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The kinetics of a number of prototypical diffusion-controlled reactions are studied, primarily
through the application of scaling approaches. Our goal is to investigate the effects of spatial inho-
mogeneities in the particle densities on the reaction kinetics. In general, we find that there exists an
upper critical dimension below which the kinetics cannot be described by a rate-equation analysis, an
approach which gives the kinetic laws of a mean-field approximation. Below the upper critical di-
mension, spatial inhomogeneities in the particle densities give rise to new fluctuation-dominated ki-
netics. For irreversible reactions, with bimolecular decay A+B—+inert being a simple generic ex-

ample, universal kinetic laws are obtained which are a function only of the spatial dimension, the
number of particles needed to initiate a reaction, and the nature of the particle-conservation laws for
the system. We also consider the generalization of bimolecular decay to a multistate process where
particles of variable "heights" and traps of variable "depths" react. This phenomenologically rich
example serves as an illustrative testing ground for scaling ideas. The introduction of a small reac-
tion probability on bimolecular decay provides an example of a dramatic crossover from an initial
mean-field decay to the fluctuation-dominated decay law at large times. When the possibility of a
reverse reaction is allowed in bimolecular decay, the available evidence suggests that there is a
power-law approach to the equilibrium state, rather than an exponential approach predicted by the
rate equation. Many of our new theoretical predictions are tested by extensive numerical simula-
tions.

I. INTRODUCTION

The understanding of the kinetics of diffusion-con-
trolled reactions is an important basic science problem
with a wide variety of applications. ' It has become in-
creasingly appreciated, especially very recently, " that
the effects of spatial inhomogeneities in the densities of
the reacting particles can have rather dramatic effects on
the kinetics. The primary aim of this paper is to elucidate
the role of these inhomogeneities, or spatial fluctuations,
in determining the kinetics of various simple model
diffusion-controlled reactions.

The traditional approach for studying reaction kinetics
is the rate equation. It is to be emphasized that this ap-
proach gives results which are analogous to mean-field
predictions in the theory of critical phenomena. The
rate-equation approach implicitly assumes that the reac-
tant densities are everywhere spatially uniform, i.e., the lo-
cal and global densities coincide. This uniformity can be
thought of as arising from either an infinite mobility of
the reactants, or from a vanishingly small probability that
a chemical reaction actually takes place when reactive
species meet. Both of these mechanisms ensure that each
particle has the same probability of reacting with any oth-
er particle in the system. However, if the particle mobili-
ty becomes sufficiently small, or equivalently, if the mi-
croscopic chemical-reaction probability becomes large
enough, there is a crossover to a new regime where a given

particle is more likely to react with local neighbors rather
than with distant particles. This behavior defines the re-
gime of the diffusion-controlled reaction, where spatial
fluctuations can develop and ultimately determine the ki-
netic behavior.

One example of a diffusion-controlled reaction where
fluctuations modify the kinetic behavior is the unimolecu-
lar trapping reaction, which may be written as
A +B +(1—e)—A +B (0 & e & 1). Here A particles are ab-
sorbed when they meet a B particle, either partially (e & 1)
or perfectly (e= 1), while the B's are unaffected by the re-
action. If the A particles diffuse and the B's are static
and randomly distributed, then it has been established
that the density of the A' s, pz(t), decays as
exp( —kps + t" ' + '), where k is a constant, pz is the
concentration of B's (traps), and d is the spatial dimen-
sion. ' This unusual decay law stems from the
predominant role played by large trap-free regions, events
which occur with an exponentially small probability. In a
trap-free region of linear dimension I, the decay is ex-
ponential, but with a decay time proportional to l .
Averaging over all such trap-free regions then leads to a
shift in the decay law from purely exponential, as would
be predicted by a rate-equation approach, to the slower
quasiexponential decay mentioned above.

While spatial inhomogeneities in the trap density ulti-
mately govern the asymptotic decay, this example is
somewhat pathological as the long-time decay depends
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crucially on the presence of extremely rare events which
happen to be present in a fixed initial distribution of dis-
order. As a result, the anomalous long-time decay in the
trapping reaction may not be experimentally observable.
However, if both the A and B species undergo a reaction
upon meeting, then both particle distributions will be
changing as a function of time. Thus fluctuation
effects —if present —may be generated by the kinetics of
the reaction itself. This should provide a more experi-
mentally realizable situation with which one can investi-
gate the effects of spatial inhomogeneities.

A simple, but extremely useful, testing ground for in-
vestigating these fluctuation effects is provided by the ir-
reversible bimolecular reaction A +B~inert. An initial
breakthrough in understanding the influence of fluctua-
tions in this reaction was made by Toussaint and
Wilczek. For equal initial densities of the A and B parti-
cles, they showed that p„(t) decays as t "~" for d &4.
They also performed a striking simulation which demon-
strates that a homogeneous but random initial particle dis-
tribution evolves into an alternating array of A-rich and
B-rich domains. Recombination takes place only along
the domain boundaries, with smaller domains eventually
being annihilated by larger ones. This domain-
annihilation process ultimately gives rise to a decay which
is slower than the 1/t law predicted by the rate equation.

Very recently we have developed a scaling theory to in-
vestigate the fluctuation-dominated kinetics of the bi-
molecular reaction. ' This simple approach correctly
predicts the asymptotic decay laws for the cases of equal
and unequal initial densities of A's and B's, as well as for
different forms of particle transport. We will extend this
theoretical approach to a broader range of diffusion-
controlled reactions, with the goal of describing very gen-
eral aspects of fluctuation-dominated kinetics.

In Sec. II we first explain the scaling approach for the
simple recombination processes A +B—+inert and
A +A —+inert. A simple intuitive domain picture is
developed from which the kinetics can be derived easily.
The decay laws for the case of biased diffusion, appropri-
ate for describing the motion of charged particles in a uni-
form external electric field, are also derived. In addition,
the scaling approach is generalized to describe the mul-
tiparticle reaction processes A ~ +A2+ - +A& ~inert
and %A~inert. A more general reaction involving in-
teractions between particles of variable "heights" and an-
tiparticles of variable "depths" is introduced and studied
in Sec. III. This reaction may serve as a description of
soliton-antisoliton annihilation or of multistate recom-
bination processes. An unusual dependence of the decay
laws on the heights and depths of the reactants is derived
and verified numerically. In Sec. IV we investigate the ef-
fects of introducing a small reaction probability, defined
as the probability that interacting particles actually under-
go a reaction when they meet, on the kinetics of bimolecu-
lar decay. The asymptotic independence of the decay on
the reaction probability is interpreted in terms of the scal-
ing approach and the domain picture mentioned above.
In Sec. V we describe the anomalously slow approach to
equilibrium in the reversible birn olecular reaction
A +B~C and discuss the role played by spatial fluctua-

tions. Finally, we conclude in Sec. VI.

II. SCALING APPROACH FOR IRREVERSIBLE
BIMOLECULAR REACTIONS

A. Two-species reaction A +B—+inert

This reaction may be used to describe electron-hole
recombination in condensed-matter systems, or ionic
recombination in plasmas in the limiting situation where
the Debye screening length is small so that interparticle
interactions can be neglected. We describe th'ese reactions
in terms of an idealized model in which an inert particle
species is formed instantly and irreversibly when an A
and a B particle meet. This inert species is assumed to
play no further role as long as the reaction is strictly ir-
reversible. In addition, no reaction between particles of
the same species is allowed. As we shall see, the most in-
teresting situation occurs when the initial spatial distribu-
tions of the two particle species are homogeneous but ran-
dom.

The standard approach to describe the kinetics of this
reaction is the following rate equation: '

dp~(t)
dt

kpg(t)pg(t)—,

where p~(t) and p~(t) are the densities of species A and B
at time t, respectively, and k is the rate coefficient. The
right-hand side represents the probability that an A and a
B particle will meet, thus contributing to the time depen-
dence of the particle density. Without loss of generality,
we may assume that pz(0) )p„(0) in the ensuing discus-
sion. Under this assumption, the solution to Eq. (1) is

C/[[1+C/pg(0)]e "'—lI, C) 0
Pq(t)= '

p„(0)/[I+kp„(0)t], C =0
(2a)

(2b)

1/kt, ~o &&t &&z
pg(r) —= .

exp I
—k [p~ (0)—p~ (0)]t I, t ))r

where ro ——[kp~(0)] ' is the time required before any re-
action is initiated, and the crossover time ~ is given by
r= I k [pz(0) —p~(0)] I

'. The physical meaning of Eqs.
(3) is that as long as the density of the minority species
(A) is much larger than the particle-density difference,
then the system cannot distinguish which of the particle
species is in the majority. Therefore the decay coincides
with the 1/t decay of a system with equal initial densities.
In particular, when the initial density difference equals
zero, the 1/t decay persists asymptotically. However, if
the initial densities of A and B are unequal, a situation is
eventually reached where p~ (t) &&p~(0) —p~ (0). It is
then likely that each A particle will be isolated within a
large region which is (sparsely) populated only by B parti-
cles. In this case, subsequent decay of the A's will not be

(3a)

(3b)

where the constant C is the conserved initial particle-
density difference, pz(0) —p~(0). In the situation where
C «pz(0), Eq. (2a) yields two important asymptotic lim-
its:
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affected by whether or not the corresponding annihilation
of the B's continues to occur. In this limit, therefore, the
decay crosses over to that of the trapping reaction, i.e., ex-
ponential decay.

As mentioned in the Introduction, Eqs. (2) and (3)
represent the mean-field limits of the decay laws since
spatial fluctuations in the particle density have been
neglected. That is, the rate equation is written in terms of
the global density pz(t) which has been taken to coincide
with the local density. The rate-equation approximation
breaks down, however, if the initial distribution of reac-
tants is homogeneous but random. To account for the ef-
fects of spatial fluctuations in this case, we note that if
p~(0) )p~ (0), then the number of A and B particles in a
finite volume V will satisfy the same inequality, N~ & Nq,
only for V sufficiently large. For smaller volumes, local
v N type fl-uctuations may reverse the sense of the in-
equali. ty in the particle numbers. Consequently, the na-
ture of the decay at short and large length scales will be
qualitatively different. Since the diffusing particles ex-
plore larger spatial scales as time increases, we can there-
fore expect a crossover in the decay law as a function of
time.

To develop this idea quantitatively, ' consider a spatial
region of linear dimension l and volume 1 . The number
of A particles in this volume at t =0 is

N~ =p~ (0)~"++p~ (o)~" (4)

Due to fluctuations, embodied by the second term in Eq.
(5), it is possible to have N~ &Nz in a sufficiently small
volume even if p~(0) &p~(0). For a fixed initial density
difference, the size of the largest volume in which the
minority species can predominate may be estimated by
con'sidering the maximum positive fluctuation in the
minority species (A), and the maximum negative fluctua-
tion in the majority species (B), and setting N„=N~.
This yields a characteristic length scale for the maximal
volume,

0-[V'pa(0) —&p~(o)l "".

This length is equivalent to a characteristic time scale
tg-g /D, where D is the diffusion coefficient. This is
the time required for a diffusing particle to traverse a
volume of radius g.

In terms of this time scale, we now make the following
scaling ansatz for the particle density, in analogy with the
crossover phenomenon displayed by the rate equation,

pz(t)-Cat fa(t/t~)

and similarly for p~(t). Here fz(x) and fz(x) are scaling
functions of the dimensionless variable x:—t/t~, and Cz
and Cz are constants which depend on the initial condi-
tions. We expect that the scaling functions will approach

and similarly for Nz. Here the second term represents the
local fluctuations inherent in the random distribution of
particles. The particle-number difference in this volume
is, therefore,

Na N~ = [pa(0—) —p~ (0)]1"+[&pa(0)+&p~ (0)l~"" .

constants for x «1 and that they will decay faster than
power laws for x ~& 1. To fix the unknowns in Eq. (7), we
first use the conservation of particle-density difference
p~ (t) p—~(t) =pz(0) —pg(0) and then use Eq. (6) to
rewrite the initial particle-density difference in terms of t
This gives

a = d /4, Cg ——Cg -= [Qpg (0)+Qpg(0)] . (9)

In the limit pz(0)~pz(0), the above result agrees with
the decay law first predicted by Toussaint and Wilczek,
for the special ease of equal initial particle densities. The
result (9) should hold for spatial dimensions d &4, where
the decay due to the fluctuation mechanism is slower than
the rate-equation decay. At d =4, these two decays coin-
cide, thus identifying d =4 as the upper critical dimen-
sion. Above this dimension, the mean-field decay law of
I/t holds since it is the slower decay of the two processes.

The prediction (9) for the decay law is in excellent
agreement with our simulations, and representative results
are shown in Fig. I. Since the relevant transport parame-
ter is the relative diffusion coefficient of the A's and B's,
we have, for reasons of technical convenience only, taken
one of the species to be at rest in our simulations. The
numerical results of this system are essentially identical to
the results obtained when both particle species move. '

From our numerical results, one can also confirm the
scaling theory by verifying that data collapsing occurs. '

It is possible to give a simple pictorial derivation of the
decay for equal initial particle densities, which makes use
of the observed segregation of the particles into distinct
domains of opposite species. In Fig. 2 we illustrate the
evolution of a system of randomly distributed A and B
particles due to the reaction. Initially, in a region of
volume V = I the number of A particles is
N~ =p~(0)l"+V p~(0)l . After a time t-l /D the par-
ticles will have time to completely "mix" within the
volume V and annihilate in pairs leaving only the residual
fluctuations. These residual particles define a domain in
which the number of particles is simply +pz(0)l", or
equivalently a particle density of Qpz(0)/I", as illustrat-
ed in Fig. 2(b). Since the system is a homogeneous collec-
tion of alternating A-rich and B-rich domains, each of
size l=(Dt)'~, the global density is approximately one-
half the density within a single domain. We therefore
conclude that pg(t)=+pg(0)(D&)

It is also instructive to give an alternative argument for
the t'~ dependence of the domain size to illustrate the
domain-growth mechanism more clearly. Since the sys-
tem can be viewed as a homogeneous collection of
domains of approximately the same linear dimension (up
to v N type fluctuations), th-e primary growth mechanism
is the annihilation of smaller domains by the coalescence

Cafe(«rg) C f—~ («rg)
= [V'pg(0)+ Qpg (0)]tg " t . (8)

Since f~ and fz are functions only of the sealing variable
t/t~, it follows that the right-hand side of Eq. (8) must be
expressible in terms of this variable only. This fact, to-
gether with the condition C„=C~ when p~ (0)=p~(0)
then yields
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FICx. 1. Representative data for bimolecular decay in one dimension. (a) Plot of the surviving fraction pq(t)/p&(0) vs time on a

double logarithmic scale for a single configuration of isotropically diffusing A particles on a lattice of 10 sites, for various initial den-
sities. The dashed line has slope —4. (b) Results from 10 configurations on a lattice of 2.5X10 sites shown for an initial state
where pz(0) =0.1 and p~(0) =0.2. Plotted is the negative of the logarithm of the surviving fraction vs time on a double logarithmic
scale to illustrate the exp( —t' ) dependence of the density. Here the dashed line has slope + 4. (c) Results for the decay of drifting
particles for 20 configurations on a chain of 10 sites for p&(0) =p~(0) =0.1. In these simulations we considered the extreme case
where the mobile A particles move in only one direction. The dashed line has slope —2. (d) Logarithm of the density for drifting

particles for 50 configurations on a chain of 2.0)& 10 sites with p~(0) =0. 1 and p~(0) =0.2. The dashed line has slope + 2 .

p„(t)=expI —[Qp (0)—Qp„(0)]t"~41 . (10)

This decay law is in good agreement with numerical simu-
lations in d =1 and d =2 [Fig. 1(b)]. However, there is
an apparent contradiction for 2 &d &4. In this case, Eq.

of larger surrounding domains as indicated in Fig. 2(c).
When this happens the larger domains have grown in
linear dimension by an amount of the order of I. The
coalescence occurs when all the particles in the smaller
domain have had time to diffuse to the domain boundary
where they are annihilated, i.e., in a time t-l /D. This
leads immediately to a domain size which grows as t'
and u1timately to the t " decay law.

To obtain the long-time decay when p~(0) &ps(0) we
employ the following heuristic argument. The rate equa-
tion (1) can be modified to give the correct t "~ decay
law for the equal initial density case by allowing the rate
coefficient to acquire the time dependence k(t)-t"~
This may be viewed as an attempt to represent
phenomenologically the decrease of the meeting probabili-
ty of an 3 and a B particle due to domain formation.
For unequal initial particie densities, we assume that the
rate equation with this new time-dependent rate coeffi-
cient wilI continue to hold. This, together with the as-
sumption of a scaling form for pz(t), then gives

(10) predicts a decay which is faster than that of the uni-
molecular trapping reaction. Since one can view the bi-
molecular decay as a trapping reaction in which the traps
disappear together with the particles, it seems that the
asymptotic decay in the bimolecular reaction must be
slower than in the trapping reaction. We believe that the
apparent difficulty stems from the fact that our simple-

t=O
-- I.AB A 8 A AB+BA 8 BB A 8 A)BABABAAAB)--.

(0)

~....I
I

(b)

A == B == A
I I I

t&o = g(t)

~ ~.I
I

(c)

FIG. 2. Schematic illustration of the domain-growth process
(drawn in one dimension for simplicity). In the first line we
sketch an initial random configuration of A's and 8's. At an
intermediate time, shown on the second line, articles have time
to mix locally within a'length scale l(t)- Dt, leaving behind
only residual fluctuations which form domains. These domains
are continuously growing by coalescence of larger domains as il-
lustrated in the third hne.
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minded approach is not sensitive to the very rare but large
trap-free regions whose consideration will be required to
account correctly for the asymptotic decay in the unequal
density case.

The arguments given above can be easily extended to
the situation where there is a relative drift velocity be-
tween the A and B particles in addition to the diffusive
motion. This may be relevant for understanding the
recombination of charged particles in a uniform external
electric field. In this case, there are two different length
scales which characterize the spatial volume explored by a
mobile particle. Along the bias particles will drift a dis-
tance l~~-t, while in the d —1 perpendicular directions
particles will diffuse a distance l) -t '/ . Thus the
volume explored by a drifting, diffusing particle will be
proportional to l~~l& ', and this volume grows with time
as t'"+"/. By considering the local fluctuations of the
particle-number difference in this volume, and following
the same arguments that led to the decay laws for the case
of isotropic diffusion, we obtain the asymptotic decays

Qp~(0)t '"+", t &&tg (1 la)

pAexp
I

[~p(p)/p(p)]t(d+))/4 I t ))
(1 lb)

and single-species decays can be investigated on fractal
sets io, zz, z5 Roughly speaking, the decay laws can be ob-
tained by simply replacing the spatial dimension d, in the
results given in Eqs. (9)—(12), by the fraction dimension
of the fractal set on which the reaction is taking place.
This result follows directly by replacing the diffusion ex-
ponent of 2 appropriate for a Euclidean space with the
corresponding exponent on a fractal and by replacing the
spatial dimension d with the fractal dimension of the set
under consideration.

C. Multiparticle reactions

The kinetics of the multiparticle reactions 2 ) +A z

+ . . - +A& —+inert and RA~inert can be also studied
by extending the scaling approaches for A +8~inert and
A +A —+inert. Such multiparticle processes can be con-
structed in practice through a sequence of bimolecular
processes if the intermediate steps take place very quickly
and the products of the intermediate steps can be elim-
inated adiabatically.

To begin our discussion we first consider the rate equa-
tion appropriate to describe the reaction A~+Aq+
+ A~~inert,

p)(t) = —kp)(t)pq(t) ' ' p))/(t) (13)
where the crossover time t~ is now given by
[Qpt) (0)—Qpz (0)] /'"+ ". These decays should be
valid below an upper critical dimension of 3. The decay
laws quoted in Eqs. (8), (10), and (11) are in good agree-
ment with our numerical simulation as i1lustrated in Figs.
1(c) and 1(d).

Here p;(t) is the density of the ith species at time t and k
is the rate coefficient. For simplicity we consider the case
cV =3 and also assume that the initial densities obey the
inequalities p)(0) &pz(0) &p3(0). In this case the exact
solution to Eq. (13) is

B. Single-species reaction A +A ~inert

A simpler scaling approach can be developed to study
the single-species reaction A +A —+inert. ' ' ' We an-
ticipate that this decay process should be in a different
universality class than the two-species reaction since there
is no conservation law analogous to the invariance of the
particle-density difference. In order to write a scaling
form for the particle density, we note the existence of a
fundamental time scale r-p„(0) ", which is the time
required for a particle to diffuse a distance of the order of
the initial interparticle spacing. For t & ~, there should be
essentially no decay, while for t & ~, the asymptotic decay
law should set in. This crossover may be described by the
scaling form

p~ (t) -p& (0)f (t l~), (12)

where the scaling function f(x)~const for x &&1 and
f(x)-x~ for x &&1. To fix the exponent p in the limit-
ing form off(x) we use the observed fact that the asymp-
totic decay for single-species decay is independent of the
initial density. ' ' ' This fixes f(x) to vary as x
when x is large, so that the dependence on pz(0) in Eq.
(12) will be canceled in the asymptotic limit. This leads to
the asymptotic decay law of t for the particle density.
From comparing Eq. (12) with the rate-equation solution,
we expect an upper critical dimension of 2.

It is also worth mentioning that both the two-species

( ) (p)
' (C)+C~)/C~ '

( )
' C)/C~

p)(0) pp(t) p3(0)

=exp[ —C) (C) + Cg )kt] (14)

with C) ——pz(0) —p)(0) and Cz ——p3(0) —p&(0).
From this relatively complicated solution several limit-

ing behaviors can be extracted which depend on the rela-
tive concentrations of the various species, in analogy with
the discussion following Eq. (3) for the two-body case.
The generalization to the N-body reaction follows by
straightforward extension. At short times, but beyond the
time required for any reaction to begin, none of the
species is established as the majority except in very micro-
scopic regions. Therefore the decay is the same as a sys-
tem with equal initial densities of the reactants, i.e., a
power-law decay of

pq(t)=(kt) ', ro« t «r (15a)

where ~o is again the time needed before the reaction
starts and ~ is the shortest of the various crossover times
to an intermediate regime, which will be defined below.
For an arbitrary value of X the appropriate decay would
be (kt) '/' ", i.e., a progressively slower decay law as
the number of reactants required to initiate the reaction is
increased. This decay law also describes the asymptotic
particle density in the single-species reaction XA —+inert.

Then there follows an intermediate-time regime where
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two distinct possibilities can occur, as indicated schemati-
cally in Fig. 3. One generic case is obtained by choosing
the initial condition pt{0) &p2{0)«p3(0). For this initial
state, species 1 and 2 are established as being in the
minority with respect to species 3 in the intermediate time
regime, but the system cannot determine between 1 and 2
as the absolute minority. The rate-equation kinetics in
this regime thus coincides with the asymptotic behavior of
a system with the initial density conditions pt(0) =p2(0)
&p3(0). The latter system displays a power-law decay for

pt(t) equal to [(Ct+C2)kt] . The other generic possi-
bility is that the initial density condition is p&(0) «p2(0)
&p3(0). In the intermediate-time regime, species 1 is es-
tablished as the absolute minority, while the absolute-
majority species remains undetermined. Within the rate-
equation approximation, the kinetics now coincides with
that of a system with the initial conditions pt(0) &p2(0)

p3(0). That is, pl(t) decays as exp( —C2tkt). Finally
there is the asymptotic regime where the system estab-
lishes the global inequality in the densities of all three
species, and the asymptotic decay is

p, (t)-exp[C, (Ct+C~)kt] as t &oo . — (15b)

&I —&k -[pj(0)—pk(0)]i "+[&p,(0)+V'pk(0)]i""

(17)

In analogy with the two-body reaction, we may then esti-
mate a characteristic length scale where local fluctuations
between the jth and kth species are important:

kk-[V'pk(0) —V'p, (0)1 "" [pJ(0) &p {o}] (18)

Equivalently, there is a characteristic time scale t~k pro-

pi(0) &pz(0) &pq(0) Initial State

Pt(t) =Pq(t) -=Pa(t) Short Time

pi(t) &p~(t)="p~(t) p~(t}=pp(t) &pq(t)
Intermediate

Time

P, (t) (Pq(t) &Pp(t) Long Time

FIG. 3. The two possible generic evolutions of the relative
particle densities for a three-species system of unequal initial
densities due to annihilation of particles through three-body
recombination.

To include the effects of spatial fluctuations we again
treat the three-body reaction 3

& +A2+ A 3 ~inert in de-
tail, and the generalization to the X-body case is immedi-
ate. The number of particles of the ith species in a
volume I is

X; =p;(0)l"+Qp;(0)l" (i =1,2, 3) .

Therefore the particle-number difference between the jth
and kth species in this volume will be

portional to gjk. With this time scale we now write a scal-
ing form for p;(t) by assuming that the decay will be a
power law for t less than the smallest time scale from the
set I tp, j,

p;(t)-C;t f;(Ix,k]), (19)

where f;( I xjk I } is a scaling function of the set of dimen-
sionless variables x1k =tlt—jk, and C; is a constant which
depends on the initial conditions.

To fix the exponent cx it is useful to consider the partic-
ular initial condition pt(0) &p2(0)=p3(0) s«hat t23
diverges while t» ——t t2 =r. Equation (19) can now be
wrjtten more simply as

p;(t)-C;t f;(tjr), (20)

where f; ( t jr) =f; (0, t jt», t /t t 2 ). From the conservation
of particle-density difference, p, (t) —p2(t)=p&(0) —p2(0)
and from Eq. (20), we have

[pt(0) —p2(0)]t =Ctf (tt jr) —C2f2(t jr) . (21)

By using the fact that f~(x) is a function only of the scal-
ing variable x and by rewriting the density difference in
terms of tjk according to Eq. (18) we find

a=d/4, C&
——C2—- [Qp&(0)+.Qp2(0)] . (22)

In the limit pt(0)~p2(0), the purely t power-law decay
will be recovered in Eq. (20). We therefore predict

p;(t) —+p;(0)t ~~4 (23)

for the case of equal initial densities of three reactants.
In two dimensions this decay law is the same as the

rate-equation prediction when 1V =3; this defines the
upper critical dimension d, to be equal to 2. We therefore
expect a t decay below two dimensions, and a t
decay for d &2.

To generalize to the X-body reaction for equal initial
densities of the reactants, we choose the initial conditions
p&(0) & pz(0) =p3(0) = . =pz(0) and follow the same
steps as outlined above. This gives p;(t)-+p;(0)t
below d, =4/(X —1), while for d)d„ the decay law
obeys the rate-equation form of t ' ' ". The universal
N-independent kinetics predicted for d & d, stems from
the fact that local fluctuations in density difference decay
only by diffusion and not by the reaction process. Hence
the decay should be independent of the number of reac-
tants needed to initiate the reaction.

We can also extend scaling to the single-species reaction
XA ~inert. This reaction is simpler than the mul-
tispecies reaction as there is only one time scale,
r-p~(0) ~", the time required for a particle to diffuse a
distance of the order of the initial interparticle separation.
We can write a scaling form for the particle density which
is analogous to the one postulated in Eq. (12) for the bi-
molecular single-species reaction. In addition, we contin-
ue to make the assumption that pz(t) will be independent
of the initial density as t~ oo. From these considerations
we find pz(t)-t " for d &d, =2/(1ti —1), while the
mean-field decay of t ' ' "holds for d)d, .
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III. REACTION WITH PARTICLES OF FINITE
"HEIGHT" AND TRAPS OF VARIABLE "DEPTH"

In this section we use scaling ideas to investigate the ki-
netics of a more general bimolecular reaction in which
there are a number of intermediate states along the reac-
tion path which ultimately converts active reactants to a
final inert state. The model that we introduce for this
multistate process is illustrated schematically in Fig. 4.
This generalization is very simple to visualize, yet it
displays a rich phenomenology and it also serves as a non-
trivial testing ground for the scaling approach. Moreover,
this multistate reaction may be relevant for describing
soliton-antisoliton decay in a Sine-Gordon chain after a
sudden quench from high temperatures ' and also for
describing the smoothing out of a rough surface during an
annealing process.

The model that we consider involves 3-type particles of
an arbitrary "height" a; reacting with B-type particles of
an arbitrary "depth" b;. These two species move dif-
fusively, and when an 2- and B-type particle meet, they
instantaneously and irreversibly undergo the following re-
action: For an A particle of height a; and a 8 of depth
b;, the reaction product will be either an A particle of
height a; b;, if a—; & b;, or a 8 particle of depth b; —a;, if
b; &a; (Fig. 4). By varying the initial distribution of
heights and depths of the reactants, and also by varying
the dependence of the rate coefficient on these heights and
depths, a very wide range of kinetic behavior can be
probed, ranging from the universality class of the trap-
ping reaction (when b; /a;~ oo ) to the universality class
of simple bimolecular decay (when b;/a; ~1).

We begin our analysis by considering first the special
case where the 3 particles all have height unity. Thus
when an A meets a 8 particle of depth i (denoted by 8; ),
the trap is partially "filled in, " leaving a 8; &

particle of
depth i —1 in analogy with the process illustrated in Fig.
4. The reaction scheme for this system is

k

3 +B ~Bm
km —1

3+B ) ~B
(24)

ki

A+B, ~inert (Bo)

where k; is the rate coefficient characterizing the reactivi-
ty of an A with a B;, and it wi11 prove to be convenient to

a;=6

Qj=2

bi=4

regard the inert species as a trap of depth zero. The rate
equations for these reactions are

p~(t)= —k~p„(t)pg (t) —k )pg(t)pg ~(t)

—k, p„(t)p~~(t),

d
p~ (r)= k~p—q(t)p~ (r),

(r) = —k ~p4{t )pa, (, )++ ~@ (t. )

(25)

p~, (t}=—k~p~(t)p~, (t)+k2pz(t)p~ (t),

p&, (r)=+k&p, (r)p, , (t) .

For concreteness and simplicity we consider only the
situation where all the rate coefficients are equal to a
common value k. In addition, we first treat the case
where initially traps of depth m only are present. Accom-'

panying this initial trap-depth distribution are two generic
initial conditions for the densities of the A s, in close anal-
ogy with bimolecular recombination. These initial condi-
tions follow naturally from a conservation law of the sys-
tem, that the difference b, =pz(t) —gk, kpz (t) equals

its initial value p~(0) —mp~ (0). Here gk &
kp~„(t) is

the total trap depth, and the conserved quantity is simply
the difference between the total particle height and the to-
tal trap depth. The two generic initial conditions are thee
6=0 and 6 &0. In the former case, which we term the
"zero-sum" initial condition, the total trap depth is just
sufficient to accommodate all the particles, and the final
state consists of only inert particles. In the latter case,
there is an excess of trap depth, leading to a final state
where some or all of the traps are not completely filled in.
Based on the correspondence between 6 in the multistate
reaction and the particle-density difference in the two-
species recombination process, we anticipat- .that the
mean-field, or rate-equation, prediction for the kinetics
will be a power-law decay of pz(t) for 5=0 and an
exponential-type decay for 6 & 0.

The general solution of the rate equations is rather in-
volved; however, it is possible to obtain a very simple
asymptotic solution valid for t —+ oo. Notice that by sum-
ming the rate equations for the traps [all but the first
equation in (25)], we can immediately conclude that the
total trap density, including traps of depth zero, is con-
served. Moreover in the zero-sum initial condition, this
constant simply equals pz(0)/m. Using this in the first
line of Eq. (25), we obtain a simple rate equation for the A
particles

p„(t)=—kp~(t)[pg(0)/m —pg (t)] .

FIG. 4. Schematic illustration of reaction process for a parti-
cle of height a; and a trap of depth b;. Simple bimolecular de-
cay corresponds to the case where a; =b; =1 for all reactants.

In the zero-sum initial condition we now assume that at
long times the system arrives at a situation where there
are only 2, Bo, and B& particles. This assertion is based
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on a mean-field picture in which the traps are all filled in
at essentially the same rate. Under this assumption we
may write

pg (t) -pg (0)—pg (t) as t ~ oo

=p~(0)/m —pz(t) . (27)

Using this in the rate equation for the A's then gives

pa (t) = —k [pw (t)] (28)

This is identical to the rate equation for simple bimolecu-
lar decay, when the initial densities of the A's and B's are.
equal. Thus we find, for the zero-sum initial condition, a
mean-field decay proportional to 1/t and independent of
m. The latter result embodies the intuitively plausible
fact that in mean-field theory, N traps of depth 1 have the
same global reactivity as N lm traps of depth m. Similar
considerations applied to the initial condition 6 ~0 indi-
cate that the density of A's decays exponentially within
mean-field theory.

With the insights gained in Sec. II from the application
of the scaling approach to bimolecular decay, we are now
led to examine the effects of spatial fluctuations in b on
the multistate reaction. First we shall treat the situation
considered in the rate-equation approach, that is, traps of
depth I only present initially. Suppose there is an initial
excess of trap depth, i.e., the conserved quantity 4&0.
Due to fluctuations, there will be local regions where 6
may be positive. We can estimate the maximum size of a
volume where these fluctuations may occur by first calcu-
lating the initial number of A particles and B particles of
depth m in a volume V=I:

—IO—

D
(A
CDo 8—

H.a 6—
O
CD

E

2
0 I

m
2 4586 20 40

I I I I I I

2 5 4 5 6 7 8
~m+ 1

In addition to the temporal dependence of the decay, we
obtain an interesting dependence on the initial trap depth
m. Due to the dispersion of trap depths generated during
the course of the reaction, the overall absorption rate of
Nlm randomly distributed traps of depth m is weaker
than the absorption rate of N randomly distributed traps
of depth unity.

To test the above predictions we have performed nu-
merical simulations in one and two dimensions, and typi-
cal results for one dimension are shown in Fig. 5. In Fig.
5(a) we investigate the dependence of p„(t) at fixed t on
the initial trap depth m. The linearity of the displayed
plot of pz(t =10000) versus ~m+ I confirms the m

dependence given in Eq. (31). In Fig. 5(b) we show the
time dependence of pq(t) and p~ (t) for the case m =10.

Nw pa (0)l"+Q——pz (0)1",

N~ ——pg (0)l +Qp~ (0)l" .
(29)

Then, as in Sec. II, we choose the maximum positive
fluctuation in Xz, the maximum negative fluctuation in
Xz, and set Xz ——mN& . This determines a characteris-

m m

tic length scale, where local fluctuations in 6 are impor-
tant, given by

2/d

O

~ e-~=

+ +
+ ++ ++++ + ++ +y++ ~

I I
)

I I
/

I I
/

'I
I

f
I I

+ +

(b)

mQp~ (0)+Qpg(0)

mph (0)—p~(0)

p&(t) = g p,,(t)=(&m + I)V'p, (0)t "". (31)

By comparing this decay with that predicted by the rate
equation we deduce that the upper critical dimension is
equal to 4, above which the rate-equation prediction will
be valid.

That is, in a volume of linear dimension i & g, the number
of A particles can be greater than the local total trap
depth, even though the reverse inequality holds globally.
Now writing a scaling ansatz for p„(t) and p~„(t) as in

Sec. II, and following the approach developed there, we
find for the zero-sum initial condition,

io&lO~ IO& l05

FICz. 5. Simulation data in one dimension for particles of
height unity and traps of initial depth m. Results from a single

configuration of 10 time steps on a chain of 10 sites are shown

for a number of values of the depth m. The initial density p& {0)
is chosen to be 0.4, and consequently p& (0)=0.4/m. (a} The

m

number of A particles at a fixed time of 10000 steps is plotted
vs V m +1 for a range of m values between 2 and 40 to confirm

the m dependence given in Eq. (31). (b) Temporal dependence

of the particle density and various trap densities for an initial

trap depth m = 10. Plotted are pz(t) (+ ), pz (t) with k =10
(O), & =9 (X), k =7 (E), and k =1 (~ ) vs time on a double

logarithmic scale. The thin lines are intended to serve as guides

for the eye. Asymptotically the data lie on straight lines of
slope —

4 as predicted in Eq. (31}.
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Both p„(t) and each of the ps (t) decay asymptotically at

the same rate of t '~4, but notice that a nonmonotonicity,
or population inversion, develops in the distribution of
pz (t) versus k at fixed time. Finally, notice that at short

times the density of the deepest traps decays relatively
quickly since there are relatively many more particles
than deep traps.

The above scaling approach can be extended to more
general initial configurations of particle heights and trap
depths straightforwardly. Consider the situation where
the initial distribution of trap depths is arbitrary, with the
exception of a relatively weak constraint to be stated
below. Now the zero-sum initial condition generalizes to
pz (0)=gk, kps (0). In close analogy with the deriva-

tion given above for the case where only a unique trap
depth I is present initially, we find a characteristic
length scale

m

g k+p~, (0)+v'pg(0)
k=1

g kpg„(0) —pg(0)
k=1

2/d

(32)

From this length we then determine the decay law to be

pq (t)= g kps„(t)
k=1

(33)

The t dependence of the various particle species in
the zero-sum initial condition is expected to hold asymp-
totically for finite values m and n For eith. er m or
n~ ~, the same decay laws will continue to be valid as
long as the various moments over the particle-height (or
trap-depth) distribution used in the scaling approach con-
verge.

IV. "IMPERFECT" RECOMBINATION

Thus far we have been considering reactions where the
microscopic chemical-reaction time is instantaneous, i.e.,
much less than a typical interparticle diffusion time.
Thus the slower diffusion time ultimately controls the re-

%'e expect that this decay will remain valid even as
m ~ oo, as long as gk, kQp~ (0) is finite.

A final generalization is the case where the A-type par-
ticles may also have a distribution of arbitrary heights.
Again following the scaling approach, we find that for the
zero-sum initial condition g". ,jp„(0)=gk, kps (0),
the density decays as

n m

g jpg (t) = g kp~ (t)
j=1 k=1

n m

y j~p„,(0)+ y k/p (0) t
j=1 k=1

(34) + ~ I
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FIG. 6. Double logarithmic plot of the surviving fraction vs
time for "imperfect" recombination in one dimension for the
cases p =1 (+ ) and p =0.002 (0 ). In the former case, the de-
cay exhibits a crossover from a short-time regime of no decay to
the asymptotic t ' decay at a crossover time T&. In the latter
case, there are now three time regimes. At T

&

——T&/p there is a
crossover to a new intermediate-time regime where the decay
rate is much faster than the asymptotic decay rate of the p = 1

case. Finally, at T2 the decay coincides with that of the p =1
case.

io-&
~Oo iOI

action rate, and this regime of behavior is the diffusion-
controlled limit. On the other hand, if a system is mixed
sufficiently strongly, the interparticle transport time may
become so short that many molecular collisions can occur
before the intrinsic chemical rates allow a reaction to take
place. Consequently, the system has time to homogenize
between reactions, and the microscopic reaction time con-
trols the reaction rate. This extreme case ' may be
thought of as the mean-field limit discussed in the Intro-
duction, since the system is homogeneous. To describe
the crossover between these two regimes, we introduce a
reaction probability p, with 0&@& 1, into bimolecular de-
cay. The meaning of this parameter is that when an A
and a 8 particle meet, they react with probability p, while
with probability 1 —p the two particles continue to exe-
cute independent diffusive motions. This is an attempt to
account empirically for the effects of rapid mixing, or
other experimentally relevant homogenizing effects, which
can induce a crossover to the mean-field limit.

In the framework of the rate-equation approach, the pa-
rameter p can be identified with the rate coefficient in Eq.
(1). Therefore in the mean-field limit we expect that the
amplitude of the decay will vary continuously with p,
while the essential temporal behavior is the same as the
case p =1. However, when fluctuation effects are includ-
ed, a different result may be anticipated. Local fluctua-
tions in the density difference decay only by diffusion, in-
dependent of any reaction details. This observation sug-
gests the surprising result that the asymptotic decay will
be independent of the reaction probability, when the sys-
tem is below the upper critical dimension.

To see how this striking result might arise, let us com-
pare the kinetics of bimolecular decay for the two cases of
p =1 and p «1. For simplicity we consider the case of
equal initial densities of A's and B's in this section. In
the case of perfect reaction, p = 1, there is a crossover be-
tween a short-time regime of no decay, when particles
have not had enough time to diffuse a distance of the or-
der of the interparticle spacing, to the asymptotic t
decay as indicated in Fig. 6. The characteristic time for
this crossover to occur is given by T~ ——p~(0)

When p &&1, the short-time regime of no decay now
persists until a time T& ——T, /p, since, on average, 1/p
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particle collisions are required to initiate a reaction. Once
the decay begins, each particle survives for a sufficiently
long time that the system has time to become homogen-
ized between reactions. Thus in this (intermediate) time
regime we expect a mean-field decay proportional to 1/pt
If we extrapolate this decay to t~~, a problem arises
which is analogous to the Kauzmann paradox in the
theory of glasses. Eventually the density in the decay pro-
cess where p «1 would become less than the density for
the reaction where p =1, a clearly nonsensical result.

To resolve this paradox we appeal to the domain-
growth picture. Since the decay of fluctuations is insensi-
tive to the details of the reaction, we are led to a modified
picture in which domains are attempting to grow, but
their growth is retarded by particles of one species being
able to penetrate through and persist in a domain of the
opposite species. Eventually, however, the domains be-
come sufficiently large that particles of one species will
always be annihilated once they enter a domain of the op-
posite particle species. In this long-time regime, the ki-
netic behavior- must therefore be independent of p, thus
coinciding with the decay of the p = 1 case.

A characteristic time T2, giving the crossover between
the intermediate mean-field-type decay of 1/pt and the
asymptotic Qpq(0)t "/ decay can now be found by
matching these two kinetic laws. We thus find a second
crossover time

4 (0)2]1/(d —4)

Notice that T2 diverges as d approaches 4 from below, in-
dicating that in the mean-field limit, the intermediate-
time p-dependent decay extends to t~ oo.

Alternatively, this crossover time can be obtained
directly from the domain picture. If a B particle enters
an 3-rich domain and is annihilated with certainty, then
the system is in the long-time regime. If, on the other
hand, the B particle can pass through the 3-rich domain,
then the system is in the intermediate regime. The transi-
tion between these two behaviors determines the crossover
time T2. Let us therefore estimate the minimum size of a
domain which is "opaque" to particles of the opposite
species. For a domain of linear dimension l, the number
of steps required for a particle to get across a domain is
proportional to I . The condition that ensures that a B
particle just fails to pass through an 3-rich domain is that
the expected number of reactions during the average
residence of a B particle in the domain is unity. That is,
pl p~(t)=1, where pz(t) is the density of 2 (or B) parti-
cles within the domain. Now using the facts that
p~(t)-Qp„(0)/l", and l-v t, we may solve to obtain
the crossover time T2 introduced above.

In conclusion, the results of this section suggest that if
mixing or other homogenizing effects can be represented
in terms of a variable-reaction probability, then the
asymptotic behavior is ultimately independent of these
mixing effects and is actually governed by the diffusion-
controlled limit. The ramifications of this fact should be
of great relevance for experimental studies of reaction ki-
netics. As long as one waits long enough for the crossover
to the diffusion-controlled limit to occur, fluctuation-
dominated kinetics should be observable. For shorter

times, nonuniversal power-law decays are to be expected
which are indicative of an intermediate-time regime rather
than of an asymptotic behavior.

V. REVERSIBLE BIMOLECULAR REACTION

where the reaction product resulting from the recombina-
tion of an 2 and a B particle is now denoted by C. These
C particles may spontaneously split into an 3 and a B
particle at a rate governed by a reverse-reaction coeffi-
cient. The variable reversibility may be regarded as aris-
ing from introducing a variable temperaturelike parameter
which controls the nature of the equilibrium state.

As in previous sections, we first study the rate equation
for this reaction in order to serve as a starting point for
further developments. For simplicity we shall again only
consider the case where the densities of 3's and B's are
equal. Furthermore, we will study only the situation
where the reverse reaction is "turned on" at t =0. One
could envision the more general situation where the re-
verse reaction is not turned on until a given time delay has
passed. However, numerical studies indicate that the ap-
proach to equilibrium is insensitive to the starting time
for the reverse reaction, and we therefore consider the
simplest case where the reverse reaction is present initial-
ly.

The rate equation may be rewritten as

p (t)= kp (t) +rp—c(t), (36)

where k is the rate coefficient for the forward reaction
and r is the reverse rate coefficient. By using the conser-
vation law pc(t) =pz(0) —pz(t), the rate equation may be
written in terms of pz only, to read

p~(t)= kpa(t) +rpw—(0) rpw(t) . — (37)

If we write the polynomial on the rhs of (37) as
[pg (t) p+][p~(t) p]—, with-

p+= I r+[r +4krp—z(0)]'/ I/2k,
we find the solution for pz(t) to be

) —p ][p„(0)—p ]I/I[p„(o) —p ][p„(t)—p ]I
=exp[ —k(p+ —p )t] . (38)

From this equation one concludes that the density decays
to an equilibrium value, p~(oo ), which is equal to p+.
The. rate of approach is purely exponential with a charac-
teristic decay time

r,q-k '(p+ —p ) '= [r +4krpq (0)]

Furthermore, once equilibrium is reached, the rate-
equation predicts that there will be no fluctuations in den-
sity about the equilibrium value.

We now present a simple-minded approach which sug-
gests that density fluctuations will result in a power-law
approach to equilibrium, rather than an exponential ap-

In this section we study the approach to equilibri-
um ' for the reversible bimolecular reaction

k
3 +B~~C, .
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p~ (t) = —k [p~ (t)]'+ r [p~ (0)—p~ (t)]

+kp„(0)t (40)

The asymptotic behavior of this equation can be investi-
gated by dividing p„(t) into two terms,

p~ (t) =p~ ( oo )+5p~ (t), (41)

where pz(co ) is the equilibrium solution of Eq. (40) and

5pz(t) is the deviation in density from the equilibrium
value. Now substituting this expression for pz(t) into Eq.
(40) and keeping terms of only linear order in 5pz(t), we
find

5p~(t) —= —[2kpq( oo )+r]5p~(t)+kp~(0)t "~ . (42)

To lowest order in 5pz(t), we find

5p~(t) —Ct (43)

where C =kpz(0)/[2kpz( oo )+r]. Thus we predict that
the approach to equilibrium follows a power law, rather
than the exponential law predicted by the rate equation.
This result is rather surprising in that fluctuations are
predicted to modify even the qualitative features of the
mean-field kinetics. In all the previous examples dis-
cussed in this paper, the effect of fluctuations was to
change the exponent of the time in a mean-field kinetic
law, rather than modify the actual functional form of the
law.

To test this theory, we turn to a simulation study of re-
versible recombination. To incorporate the reverse reac-
tion in the simulation procedure, each of the existing C

proach. It is based on modifying the rate equation to ac-
count for the influence of residual long-range fluctuations
on the uniform background equilibrium configuration
which is in the process of forming. At finite times these
residual fluctuations in density difference serve to reduce
the meeting probability between opposite species, thus
modifying the approach to equilibrium predicted by the
rate equation.

To account for this effect consider a macroscopic re-
gion Q whose size coincides with that of a typical size-
density fluctuation. Roughly speaking, the density of ei-
ther the A's or 8's in this region is uniform, but these lo-
cal densities may not coincide with the global density. In
such a region the maximum density of A's attainable
though statistical fluctuations is pz (t)+ Qpz (0)t and
the minimum density of 8's is pz (t ) Qpz —(0)t
where pz (t) and pz(t) are the global densities of A and 8,
and the second terms represent fluctuations. Under these
conditions the meeting probability between A and B
species in Q will be the product of the two particle densi-
ties

k [p„(r)++p„(0)t "~'][p&( )tV'p&(0)t — ]
= k [p~(t)p~(t) p~(0)t —" '),

where the cross term cancels, since we have assumed that
pz(t) =pz(t). This line of reasoning suggests how the rate
equation might be modified by the effects of residual fluc-
tuations. According to (39), the rate equation, Eq. (37),
becomes

particles is allowed to decay into an A-B pair with proba-
bility r in the course of a single time step. For reasons of
technical simplicity only, we have also introduced an
excluded-volume interaction for the C's. Ostensibly, we
have taken the forward rate coefficient k to be equal to
unity in our simulations. However, due to the slight
modification caused by the introduction of the excluded-
volume interaction, the correspondence between k in the
rate equation and the forward rate coefficient in our simu-
lations is not exact. Therefore the equilibrium value of
the density obtained numerically may not necessarily
coincide with the equilibrium value predicted by the cor-
responding rate equation.

We chose to focus our attention on a one-dimensional
chain of 50000 sites in which the initial densities are
pz (0)=pz(0) =0.2, pc(0) =0.0, and the reverse rate r was
chosen to be 0.1. The rate equation then predicts an
equilibrium density of p~(oo)=pz(oo)=0. 1, with the
characteristic time of the exponential decay being of the
order of 10 time steps. These predictions were checked by
first performing a simulation in which mobile A particles
could move equiprobably to any lattice site in a single
time step. This infinite mobility law should correspond
exactly to the mean-field limit. We found that equilibri-
um was reached very rapidly, requiring approximately 10
time steps, and that the approach to equilibrium is con-
sistent with a purely exponential decay. However, we ob-
tain an equilibrium value for the density which is slightly
lower than the rate equation prediction of 0.1. The differ-
ence is significant, and we attribute this difference to the
presence of the excluded-volume interaction for the C's.

When the mobile particles undergo nearest-neighbor
diffusive motion, the kinetic behavior is much more in-
teresting. The approach to equilibrium is extremely slow,
and to effectively monitor this temporal behavior it is use-
ful to consider the cumulative average density defined by

t

p,„(t)= p„(t)dt .
t —to 'O

(44)

This average will have the same time dependence as the
raw density, if the latter quantity has a power-law
behavior. The lower cutoff to may be chosen arbitrarily,
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FICx. 7. Representative results for the approach to equilibri-
um in the reversible bimolecular reaction. Shown are the results
from a single configuration on a chain of 50000 sites with a re-
verse reaction rate r =0.1. Shown is the cumulative density, as
defined in the text, plotted vs t '~ when the time delay to was
chosen to be 1000.
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and typically we have used values for to in the range
200—2000. This cumulative density drastically smooths
out local temporal fluctuations in the instantaneous densi-
ty, so that systematic effects can be more readily dis-
cerned. In Fig. 7 we plot p,„(t)as a function of I/&t as
suggested by Eq. (43). Asymptotically the data appear to
lie on a straight line which extrapolates to the equilibrium
value of the density. This data strongly suggests that the
approach to equilibrium in the reaction A +B~cfollows
a power-law, rather than the exponential approach
predicted by the rate equation.

VI. SUMMARY AND CONCLUSIONS

In this article we have investigated how spatial inhomo-
geneities in the particle density can dramatically affect the
kinetics of a general class of diffusion-controlled reac-
tions. Starting with an initial random distribution of par-
ticles, density fluctuations on all length scales occur, and
during the evolution of a reacting particle system, these
fluctuations can become more pronounced in both appear-
ance and effect. For example, in the irreversible bimolec-
ular decay 3 +B~inert, the density difference is globally
conserved so that fluctuations in density difference evolve

only by diffusion. However, the decay by the reaction
process is faster than the decay of fluctuations by dif-
fusion (for d (4), so that the diffusional spread of fluc-
tuations actually appears as a growth of domains. This
effect is dramatically apparent in numerical simulations
and gives rise to the very slow observed decay laws.

We have first developed a scaling approach to study the
kinetics of a number of simple irreversible reactions, in-

cluding bimolecular and X-body recombination for both
purely diffusing particles and for drifting particles.
Furthermore, a domain-growth picture was developed
which shows simply how the fluctuations in particle den-

sity evolve.
A very general model of a multistate recombination

process was also introduced. In this model particles of
variable heights can react with traps of variable depths to
produce a reaction product whose height (or depth) is the
vector sum of the height and depth of the incident parti-
cles. This system is readily amenable to our scaling ap-
proach, and we have explored some of the simplest, but
rather interesting, aspects of this model. We can deter-
mine simply how fluctuations in both the reactant densi-
ties and the reactant heights and depths influence the
asymptotic kinetics. The wide range of useful results ob-
tained from this simple model suggest that it will be very
worthwhile to explore the multistate recombination model
in all its generality.

It is also worth noting that there is another closely re-
lated version of multistate recombination which is of
great utility. Consider a model in which there exist parti-
cles of only one "sign, " i.e., particles of variable heights
only. When two such particles meet, they are defined to
coalesce and form a single particle with a height which is
equal to the sum of the heights of the two incident parti-
cles. In the most general case, one can envision a model
in which the dependence of the reactivity, or reaction ker-
nel, on the heights of the two incident particles is arbi-

trary. If this height is interpreted as a particle mass, a
quantity which is conserved by the reaction process, then
the coalescence reaction can be viewed as a model for ir-
reversible coagulation. Our model reaction of particle
coalescence mimics the essential kinetic aspects of coagu-
lation, but ignores the geometrical effects introduced by
the actual growth of aggregating clusters. ' Due to the
former feature of our model, it is possible to make a direct
connection between particle coalescence and the Smolu-
chowski kinetic equation for coagulation. ' As a result
of the latter feature, we can determine exactly and also
adjust arbitrarily the form of the reaction kernel in our
model. Because of these desirable features, we have deter-
mined the value of the upper critical dimension as well as
predicted the kinetic laws below the upper critical dimen-
sion for the simplest case of a constant reaction kernel.
Many interesting unanswered questions remain regarding
physically relevant generalizations of the coalescence
model. In particular, attributes such as a mass-dependent
diffusivity or mass-dependent reactivity have been
described mathematically by more general forms of the
interaction kernel. The feature of a reactivity in-
creasing as a power law of mass is particularly interesting
because it can lead to the possibility of a gelation transi-
tion in a finite time. We anticipate that fluctuation
effects will strongly modify many of the rate-equation
predictions for such general forms of the reaction kernel.

We have also considered generalizations of bimolecular
recombination to situations which may be of direct experi-
mental relevance. These include allowing for the possibil-
ities of either imperfect reactivity or reversibility. The
former effect was introduced in order to account empiri-
cally for the influence of various mixing effects. Typical-
ly such effects make it possible for many particle col-
lisions to occur before a microscopic chemical reaction
takes place. Consequently the system may be expected to
exhibit mean-field kinetics, as there is time for particles to
effectively mix between reactions.

In studying imperfect recombination with a reaction
probability p &&1, rather dramatic results are obtained.
An intermediate-time regime now exists where the system
follows the relatively rapid mean-field decay. This mean-
field-like regime occurs because the particle density is
reasonably uniform throughout the system. However, this
rapid decay can persist only as long as the particle density
remains greater than the decay of the p =1 case. Due to
this constraint, the asymptotic decay must be independent
of the reaction probability, a result which follows natural-
ly from the domain-growth picture. In this picture the
domains are attempting to grow, but their growth is
slowed by particles of one species being able to penetrate a
domain of the opposite species. Eventually, however, the
domains become large enough that this can no longer
occur. The crossover from the intermediate-time to the
asymptotic decay corresponds exactly to this transition
from transparent to opaque domains.

The reversibility feature is considered in order to study
whether fluctuation effects, which play a predominant
role in irreversible reactions, will continue to have an in-
fluence on the approach to an equilibrium state. We have
argued that the effect of fluctuations is to slow the ap-
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proach to equilibrium, from the exponential decay of the
rate equation, to a power-law decay. This prediction can
be justified heuristically by a modification of the rate
equation in which fluctuation effects are included in a
simple-minded manner. Such a result is rather surprising,
as the effect of fluctuations in the examples of irreversible
diffusion-controlled reactions is merely to modify the ex-
ponent of time in a power-law or quasiexponential decay.

Many of the new predictions presented here are readily
visualized and quantitatively verified by numerical simu-
lations. It would therefore be of great interest to subject
our predictions to experimental tests.
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