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Quantum theory of a free particle interacting with a linearly dissipative environment
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The quantum-mechanical motion of a free particle coupled to a linearly dissipative environment is
analyzed in the Hamiltonian formalism. The total Hamiltonian is diagonalized and its eigenstates
displayed. These results are used to discuss the role of initial conditions on the subsequent motion.
A widely used initial condition —heat bath uncoupled from particle —is compared with another one
in which the initial off-diagonal coherence of the reduced density matrix is comparable to that in the
state of thermal equilibrium of the coupled system. Different transient behaviors, on time scales
longer than the inverse cutoff frequency of the bath are found. The mean-square momentum of the
particle in the steady state is found to depend on this highest bath frequency. An analysis of the
correlated states of particle and heat reservoir shows that the latter behaves in some sense like a
position-measuring apparatus.

I. INTRODUCTION

In part because of its relevance to the behavior of super-
conducting tunnel junctions at very low temperatures,
there has been a considerable revival of interest recently in
the fluctuating (or "Brownian" ) motion of a quantum de-
gree of freedom q coupled to an environment at a tem-
perature T. The case in which friction is linearly propor-
tional to velocity in the classical regime occurs frequently.
Caldeira and Leggett' have argued that the classical fric-
tion force given by

dq
Ffriction 9 dt

can be modeled by a linear coupling to a suitable distribu-
tion of harmonic oscillators. Ambegaokar, Eckern, and
Schon and, in a different context, Guinea" have shown
how electronic reservoirs can lead to the form obtained by
Caldeira and Leggett after their elimination of the reser-
voir coordinates. The resulting model has been applied to
different physical situations where the variable q ("parti-
cle") tunnels through a potential barrier, ' oscillates
coherently between two potential wells or moves in a
periodic potential. Interesting effects due to the environ-
ment have been noted. In almost all these studies, the
Feynman path-integral method has been used, and the
coordinates of the environment have been integrated out
to obtain an effective action which describes the modified
behavior of the quantum variable q. In particular, the fi-
nal formula for the time evolution of the reduced density
matrix describing the quantum variable is then a special
case of the structure derived by Feynman and Vernon, as
shown by Caldeira and Leggett. In this paper we study
the model proposed by Caldeira and Leggett in a more de-
tailed way, without giving up the possibility of asking
questions about the environment. For our purposes it suf-
fices to consider a free particle where the complete Hamil-
tonian describing the behavior of the particle and the bath

can be diagonalized. We carry out this program in Sec. II
and give explicit forms for the eigenstates. The results of
this exercise are interesting because they allow us to ad-
dress new questions and to gain some insight —which
should remain valid in more complicated situations —into
the dynamics of the model. In Sec. III, the possibility of
contemplating the state of the bath enables us to show
more explicitly than before the relation of this problem
with the quantum theory of measurement. By working in
the Hamiltonian formalism we stay close to the classical
description of measurement. ' We find that the bath acts
like an apparatus which measures the position of the par-
ticle with a finite resolution. It is also possible in this for-
malism to vary the initial condition of the system of parti-
cle plus bath. In Sec. IV we obtain the evolution of the
reduced density matrix describing the behavior of the par-
ticle for an interesting initial state which is different from
the one considered by Feynman and Vernon. In Sec. V
we relate this initial condition to previous work by com-
puting the influence functional that corresponds to it and
displaying differences with the one calculated by Feyn-
man and Vernon and by Caldeira and Leggett. Given
the influence functionals, we do the remaining double
path integral. In Sec. VI, we compute the time depen-
dences of the reduced density matrix starting from the
two initial conditions and show how one can thus calcu-
late the time dependence of position and momentum aver-
ages. We compare these results with those of Sec. IV for
the thermal initial condition. Section VII contains a sum-
mary of results and some concluding remarks. Computa-
tional techniques are explained in three appendixes.

II. CALDEIRA-LEGGETT HAMILTONIAN
AND ITS DIAGONALIZATION FOR A

FREE PARTICLE

The Hamiltonian proposed by Caldeira and Leggett'
(CL) to model the classical friction force [Eq. (I)] is
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1HcL= — + V(q) —q gC X
2M ()q2

~ W~ ) = I dq e '~~
~ q )8

~

B"),
where

x' +q'g
a 2m a 2 a a~a

(2)

c}2

2M (jq 2p
(3)

We see that the friction is obtained by attaching masses
p with springs to the particle q. For the classical friction
to be described by the force of Eq. (1), the distribution of
oscillators must be such that'"

2

J(~)—=—g 5(co —co )=—gp co 5(co—co )

The dissipative interaction of the macroscopic variable

q with its environment is modeled by a linear coupling to
a set ([xaI) of harmonic oscillators. The final term in
Eq. (2) is included so that there is no shift in the bare po-
tential V(q) due to the coupling. In order to make the
physics more transparent, we introduce new coordinates
ya (and their conjugate momenta p ) for the oscillators

Ca
&a= 23'a~ Pa= 2 PeaIalga I~COa

and call p the combination C /mace . With these defi-
nitions the Hamiltonian becomes

U2,pea U2,p =Pa+ ~ap

With

(10)

Uq~ ——exp i ~~r~a, ra= + p .p P
M+ Pa

a

H,
i e,") =E,"

i q," ) .

To each momentum corresponds a set of eigenstates (here
labeled by n).

~ Bz ) describes the state of the bath and is
independent of q. It is the nth eigenstate of H~ z,

a 2p

where p is a c-number (the conserved total momentum of
the system). So the simple remark that the total momen-
tum is conserved has allowed us to eliminate the explicit
dependence on the particle coordinate. It remains to diag-
onalize an effective Hamiltonian for the bath, which de-
pends on the total momentum of the eigenstate we are
considering. In order to obtain explicitly the dependence
of E~" [Eq. (8)] on p, we translate each pa by an amount
rp and cancel the crossed terms between p and p . To
achieve this, we introduce a second unitary operator U2 p
such that

=7Jc08(co~ —co) (4)
When we use it to transform H~ z, we obtain

(co, is an upper cutoff on the frequencies of the bath).
For the moment, however, we shall not restrict ourselves
to this particular distribution.

In the following we shall only consider a free particle
[ V(q) —=0]. In this case it is obvious that the total
momentum of the system (particle and attached springs)
is conserved. We take advantage of this fact by using as
new variables the particle coordinate q, its conjugate vari-
able, the total momentum p~+ g p, the spring elonga-
tions ya —q, and their conjugate momenta p . To display
these variables, it is convenient to introduce the unitary
operator

U2 pH) pU2 p
—— +H2,M+ Pa

(12)

M+ gpa=M+ —f dc@
CO

In the case of Ohmic dissipation, this is

(13)

where H2 is the Hamiltonian H& p fOr p =0.
As could have been expected, the energy is a sum of an

internal energy independent of p (eigenvalue of Hz) and
the square of the total momentum divided by the total
mass of the system. We can write the total mass of the
system using the spectral density J(co) [Eq. (4)],

U~ z
——exp iq gpa— M+ —g I dao

2 1
(14)

and compute its action on HCL (using the formula
e "Be "=B+[A,B] valid when [[B,2], A]=0):

. a
H& ——U& qHcLU& q

—— i —gp—a2M Bq

2

+ g + —,~~~' . (6)
2pa

Now (1/i )(8/Bq) is the total momentum of the system
and is manifestly conserved. One can readily check that it
commutes with H&. Therefore the eigenstates of HI are
of the form

1
Oa (pa ~papaya) ~

2Pa~a
(1Sa)

and we see that the loto frequency oscillato-rs give a diver-
gent integral and therefore an infinite mass to the total
system. The surprising consequence is that the energy
does not depend on the total momentum of the system.
We will see below how this affects the spreading of a
wave packet.

Now we conclude the diagonalization of our Hamiltoni-
an by going to the normal modes of vibration of H2. Let
us introduce creation and annihilation operators in the
usual way
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(P +'PWD )
1

2pa~a

In terms of a and a, H2 becomes

(15b) paratus designed to measure its position to each eigen-
state of position

l q ) is associated a state
l Aq ) of the ap-

paratus. Here the apparatus is the bath and

H2= g~ (a a .+ —,')+
2M 2

1/2

(a +a)
2

(16)

To express Hz in terms of its normal coordinates we in-
troduce a third (and last) canonical transformation U3
which mixes a and a:

U3a~U3 ——g (AIa p+Bpap) .
p

If we choose A ~ and Bp suitable (see Appendix A),
1/2 —1/2

1 ~aPa
p 2 Ep

2
I"r~r

Ep+~ r (Ep d'or)—
(18a)

1/2
CO~P ~

p 2 Ep

2~r~r
Ep —~~ r (Ep ~r)'

—1/2

(18b)

our Hamiltonian is completely diagonalized,

U3H2U3 H3 —Q Ep(a~13+ —,),I

p
(19)

where tEpl are the energies of vibrations of the normal
modes and are given by the positive solutions of the equa-
tion

2
Pa ~a
M E2—~2 (20)

I
~(In. I)&= J dqe'"l q&Ui, ,U2,pU3 l

(21)

and the corresponding energy is equal to (normalizing the
energy of the ground state to zero)

2

e(In I)= gn E + (22)ct cl cx M+

[E~ is given by Eq. (20) and the canonical transforma-
tions by Eqs. (5), (11), and (17)].

III. GROUND STATE OF THE SYSTEM
AND MEASUREMENT OF THE POSITION

Let us consider the ground state of the system

I eo& = f dq
I q & Ul qU310& . (23)

This is reminiscent of the state which would describe the
system after an interaction of the particle with an ap-

This final step of the diagonalization is performed in de-
tail in Appendix A.

Before proceeding, let us summarize what has been
achieved. We have found all the eigenstates of our Ham-
iltonian [Eq. (3) with V(q) =0] and the corresponding en-
ergies. They are given by

(24)

The resolution of the apparatus is related to the overlap

(A~, l A~ ) between states associated with different posi-

tions q~ and q3 of the particle

, &=&olU'3 ', ,2,„,10&

=(O
l
U,'U„, „U, l0) . (25)

The result is quickly obtained by computing the action of
U3 on U~ [Eq. (17)] and then taking the vacuum expecta-
tion value of the resulting operator which is an exponen-
tial of a linear combination of aI3 and a p.

(A, lA, )

2 2
1 M CO&P &= exp ——,(q~ —q2) g Epg

p 2
y

E'—My

(26)

[A similar but more complicated expectation value is
computed in Appendix B. Equations (25) and (26) are ob-
tained by putting t=0 there. ] The sum in the exponent
can be written as an integral in the complex plane on a
contour encircling the real positive axis, as is shown in de-
tail in Appendix C. In the case of Ohmic dissipation [Eq.
(4)], this gives

r

CO M m,
dE = ~ ln 1+E'+ (r)'/M')

(27)

(the last equality holds in the usual case where the inverse
of the cutoff frequency is much shorter than the relaxa-
tion time). Furthermore,

r

(A lA )= exp ——,'(q, —q2) ~in (28)

so the resolution of the bath is given by the natural fric-
tion length (A'/rj)'r divided by the logarithm of the ratio
of the two time scales of the problem. This measurement
of the position of the particle is responsible for a nonvan-
ishing mean-square momentum of the particle in the
ground state.

IV. EVOLUTION OF A REDUCED DENSITY MATRIX
%PITH NONFACTORIZED INITIAL CONDITION

%'e want to compute the evolution of the reduced densi-
ty matrix which describes the time development of all
quantities pertaining to the particle only. It depends, of
course, on the initial state from which the system evolves.
Caldeira and Leggett, following Feynman and Vernon,
have used a factorized initial condition where the bath is
initially in the thermal state of the free oscillators and the
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coupling to the particle is switched on at t =0. This is by
no means the only possible initial condition and it is very
different from the equilibrium state of the total system
since even far-away points are initially quantum mechani-
cally very coherent. The results obtained with this initial
condition are given explicitly in Sec. VI. Here the dynam-
ics will be studied starting from another initial condition
(thermal initial condition) which differs less from the
equilibrium state. We denote by p,~(q&, q2, Q&, Q2) the
equilibrium density matrix of the total system where q&

and q2 are two different spatial coordinates for the parti-
cle and Q i and Q2 are two different configurations of the

bath. Then the thermal initial condition we consider is
given by

pth(ql~q2~QI~Q2) p o(ql~q2)peq(ql ~q2~Q1~Q2) ~

where po(q„q2) is an arbitrary function of q& and q2.
This initial condition has the feature that its off-diagonal
elements are suppressed as in thermal equilibrium. One
thereby avoids transients due to the switching on of the
coupling at t =0 and to the relaxation of the uncoupled
state of the bath to its real ground state.

Given the initial condition (29), the state of the system
at time t is (at T=O)

pa(t)= f f dqidq2po(qi q»e "Iqi)IS'IAqi&&Aq21&q2le' " . (30)

+iK t

P&h(q&, q2, t) = f f dpi dp2e Po(p»p2)(0
~

U3e Ui q U& z, e

We use our previous results by expressing HcL [Eq. (3)] in terms of H& ~ [Eq. (9)] and po(q„q2) in terms of its Fourier
components [po(q&, q2) = f f e ' ' ' 'po(p&, p2)dpidp2]. Then the reduced density matrix at time t is

' U iO) . (31)

=(A, ~A, ) (32)

At finite temperatures, the expectation with respect to the
ground state is replaced by the average in the thermal-
equilibrium state. Note that the real energies of the in-
teracting system will appear in this thermal average in
contrast to what happens with the factorized initial condi-
tion. Another interesting difference is that with this ini-
tial condition there exists a stationary reduced density ma-
trix; if we choose po(p&, p2)=5(p&)5(p2), then as H& & o

is equal to H2 [Eq. (12)] we get

po(qi qz, t) = (0
~

U3Ui q Ui q U3
~

0)

which is independent of time and reflects the correlation
between states of the bath corresponding to different posi-
tions of the particle in the ground state of the Hamiltoni-
an (or more generally, in the thermal-equilibrium state).
The density matrix given by Eq. (32) is also obtained at
t =+ ao with the factorized initial condition. But there it
is not a stationary state of the equation of motion because
the ground state of the interacting system is different
from the ground state of the free oscillators (see Sec. VI).

The average (in the thermal state) which appears in Eq.
(31) is computed in detail in Appendix 8 for an arbitrary
number of oscillators. The result is

( U3e
' ' Ui z Ui &

e '
U3)ti ——expIi[A(t)(p ip2)+(pi+p2)(qi q2)B(t)]—

X exp[ —C(t)(pi —p2) +D(t)(qi —q2)(p2 —pi) —(qi —q2) +]I . (33)

As shown in Appendix C, the functions A, B, C, D, and
F can be expressed as integrals and in the case of Ohmic
dissipation are given by

A(t) = (e -~™—1),1
(34a)

271

1 g "~
d coth(PE/2)

E'+ rj'/M' (34e)

Equation (31), together with Eqs. (33) and (34), gives us
the final formula expressing the reduced density matrix at
time t as a function of the initial condition. It is given in
terms of new variables x = —,(qi+q2), y =qi —q2 by

B(t) (
vtlM 1)—

~M' o E' +(g' /M)E

coth(PE/2)Dt = dE sin Et
m.M o E2+ rI2/M~

(34b)

(34d)

p(xf,yf, t) = f f dx; dy; J(xf,yf, t;x;,y;, 0)
1 1&Po(xi+ 2yi&x~ zVi) ~'

where

(35a)

1J(xf Vf t;x;,y;, 0) = exp —'
(xf —x;)

—gt/M

X exp C(t)—
2A (t)

2

D(t)yf——gt/M
y

2A (t)
—gyF (35b)
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We specialize these results to the propagation of a Gauss-
ian wave packet

1 . qi+qz
po(q 1 qz) = . exp tpo(q 1

—qz)—
Op~ & 20'p

(36)

[q+2A (t )po]
p(q, q, t) = expa(t)v n. azh(t)

(37)

Let us first compute the diagonal part of the reduced
density matrix at time t, p(q, q, t). Substituting Eq. (36)
into Eq. (35) we obtain

find that differences persist for times larger than the in-
verse cutoff frequency. Before carrying out this program
in the next section, we shall here compute the influence
functional corresponding to the initial condition intro-
duced in the previous section, in the hope of clarifying its
relation to the usual one.

As explained in Ref. 7 it is possible to give a path-
integral representation for the evolution of the reduced
density matrix

p(qi qz, t)= f f dqi dqz K(qi, qz, t;q', ,qz, O), (43)

with

a,h(t)=ao+4 z +4C(t) .A(t)
o

(38)

where

K(q1 &qz t&q&i &qz &0)

.So(qi)
Dqj Dq2 exp i . So(qz)

exp —i
The center of the wave packet follows the classical trajec-
tory

(44)

q(t ) = —2A (t )po = Po
(1 e gt/I)— (39)

ln
iT'9

(40)

For high temperatures, we find the usual classical dif-
fusive behavior

2g ~ 1 1 —cos(Et )Ct z&~ ——»~c ~M213 fo E3+( zyMz)E

(41)

At zero temperature, the spreading of the wave packet is
only logarithmic since

[C(t)]z. o
——

z f dE
3 z z [1—cos(Et)]

~Mz o E3+(rtz/Mz)E

Sp is the action of the particle alone and the integration
is over all particle paths connecting the specified initial
and final coordinates. The functional F({q)J,{qzI) de-
scribes the influence of the bath on the propagation of the
particle (it is not yet what is usually called the influence
functional because we have included the initial density
matrix in it). It is determined by the dynamics of the
bath, when the particle follows the classical paths {q) J

and {qz J. Looking at Eq. (3) it is seen that the path of
the classical particle acts like a time-dependent force
F~(t) on each oscillator of the bath

F (t)=p, co q(t) . (45)

The required dynamics of a forced harmonic oscillator
is given by a unitary operator V~(t) relating the wave
function at time t to the wave function at time zero:

We can also compute the evolution of momentum mo-
ments using off-diagonal terms of the reduced density ma-
trix. The first two are given by

~

+.(t) ) = V.(t)
~

+.(0)),
where

(46)

&p&=po[1+2B(t)]=poe ""
(p ) =po[1+2B(t)] +2F .

(42a)

(42b)

V. THE NEW INITIAL CONDITION
WITHIN THE PATH-INTEGRAL FORMALISM

AND ITS RELATION TO THE INFLUENCE
FUNCTIONAL OF FEYNMAN AND VERNON

We want to compare the evolution of the reduced ma-
trix following two different initial conditions: the
Feynman-Vernon one used by Caldeira and Leggett and
the thermal one introduced in the last section. %"e shall

The mean value of p follows the classical equation. The
mean value of p does not vanish at t = co but goes to the
inverse of the resolution length of the bath according to
the Heisenberg uncertainty relation. This shows that the
upper cutoff frequency of the bath is actually measurable
by looking only at the particle and, surprisingly, does not
disappear completely.

V~(t) =e e U~(t), (47a)

U~(t) =exp
1

+2(un~a
Q~ F~ Q e

—a~ I'~ ue (47b)

t gg

P (t)= f du f dsF(u)F(s) sin[co~(u —s)],
2p co

(47c)

Now it is possible to write an expression for the functional

and where H is the Hamiltonian of the ath harmonic os-
cillator. Then the evolution of the whole set of harmonic
oscillators when the particle traverses the path q(r) is
described by the unitary operator V(~( )) (t),

V(q(, )) (t) =+ V~(t) . (48)
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F(q&, qz) for a general initial state of the total system
described by a density matrix p(q', , Q, ;qz, Qz) (here q&, qz
refer to the particle and Q &, Qz to the environment) as fol-
lows:

~ ~h({qiI IqzI t)

= (~
~ V{»,)

(t) V(», )
(t)

~

3, )

F(Iq, ],Iqzj, t)= Tr&[p(q&, qz)V{» )(t)V{» )(t)] . (49)
(54)

The initial condition considered by Caldeira and Leggett
1s

PcL(ql Ql qz Qz)=Po(qi qz )Pa(Qi Qz) (50)

pu (q i, Qi;qz, Qz) =po(q i,qz )p.,(q i Qi;qz, Q», (51)

where p,q is the equilibrium density matrix for the coupled
system at temperature T. Using these equations in the ex-
pression for F( I q~ I, Iqz I ) given by [Eq. (49)], one obtains

F(Iqi I [qz] t) =po(qI qz)~(Iq~I Iqz] t) . (52)

where po(q~, qz) is the density operator of the particle
alone and p~(Q&, Qz) is the thermal density matrix of the
bath when it is not interacting with the particle. The ini-
tial condition of the previous section corresponds to

[see Eqs. (23) and (24)]. More generally the average is
taken in the thermal state of the total system at tempera-
ture T. These expectation values are not difficult to com-
pute using the method of Appendix B. They are given by
the exponential of an expressian which has a real and an
imaginary part. The imaginary parts are the same for
WcL and ~,h [actually there is one more term in ~,h but
it exactly cancels a term neglected by Caldeira and Leg-
gett (second term of their formula 3.35)]. The difference
lies in the real part. For M,h it is given by

2

exP —g —, coth( —,PE~) g ( , Prcor)'~ —(A~~I~ BrI&)—
a y

In the case of Caldeira and Leggett, the influence func-
tional M is where

(55)

c(LIq)I, Iq Iz, t)=( V(»)(t)V{» )(t)), (53)
t

Ir=~'(qz —
q& )+~, f [q, (u) —qz(u)]e ' du . (56)

where the average is in the thermal equilibrium state of
the uncoupled harmonic oscillators. The initial condition
(51) gives (at T=O)

The sums over energy eigenvalues can be performed using
the techniques of Appendix C. After having done that
carefully, the real part of ~,h is given by

OP t
exp — f dcococoth( —,'Pco) f du f dsy(u)y(s) cos[co(u —s)]

2m 0 0

co coth( —,
'
Pcs)

XexP — f den z y; +y; f duy(u) [2(zl/M) cos(eau) —2cosin(eau)]
co +z) /M

(57)

where we have introduced y;=q~ —q2. In contrast, the
real part of acL is only given by the first exponential
[their Eqs. (3.10) and (6.4)]. The entire difference between
the two initial conditions is contained in the second ex-
ponential of Eq. (57).

Given these expressions for the influence functional, the
formula [Eqs. (43) and (44)] expressing the reduced densi-

ty matrix at time t in terms of the initial condition is
given by

P{ I y/»= f f d dy;DI IDIy I
' ' ' po(;,y;),

(58)
where it is again convenient, following previous authors,
to use sum and difference variables x= —,(q~+qz) and

y =q~ —q2. S~ is given by the action of the free particle
plus the imaginary part of the influence functional and is
the same for the two initial conditions,

S, = f du(Mxy —rtxy), (59)
0

exp( —Sz) is given by Eq. (57), or only the first exponen-
tial in that equation, depending upon which initial condi-
tion we use.

The path integral in (58) may be easily evaluated. '

I

There are two reasons for this, one obvious and the other
n«qui«obvious: (1) the integrals are Gaussian
therefore present no difficulties of principle, (2) because of
th««m of S& it is a useful taetie to take as a reference
the paths that make S& an extremum. To clarify the
latter remark, we first note that an expansion about paths
that are not the extremum paths for the full action
S&+iS2 leaves an inhomogeneous Gaussian functional in-
tegral to be done. The relevant general formula is

DVexp ——,
' V MV+iA V

=( detM) ' exp( ——,A M 'A) . (60)

Here V and A are N-dimensional real (column) vectors.
M is a real, symmetric, nonsingular matrix and DV
means +,. (dV; /V'2m). For the case at hand let V be
(5x;,5yj ) where 5x; and 5' are derivations from the path
determined by 5S~ ——0, at discrete times denoted by the
subscripts. Then, note that Eq. (58) when expanded about
the extremum of S& leads to a structure of the farm (60),
in which, however, the quadratic piece has no terms of the
form 5x;5xj, and the linear part comes solely from S& and
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so does not contain any terms in 6x. Symbolically, then,
in the space spanned by (5x,5y ) we have the structures

0A=, M= (61)
J

It follows that M ' has a zero in the lower right han-d
corner and, thus, that A M 'A=O T.his fact greatly
simplifies the calculation. There is a good reason for the
zeros in Eq. (61).' Paths for which y—=0 are paths for
which q~(t)=q2(t). Now the action in Eq. (58) comes
from (1) terms in the Hamiltonian which act on the parti-
cle coordinate alone, (2) terms coming from the influence
functional. In terms of type (1) the action involves
Sp(q~ ) —Sp(q2) which is clearly zero if q & (t ) =q2(t ). For
the other terms the argument is also simple. The influ-
ence functional [Eq. (49)] involves the comparison at time
t between states of the bath that have evolved subject to
the external forces specified by q&(t) and q2(t) [Eq. (45)].
For q~(t) =qz(t) these states are identical and the influ-
ence functional is equal to one. Thus everything in the
exponent of (53) and (54) must, and does, go to zero for
paths y (t )—:0. This condition, plus the fact that S

&
and

S2 are quadratic, requires the structures (61).
The condition 5S& ——0 leads to the equations

x'+yx =0, (62a)

(62b)

(Here y =q/M. Note that this is twice the y used by Cal-
deira and Leggett. )

Because of the zero in the upper left-hand corner of M
[Eq. (61)] the functional determinant in (60) is also easy to
evaluate. By considering the finite matrix for discrete
time steps, one can deduce that detp =d(t) obeys —the dif-
ferential equation (62a) and the boundary conditions
d(0)=0, d(0)=1. Since detM=(detp), this completes
the evaluation of the path integral in (58). The extremum
value of the action S~ can be expressed —via an integra-
tion by parts and exploitation of the equation of motion
[(62a) and (62b)]—in terms of values at the endpoints.
After these steps (58) becomes

M
p(xf yf t ) = dx; dy; exp[iM( xfyf —x~y; )]2nd t

X exp[ —S~(Iy,~I)]pp(x;,y;) .

(63)

Here Sz(Iy,&I) is the action S2 evaluated along the path
y,~(t), i.e., the solution of (62b) with y,~(0)=y; and
y,&(t) =yf, and x;,xf are the initial and final velocities as-
sociated with (62a) subject to the boundary conditions
x(0)=x;, x(t) =xf. Explicitly one finds

When these equations are substituted in Eq. (63) and the
expression (57) is used for Sz we recover the previously
deduced evolution of the reduced density matrix [Eqs.
(35)]. When we use only the first exponential of Eq. (57)
for S2 we obtain the evolution of the reduced density ma-
trix corresponding to the initial condition chosen by Cal-
deira and Leggett. It is worth noting here that the two in-
fluence functionals are very similar. Their imaginary
parts are exactly the same. This should be true in general
in order to obtain the classical equations of motion. The
differences in their real parts come only from a contribu-
tion proportional to the initial coordinates. In the next
section this will enable us to give a unified treatment of
the time dependence of various averages, starting from
both initial conditions.

VI. COMPARISON OF THE EVOLUTION
OF THE REDUCED DENSITY MATRIX

FROM THE TWO INITIAL CONDITIONS

—y,2f(t )Xe ' p(x;,y;) . (66)

Here we have used Eqs. (63) and (64). In the factorized
case we have simply written Sz in Eq. (63), for yf ——0, as
y; jet (t). For the thermal initial condition, as pp(x;, y;) is
only proportional to the initial density matrix at t =0, we
have written (for yf =0)

y, f,„(t)=S2 y; F— —2 2

[F is given by (34e) and comes from the equilibrium den-
sity matrix in Eq. (51)].

It follows from (66) that

&x&i=&x&p+ &p&p
d(t)

(67a)

In this section we calculate and compare the time
development of position and momentum moments using
the uncoupled initial condition of Caldeira and Leggett
and the thermal one introduced in Sec. IV. We also con-
sider explicitly the propagation of a Gaussian wave pack-
et. We study first the time dependence of position mo-
ments (and come back to usual units by restoring the
missing A' s).

For a general function of position, we have

& F(x) &, = f dxf F(xf ) p(xfp yf =0, t), (65)

since setting yf ——0 is the same' as integrating over final
momenta. The integrals are straightforward and one
finds

& F(x) &, = f f dx; dy;[F((i'/M)d(t)B/By;)5(y;)]
i [M/Kid(t)x;y; ]Xe

d(t)= —(1—e r ), y=1 — t

y M '

x; =(xf —x;)/d(t),

(64a)

(64b) + & (xp +px ) & p .d(t)
(67b)

xy =e xg

d(u)
y t(u)=y;+ (yf —y;) exp[@(u —t)] .

d(t)

(64c)

(64d)

In these equations only f(t) is dependent on the initial
condition. It is instructive to compare these formulas
[Eqs. (67)] with those for a noninteracting particle:
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&x&i=&x&0+ &s &0, (68a)

t2
(x'&, = &x'&0+ &p'&0+ &(xp+px) &0. «8b)

M

Comparing (67) and (68) we see that the environment has
two effects. Because it causes the time t in (68) to be re-
placed by d(t), [Eq. 64a)], it quenches the quantum-
mechanical spreading of a free-particle wave packet after

I

a time on the order of the relaxation time y '. There is
an additional physical effect associated with the second
term on the right side of Eq. (67b). This is a diffusion
which dominates for times greater than y '. The func-
tion f ( t) which controls this effect is evaluated by substi-
tuting (64d), with y/=0, into S2 in (63) and using Eq.
(57) [or only the first exponential in (57) for the factorized
initial condition]. One thus finds, for the Caldeira-
Leggett initial condition,

fcL(t)=, z dco coth(Tiiipco)
2 sin (cot/2)+

c Q7. 4y . 2 (1—e r')
g( 1 e

—rf)2 Q 2~ ~2(~2+ y2) y2+~2

In the case of the thermal initial condition f is given by

2y(1 —e r')
sin(cot )

co(co +y )
(69a)

fih(t)=,2
dco coth( —,Apco) sin (cot/2)—~y c 4y . q (1—e r')

A'(1 —e r')' 2ir ' co'(co2+ y') CO +g
(69b)

1

b (1— ') [r—(1—e ) —'-,'(1—e ') ] .

For long times ~ ~~1, this reduces to

1f~ (r —,)——
My b

(7O)

(71)

The linear dependence on time describes classical dif-
fusion, and (67b) shows that the coefficient obeys the Ein-
stein relation between diffusivity and viscosity. At zero
temperature (b= co) one finds a different behavior for
long times, r»1, namely, Af/my~a. 'in'. The loga-
rithmic dependence changes to a linear one at any finite
temperature for time greater than irtp. Here one again re-
covers the linear diffusive behavior, with the Einstein
coefficient, but with a different offset. The crossover
time A'p is the period of the most rapid classical environ-
mental oscillation. Figure 1 is a plot offCL for parameter
values chosen to illustrate the various regimes.

It is now also straightforward to calculate the behavior
of momentum moments. For these, the general formula is

These functions depend on three dimensionless parame-
ters: time, r= yt; inverse—temperature, b—:pA'y; and the
upper-frequency cutoff, 0:—co, /y. In the classical limit
bQ «1, Q &&1, one finds for both initial conditions after
a short time transient on the scale t -co, ' the expression

f( rb, O)
fi

My

[S2 [X.ij. ..-r ]cL3'; )'I&

Mykg T
+le

)& f dco [1+e r' 2er'cos(cot)]- ,
c +(co)

2'(co +y )

(74a)

where IC (co) is (fico/2k' T)coth(Ace/2k' T). For the
thermal initial condition, S2 is simply given by

[S2 Iv.iI. ..—, ]a,

Mykg T
dc'

C

K (co) qr,
)

2ir(co +y )
b)(74

From Eqs. (74) it follows that for both initial conditions

&p&i=e "&p&0. (7S)

h f~2

mkT

Thus, in both cases, the mean momentum of the particle
follows the classical equation of motion.

The evolution of the mean-square momentum, for the
factorized initial condition, is given by

(F(p)&, = f dx/F((fi/t')d/dy/)p(xf pf t), (72)

Integrating (63) over x/ and x;, one obtains the simple
formula

p( y&, t) =exp[ —S&( Iy, ~J,—,~) ]pa(X. =3't e
J7. gy8

where p(y)=—f dx p(x,y) and S2 should be evaluated
along a classical trajectory such that y; =y~e ~'. For the
initial condition of Caldeira and Leggett, one has

00 IO 7t
FIG. 1. Curves illustrating the quantum corrections to classi-

cal diffusion, as given by Eq. (69a).
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6)

(p ),=e &—'(p )0+2Myk~T f dco [1+e r —2e r cos(cot)] .
2~(co +y )

(76a)

For the thermal initial condition, its evolution is

(p 2) e 2rt—(p 2)
N

+2Myk~T f dco 2
(1—e r') .

c 2~(co +y )

(76b)

In the classical limit K(co)~1, co,~ no and both evolu-
tions reduce to

(p2), =e 2'r'(p2)0+Mktt T(1 e—2rt) .

The long-time logarithmic behavior of the widths are ex-
actly the same but the subleading terms differ. It is in-
teresting to note that for the thermal initial condition the
behavior of o,h is well behaved when co,~ oo, contrary'
to crcL. This happens because the initial cutoff-dependent
initial mean-square momentum cancels exactly the
cutoff-dependent term in f,h(t) [see Eq. (67b)].

For the evolution of momenta averages there are also
some differences, since for the factorized initial condition,

(p2) e 2 ctp—2'

K (co)

n(co +y )

This shows that equipartition, i.e., (p ) =Mk2t T, is both
the long-time and stationary solution. However in the
quantum case the long-time solution

(p') =Mk~r f dco (77)
C

cocoth —,A co
+My dco

2& co +p

&( [1+e r' —2e r'cos(cot) ], (82)

is only a stationary solution of the evolution (76b) corre-
sponding to the thermal initial condition. It is not a sta-
tionary solution of (76a), a fact which reflects the uncou-

pled initial condition [Eq. (50)] imposed by Caldeira and
Leggett. The long-time limit [Eq. (77)] corresponds of
course to the mean value of the square momentum of the
particle in thermal equilibrium [Eqs. (42b) and (34e)].
Now we specialize these results to the propagation of a
Gaussian wave packet

1
po(x;,y; ) = ~ exp ipoy;0"v m

x;+y;/4
2

Oo
(78)

For the diagonal part of the reduced density matrix at
time t we obtain, for the factorized initial condition,

1 [x~—pod (t)/M]
exp, —

cTCL(t)V m WCL(t)
p(xI, O, t) =

(79)

with

d (t) 4d (t)
~CL(t) =~O+ 2 + fCL(t)

croM M
(80)

4 f d co
„h

PfK0

MyW o 2m- 2

(1—e r') 2y(1 —e c')
X 2 2

—
2 sin(cot)

+co co(co +y )

(81)

This should be compared with our previous results [Eqs.
(37) and (38)] for the thermal initial condition
[d(t)=2M

~

A (t)
~

=(1/y)(1 —e r')]. Here as before the
center of the mass follows the classical equation of
motion, - but the evolutions of the widths of the wave pack-
ets are different:

2 2
CL ~th

whereas for the thermal initial condition [Eqs. (64)],

co coth( z RPco)
(p') =e 2rtpo+My f dco

2m. (co +y )

They differ by a transient which lasts a time of the order
of the relaxation time.

(83)

VII. CONCLUSION

In the present paper we have studied in great detail the
model proposed by Caldeira and Leggett, when there is no
external potential and the model is completely soluble, in
the hope of exhibiting some of its features which may also
be relevant in more general cases. We have obtained the
eigenstates of the total Hamiltonian and shown more. ex-
plicitly that the bath is, in some sense, measuring the posi-
tion of the particle. This has given a nice explanation of
the residual mean-square momentum of the particle in
equilibrium and explained why it is related to the upper
cutoff, and it also has the somewhat surprising conse-
quence that the upper cutoff of the bath is theoretically a
directly measurable quantity. We have compared the evo-
lution of the particle according to different initial condi-
tions. We have introduced a nonfactorized initial condi-
tion where the bath has already "measured" the position
of the particle in the sense that off-diagonal terms of the
reduced density matrix are as suppressed as in thermal
equilibrium. We have also worked out explicitly the time
dependence of position and momentum averages accord-
ing to an initial condition used previously in the work of
Caldeira and Leggett. Contrary to previous expectations,
the difference between the two different initial conditions
is very long lived, being governed by the relaxation time,
which is also the scale of the evolution of the system. The
importance of the initial condition seems therefore worth
studying in other models like two-level systems. Finally,
the results of this paper may be useful in trying to under-
stand tunneling by matching wave functions in different
regions, although this approach appears rather complicat-
ed at the moment.
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APPENDIX A: DIAGONALIZATION OF H2

We want to show in this Appendix how we perform the
transformation to the normal modes of H2 [Eqs. (18),
(19), and (20)]:

H, = g co (a a + —,
'

)

2

+~ Bp+(1/M)( —,p ~ )' 'g( , p—r~„)'i'(&pr+B~p)

=E B

Let us call Kp the sum

ICP (1/M) g ( 2 Privy) i2(APr+BPr)
r

Then from Eqs. (A4) we readily obtain

(A4b)

(A5)

and (A5) gives us the consistency relation
2

~ Pa ~a
E2 2 (A7)

which is the eigenvalue equation [Eq. (20) in the main
text]. In order to have proper canonical commutation for
the b and b 's A p and Bp should be normalized such as
to satisfy

1 =g ( ApA p +—BpB p ) .
p

This will be verified for Kp [Eq. (A6)] given by

(A8)

—K
( —,p ), Bp —— ( —,p )~ a P & 1/2 a P & 1/2

Ep+ cOa Ep —6)a

(A6)

+(1/2M) g( ,'p can
—)'i(aa+aa)

a

The equations of motion of a and aa are

(A 1) —1/22
2prcorEp

&p= X 2(Ep ~r)'— (A9)

daa
=i[H, a ]dt

=i —co~a —(1/M)( —,p cga)'i

When we put this last expression into Eq. (A6) we obtain
the expression for A p and Bp given in the main text [Eqs.
(18)].

Xg ( ,' @peep)'i (a p+—ap)
p

(A2a) APPENDIX B: COMPUTATION OF THERMAL
AVERAGES AND OVERLAPS

daa =i [H; aa]dt

=i +coaa + (1/M)( —,pacha)'i~

Xg ( ,' p~p)'"(a p'+a —p)
p

(A2b)

We are looking for linear combinations ba of aa and aa
which are eigenvectors of these equations with eigenvalues
Ea. We find

Here we want to show how we have computed the
thermal average of the product of operators that appear in
the time evolution of the reduced density matrix. Specifi-
cally we want to compute

iH I t
~

—iH l t
r(p„p„t)=(U,e

' ' Ui q U, q e "U (B1)

For t =0, this is also the overlap (A&, ~ A~ ) between two

states of the bath associated with positions q1 and q2 of
the particle [see Eq. (25)].

Using the result of our diagonalization we firstly ex-
press (Bl) as

aa =g A pb p+Bpbp,
p

a =Q Bpb p+ A pb p,
p

(A3a)

(A3b)
E(p I ~p 2 ~ t )

=((U, U, ,„U,)

and A p and Bp are solutions of

co AP —(—1/M)( —,P~ )'~ g ( —,Prior)'i2(APr+B$)
iH3t g g

- —sH3X(e U3U2p U| q, q U2p U3e '
)

=EpA p, (A4a) X(U3U2~ U3))p. (82)
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U3U2~U3 ——exp g f$(a p ap—)

P

(83)

This seems cumbersome until it is noticed that the three
terms in parenthesis are easily computed since we know
the action of U3 on a~ and aq [Eq. (17)] and their evolu-
tion in time. Thus,

fp= —X
a tl 2~crpa

(Bp —A p)

r

+2EpEp g [a)»rl(Ep cur) ]
r

(84)

With
[r~~ is defined in Eq. (11), A p and BI in Eqs. (18)]. In the
same way we get for the middle term

iH3t —iH3t
U3 U2,p U1,q —q U2,p U3 e

1 ~&+&~ +)—p2 iEpt iEpt
=exp ——&' g [(q& —q2)r ] exp g[y+p e —~ (qi q2—)gpe ] p

a 13

l
—Pp —IEpt —iEpt—[ p e +&(ql q2)gpe lap

and we have defined

gp ——g( ,'p co —)'~'(A@+By)

version of the Baker-Hausdorff formula
z a a+a+[&,a]y2 (86)

M 1
) 1/2+2Ep ~ [~ prl(Ep ~r) 1—

Now the three terms between parenthesis in Eq. (82) are
exponentials of linear combinations of a~ and a~t. We ex-
press them as a single exponential using the simplified

I

valid when [A, [A, B]]=[B,[A, B)]=0,and we compute
the thermal average of the resulting expression with a for-
mula of Bloch

(exp(ta~+ua~) )p ——exp[ ,' tu coth( —,
'

P—E~)].

The result of these manipulations is

~i+&2 ~2 ~2+&lF(p),p2, t)= exp i g J p J p sin(Ept)+g p gp(q) —q2)[cos(Ept) —1]
P

1 PEp ~,-p, iEpt 2&&exp ——, g coth leap (1—e )+t(qi q2)gpl-
p 2

(87)

APPENDIX C: SUMS OVER ENERGIES
AS INTEGRAI. S

The result of many computations are given by sums
over the energy eigenvalue of the Hamiltonian [see, for ex-
ample, Eqs. (84) and (86)]. We want to show how to ex-
press them as integrals to simplify their computation.
Specifically, we want to compute the sum Sf

Mf (Ep)

p 2Ep X [~»rl«p ~&) ]

where Ep are the positive solutions of Eq. (A7),

I

If we choose a contour C encircling the real positive axis
(see Fig. 2), we can write Sf as

Sf= f dz
1 f (z)

2
p~
M z —~

(C3)

Complex E plonk

We introduce the spectral density of oscillators J(co) [Eq.
(4)] and write the denominator as

1 Pa
M MEp —~

(C2)
FI&. 2 Contour used in evaluating Eq (C3)
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2

y
MZ2 ~y

2 ~
d J(co)

AM 0 co(z —co )

O.D.
= 1+ i sgn(e) . (C4)

l." f(E)
E'+ ri'/M'

The last equality is only valid in the case of Ohmic dissi-
pation (we have also written z as z =E+ie) W. e finally
obtain the expression we were looking for,

This allows us to write F(p&,p2, t) computed in Appen-
dix B in terms of integrals [see (Bl) and (B7)]. The result
1S

F(p, ,p2, t) =expt i [A (t)(p& —p2)+(p&+pz)(q~ —q2)B(t)] I

XexpI —[C(t)(p2 pi ) —D(t)(qt ——q2)(p2 p~ ) +—( qt
—q2) F]I,

where

A( )
g ~dE 1 sin(Et)

~~2 p E2+ 2y~2

B( )= tl dE cos(Et) —
&

(
ttt/M —1)

m.M o E'+ ri'/M'

~M' o E'+(ri'/M')E
coth(pE/2) . (E )

~M 0 E2+82/M2
""

1 ~ "c
E coth(pE/2) E

p E2+~2y~2

(We have replaced ro, by ac in all integrals except the last
one, since they are convergent. )
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