4.10) and
(4.11) since 0=0> —R?1/4. The oscillation frequency at
saturation is approximately 0.99w, in Figs. 2—4 for both
the exact and asymptotic solutions.

I I |
0.02 — (a) — 0.2
Y i Exact i |
g
< 0 )
uw L
()
-0.02 — -0.2
| l
| (b)
. 0.02 Asymptotic 0.2
(.)Q . -
g
= 0 O
u =
L
-0.02 — -0.2
| | | |
0 IO 20 440 450 460

WwpT
p
FIG. 2. Longitudinal electric field as a function of w,7 calcu-

lated from (a) the exact equation (3.21) and (b) the asymptotic
solution (4.4) and (4.5) for the case R, =0.05, Ao=w,.
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‘ I T
102 | (a)
Exact
o
< 100
<
098 I~
| |
(b)
102 Asymptotic
&
£ 100
fas
098 -
| l I !
) 10 20 440 450 460

WpT
p

FIG. 3. Electron density as a function of w,7 calculated from
(a) the exact equation (3.21) and (b) the asymptotic solution (4.4)
and (4.5) for the case R; =0.05, Aw=w,.

Although the electric field and velocity plots agree
reasonably well, the density plots are noticeably different
at saturation as evidenced by the density spikes in Fig.
3(a). Close inspection of Fig. 2 indicates there is wave
steepening in E,, which is not reproduced by the asymp-

} ] [ T
0.02 — (a)
Exact
u, -
)
-0.02
| |
(b)
0.02 I~ Asymptotic
Uy L
0
-0.02 +—
| | | |
0 10 20 440 450 460

wWpT -
p
FIG. 4. Longitudinal electron velocity as a function of w,r

calculated from (a) the exact equation (3.21) and (b) the asymp-
totic solution (4.4) and (4.5) for the case R, =0.05, Aw=w,.

I T T I
(a) Exact

04 -

]

0.2

-04 .
| 1 | l

éEZ /(Mwpc)

(b) Asymptotic
04 |- yme -

0.2

-0.2

-04 — . -
| | : |

730

FIG. 5. Longitudinal electric field as a function of w,7 calcu-
lated from (a) the exact equation (3.21) and (b) the asymptotic
solution (4.4) and (4.5) for the case R, =0.05, Aw=0.991w,.

totic solution. Since V'E~ny—n, such steepening is
manifested by spiking of the density oscillation (and to a
lesser extent u,). The lowest-order asymptotic expres-
sions contain only single-harmonic trigonometric func-

1.8 T T T T I

(a) Exact

0.6 | ! | |
(b) Asymptotic

1.4 — yme —
CO ~ -
=

1.0 _

0.6 | ! | L |

730 ' 750 770
wpT

FIG. 6. Electron density as a function of w,7 calculated from
(a) the exact equation (3.21) and (b) the asymptotic solution (4.4)
and (4.5) for the case R; =0.05, Aw=0.991w,.
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0.6 T T T |

(a) Exact

04 —

-0.2

-0.4 L | 1 |

(b) Asymptotic
0.4 |- —

0.2 _
Uz

0O H -

-0.2

_o.a L 1 | 1 |
730 750 770
pr

FIG. 7. Longitudinal electron velocity as a function of w,r
calculated from (a) the exact equation (3.21) and (b) the asymp-
totic solution (4.4) and (4.5 for the case R,;=0.05,
Aw=0.991wp.

tions and do not exhibit such wave asymmetries.

In Figs. 5—7 similar comparisons of the electric field,
electron density, and electron velocity are made for case
(ii). According to Eq. (4.12), the critical frequency
mismatch should be

o*(R, =0.05)~—1.06x 1072 .

In Figs. 5-7 a value of o=—-9x10"% (e,
Aw=0.991w,) was used. Since the initial evolution near
7=0 was essentially the same as in Figs. 2—4, only the
behavior near saturation is shown in this case.

As expected from Eq. (4.13), the amplitude does satu-
rate below the value 4, (R, =0.05)~0.38. At saturation
the oscillation frequency is approximately 0.97w, for both
the exact and asymptotic solutions. The risetime for the
asymptotic solution was 7,~730w, ! and increased as o
approached o*. The risetime for the numerical solution
of the exact equation (3.21) was 7,~770w, ! at the value
of o used. This difference is probably due to the fact that
the actual value of o*(R =0.05) for Eq. (3.21) is approxi-
mately — 1.04x 10~2 as determined numerically. In addi-
tion Eq. (4.14) was verified numerically when o <o* in
the exact equation (3.21). Comparison of the density and
velocity plots for the exact and asymptotic equations in
Figs. 6 and 7 indicates considerable disagreement due to
spiking. This is not surprising in that for such large am-
plitudes we have noticeable wave steepening in the electric
field.

(4.21)

V. LARGE-AMPLITUDE PLASMA WAVES

Even for relatively weak lasers, large-amplitude plasma
waves result when driven near resonance. The conven-
tional asymptotic solution (4.4) for the plasma wave does
not reproduce the wave steepening in the electric field and
the spiking in the density and velocity oscillations at large
amplitudes. One can include higher-order harmonics in
the solution of Eq. (4.3), but this becomes very laborious
for large amplitudes where several terms may be required.
For example, the next-order asymptotic solution of Eq.
(4.3) uniformly valid for all w,7 <O (R 2)is

2
y(r)=a cos¢+—‘1—[3——008(2¢)]+O(a3,Rf) , (5.1)

with a and ¢ satisfying Eqgs. (4.5). This still does not ac-
curately reproduce wave steepening, indicating that addi-
tional harmonics are needed. Thus one must work harder
but loses the simplicity and physical insight provided by a
single-term asymptotic solution.

Wave steepening and spiking are well-known charac-
teristics of free, nonlinear plasma oscillations. Equation
(3.21) with R =0 describes such free oscillations with
phase velocity c,

d*x _l—xz
d(w,r? | 2x?

=0, (5.2)
and an exact analytic solution is known in terms of the in-
complete elliptic integral of the second kind, E(¢,k).°
An obvious improvement on the conventional KBM ap-
proximation used earlier is to take this exact nonlinear
solution, with a slowly varying amplitude, as the leading
term in an asymptotic expansion for the driven plasma
wave.

Denoting the argument 3 of E(i,k) by E~!, the in-
verse of the incomplete elliptic integral of the second
kind, the solution to Eq. (5.2) can be written as’

x(f=a— |a—L |sin? |E-! —ai-,k (5.3
a 2q172
[with initial conditions x(r=0)=a>1, dx/dm(r=0)
=0], where
172 12
1+u
k=1L | oo | (5.4)
a 1—u,,

and u,, is the amplitude of the normalized longitudinal
electron velocity u,. The free-plasma oscillation frequen-
cy (=2m/period) is given by

1/4
T, a | 1—um Dp
wo= =75 ’
T 2 2E (k) 2 | 1+u, E[V(2u,,) /(1 +uy,,)]

(5.5)

where E (k) is the complete elliptic integral of the second
kind. In Fig. 8, the ratio wg/w, is shown as a function of
U,,. In the nonrelativistic and ultrarelativistic limits,
respectively,
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FIG. 8. Free-plasma oscillation-frequency ratio wo/w, as a
function of the longitudinal electron velocity amplitude u,,.

(1—-1—36u,%,)wp, as u,, —0
o1 (5.6)
—_(l—u,%,)l/"wp, as u,—1.

2V2

If one assumes that the R? term in Eq. (3.21) is a weak
perturbation of the free-oscillator equation (5.2), then the
leading term in the asymptotic solution for the driven
plasma wave is, from Eq. (5.3),

x(t)=a— a——i sin? |E ! —j%—,k
a 2a17?

(5.7)

(a) Exact
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FIG. 9. Longitudinal electric field as a function of w,7 calcu-
lated from (a) the exact equation (3.21) and (b) the asymptotic

solution (5.7) and (5.8) for the case R; =0.5, Ao=w,.
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FIG. 10. Electron density as a function of w,7 calculated
from (a) the exact equation (3.21) and (b) the asymptotic solution
(5.7) and (5.8) for the case R; =0.5, Aw=w,.
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FIG. 11. Longitudinal electron velocity as a function of w,7
calculated from (a) the. exact equation (3.21) and (b) the asymp-
totic solution (5.7) and (5.8) for the case R, =0.5, Ao =w,.
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where a(7)>1 is a slowly varying amplitude, and ¢(7) is
a rapidly varying phase. We can hypothesize the form of
the amplitude-phase equations appropriate to Eq. (5.7)
based on the insight gained from our earlier interpretation
of the small-amplitude equations (4.4) and (4.5). We
stress that the following is only a physically plausible
conjecture for these equations. Remarkably our intuitive
equations provide a very good approximation to the
behavior of Eq. (3.21) for all oscillation amplitudes
eE,/mwyc <1.

Comparing Eqgs. (4.8) and (5.6), we replace the perturba-
tive frequency shift —a? in Egs. (4.5) by the exact
nonlinear frequency shift 1—/[2a'/?E (k)] from Egq.
(5.5), and the slowly varying phase becomes
®=Awr—m/[2a'?E(k)]¢. This ensures that when
Rf:O, and hence da/d(w,7)=0, we correctly recover
the relation —d®/d(wyr)=d¢/d(w,7)=1 and the free-
oscillation solution (5.3). Since R? is a weak perturbation,
the dependence of the amplitude-phase equations on R?
need not be determined any better than in the convention-
al KBM approximation, with the correspondence in am-
plitudes being a[Eq. (4.4)]= a[Eq.(5.7)]—1. The resulting
equations are then

2

da Ry |
& = sin®,
(w7 7y sin
. (5.8)
do Aw T R7 1
X .2 U PO @ .
d(w,7) @, 2a'?E(k) + 4 a—1°

The asymptotic solution (5.7) should be valid for all

eE, /(muwyC)

! | 1 | I

= (b) Asymptotic -

ek, /(mwy0)

FIG. 12. Longitudinal electric field as a function of w,7 cal-
culated from (a) the exact equation (3.21) and (b) the asymptotic
solution (5.7) and (5.8) for the case R, =0.5, Aw=0.86cw,,.

pr<0(Rf1°/ 3) if the amplitude and phase are deter-

mined by Egs. (5.8). For small oscillations about x=1,
Egs. (5.7) and (5.8) correctly reduce to Eqgs. (4.4) and (4.5).

Although Eqs. (5.8) provide physical insight to the
behavior of the driven plasma wave, the presence of the
elliptic integral renders these equations intractable to fur-
ther analytic integration. Consequently in order to com-
pare the behavior of Egs. (5.7) and (5.8) with that of the
exact equation (3.21), we rely on numerical integration of
the amplitude-phase equations (5.8) in the following.

Not surprisingly, the solution (5.7) is a much better ap-
proximation than the conventional asymptotic solution
(4.4) for small-amplitude plasma waves. For example, in
the case of R, =0.05 considered in Sec. IV one finds ex-
cellent agreement between the numerical solution of Egs.
(3.21), and (5.7) and (5.8).. It is more interesting however
to compare the exact and asymptotic equations for large-
amplitude plasma waves where the conventional asymp-
totic expansion becomes inaccurate.

In particular we will consider an example of relatively
strong lasers, with R; =0.5. We will again compare the
evolution of the longitudinal electric field, electron densi-
ty, and longitudinal electron velocity in Egs. (4.15)—(4.17)
as calculated by numerical integration of Eq. (3.21) and
the asymptotic solution (5.7) and (5.8). The initial condi-
tions used in the numerical integration of Egs. (5.8) are
a(r=0)=1, ®(r=0=—7/2.

These quantities are compared in Figs. 9—11 when
R, =05 and Aw=w, (i.e, 0=0). Both Eq. (3.21) and
Egs. (5.7) and (5.8) initially have da /d (w,7)~0.06. The
electric fields saturate when 7~22w, at eE, /mapyc
~0.81 for the exact equation (3.21) and eE, /mw,c~0.75

6 T I T T
L (a) Exact i

I
|

n/ng

O” 1 | 1 l 1
(b) Asymptotic

n/no

0 | | I
0 20

WpT

FIG. 13. Electron density as a function of w,r calculated
from (a) the exact equation (3.21) and (b) the asymptotic solution
(5.7) and (5.8) for the case R; =0.5, Aw=0.86cw,,.
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for the asymptotic equations (5.7) and (5.8). The agree-
ment in all the plots is quite good considering that these
are large-amplitude oscillations. The longitudinal electron
velocity and oscillation frequency at saturation are ap-
proximately 0.62¢ and 0.9w,, respectively, for both the ex-
act and asymptotic solutions.

The case of near-resonant excitation (Aw=#w,) is also
interesting to consider. Numerical investigation of the ex-
act equation (3.21) and the amplitude-phase equations
(5.8) at large amplitudes indicates that they exhibit a
frequency-response behavior similar to that shown in Fig.
1 for Egs. (4.5) if one identifies 4 with the saturated value
of eE,/mw,c. The ratios 4./A4, from Egs. (4.13) and
(4.14) continue to hold approximately at large amplitudes
for both Egs. (3.21) and (5.8). However, the value of the
critical frequency mismatch, o*, for Egs. (5.8) at a given
value of R, does differ some from that for Eq. (3.21).
For example, when R, =0.5, we find that o*[Eq.
(3.21)]=—0.18 and o*[Egs. (5.8)]=—0.22. For large-
amplitude waves, both Egs. (3.21) and (5.8) give
E,(0>0%)/E,(0=0)~2, whereas for small-amplitude
waves this ratio is about 1.6.

In Figs. 12—14, the electric field, electron density, and
electron velocity from the numerical solution of Eq. (3.21)
and the asymptotic solution (5.7) and (5.8) are compared
when R, =0.5 and Aw=0.86w, (i.e., 0=-—0.14). The
electric field saturates when 7~45w, U at ek, /may,c
~1.35 for the exact equation (3.21) and eE,/mw,c~1.25
for the asymptotic equations (5.7) and (5.8). The plots
agree reasonably well with the differences being due pri-
marily to the different values of 0*(R; =0.5) mentioned

- 1.0 1 L 1 | 1
1.0

(b) Asymptotic —

FIG. 14. Longitudinal electron velocity as a function of w,7
calculated from (a) the exact equation (3.21) and (b) the asymp-
totic solution (5.7) and (5.8) for the case R; =0.5, Aw=0.86w,.

above. At saturation the longitudinal electron velocity
and oscillation frequency are approximately 0.83¢ and
0.75w,, respectively, for both the exact and asymptotic
solutions. Under these conditions the phase velocity in an
actual plasma would have decreased to 0.87c¢, which is
near wave breaking.

One can proceed further and compare the asymptotic
solution (5.7) to the results of particle-simulation codes
which numerically solve Maxwell’s equations and the
equations of motion. We will only make one such com-
parison here based on the two-dimensional plasma-
simulation results of Sullivan and Godfrey.> Figures 15(a)
and 15(b) are taken from Ref. 5 (with permission of the
authors) and show the temporal evolution of two beating
laser electric fields,

mawc

E = R [sin(w;7)+sin(w,7)]; 0~100, ,

(5.9)
R, =0.5, Aa)-—-a)p ,

and the resulting longitudinal plasma wave as calculated
in a particle simulation. The lasers turn on at 7=25w, !
with a risetime we estimate to be 40w, U fie,

e /(mwpc)
o

-1.0 | | l
] 25 50 75 100

v (w3)

FIG. 15. Temporal evolution of (a) two beating laser electric
fields (@;=10.6w,, ®,=9.6w,, R;=0.5) and (b) the resulting
longitudinal plasma electric field as calculated in a particle
simulation (taken from Ref. 5 with permission of the authors).
For comparison the longitudinal plasma electric field as calcu-
lated numerically from (c) the exact equation (3.19) and (d) the
asymptotic solution (5.7) with the same laser parameters is also
shown.
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FIG. 16. Saturated longitudinal electric field eE, /mw,c as a
function of the laser-intensity parameter R? when the relative
frequency mismatch o=0%, — R2/4, and 0, as calculated from

the numerical solution of Eq. (3.21). The critical frequency
mismatch is denoted by o*.
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R (w,7)=R [1—exp(—w,7/40)]; R, =0.5}. Figures
15(c) and 15(d) show the longitudinal electric field as cal-
culated from Eq. (3.19) and the asymptotic solution (5.7),
respectively, with these laser parameters [and using the
appropriate expression for p,(7) corresponding to E, (1)
in Eq. (5.9)]. The agreement between the plasma simula-
tion and our solutions is excellent. According to our solu-
tions in Figs. 15(c) and 15(d), the longitudinal electric
field saturates near eE, /mw,c~0.65, while the longitudi-
nal electron velocity and oscillation frequency at satura-
tion are approximately 0.55¢ and 0.94w,,, respectively.

VI. CONCLUSION

The nonlinear asymptotic solution (5.7) for the driven
plasma wave is a very good approximation to the numeri-
cal solution of the exact equation (3.21) for times up to
saturation and amplitudes up to eE,/maw,c~1. Wave
steepening is" correctly accounted for by this solution.
Furthermore our solution agrees well with two-
dimensional particle-simulation results for beat-wave gen-
erated plasma waves in the time domain. The occurrence
of wave breaking for a given laser intensity and frequency
mismatch can be estimated from our equations by com-

T T T T T TTIT T T TTTT]
To = -
_o_* fer —
10 & E
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Tom 1073 1072 107!
2
RT

FIG. 17. The negative of the critical frequency mismatch o*
as a function of the laser-intensity parameter R} from the nu-
merical solution of Eq. (3.21).

paring the ratio of the oscillation frequency and laser beat
frequency with the longitudinal electron velocity v, /c.
Our equations indicate that wave breaking generally
occurs for amplitudes near eE, /mw,c~1.3.

We conclude that our equations, which neglect scat-
tered laser sidebands and variations in the phase velocity,
provide an adequate fluid description of the essential
physics governing the temporal growth and saturation of
large-amplitude plasma waves below the wave-breaking
limit. According to the amplitude-phase equations, the
basic saturation mechanism is frequency mismatch be-
tween the laser beat frequency and the amplitude-
dependent plasma frequency as long as particle trapping is
small. Since the plasma frequency decreases with ampli-
tude, higher longitudinal gradients can be obtained for a
given laser intensity if the laser beat frequency is less than
®, by an amount dependent on the laser intensity. The
risetime to saturation increases as a result, however. Fig-
ure 16 shows the saturated longitudinal electric field
eEp/mawyc as a function of the laser-intensity parameter
R} for different values of the relative-frequency
mismatch o, as calculated from the numerical solution of
Eq. (3.21). The critical frequency mismatch o* as a func-
tion of R? from this same equation is shown in Fig. 17.

The simplicity of our equations facilitates the compar-
ison of different experimental situations. In Table I we

TABLE 1. Comparison of resonant and near-resonant excitation of plasma waves by two equal-
intensity beating CO, lasers (A;=10.6u, A, =10.3u, 0 /w,~33, no=~10'* cm~3) based on the analysis of
Secs. IV and V. The gradient in the last row is limited by wave breaking. The laser quiver velocity is
Vosc/c. The ratio of the laser beat frequency and plasma frequency is Aw/w,. The combined laser in-

tensity is 1 =2 X cE b /8 in units of W/cm?.

Gradient Energy-absorption

vDSC E
—= Ao I (W/cm?) e (GeV/m) fraction

c wp ma)pc
0.05 1 710" 0.23 2.3 1%
0.05 0.99 7% 10" 0.38 3.8 3%
0.5 1 7% 101 8.0 0.1%
0.5 0.86 710" 13.0 0.3%
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compare resonant and near-resonant excitation of plasma
waves by two equal-intensity beating CO, lasers (A~10u)
in a plasma of density 10'® cm~3 (0.1% of the critical
density). The energy absorption by the plasma wave
E‘,2/2E %er is seen to decrease with increasing laser inten-
sity. The advantage of having Aw <w, is clear with the
energy absorption increasing about three times over the
case Aw=w,. Indeed, the allowed frequency mismatch in
the last row of Table I is limited by wave breaking. At
lower laser intensities, where no wave breaking would
occur at the critical frequency mismatch, the energy ab-

sorption would be about four times the case Aw=w,. The
calculated energy-absorption fractions in Table I are for
©~33w, and vary like o~ ? for different .
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