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The velocity autocorrelation function for the hard-sphere fluid is computed for ten values of the
volume ranging from 25 to 1.6 times the close-packed volume ¥V, for systems of from 108 to 4000
hard spheres, using a Monte Carlo, molecular-dynamics technique. The results are compared with
the theoretical predictions of the mode-coupling theory, modified to take into account the finite size
of the system and the periodic boundary conditions. The data are found to be in good agreement
with the theory, evaluated using Enskog values for the transport coefficients, for values of the time
greater than roughly 15 to 30 mean free times (depending on density), for volumes as small as 2 V.
The higher-density results do not agree with the theory, unless the actual transport coefficients
(evaluated using molecular dynamics) are used in the theory. The latter version of the theory, how-
ever, fails to fit the data at lower densities, except at very long times. To answer the recent critique
by Fox, the data are further compared with the theory over time intervals for which the molecular-
dynamics trajectories retain some measure of accuracy. The agreement between the data and the
theory is largely unaffected, except at a volume 1.8 ¥, for which there is a marginally significant
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difference at very long times only.

I. INTRODUCTION

The slow decay of the time correlation functions which
appear in the Green-Kubo theory of transport was first
reported 15 years ago in a landmark study of the velocity
autocorrelation function of hard spheres and disks at fluid
densities.! In the interim, a wealth of theoretical? and nu-
merical® evidence has accumulated tending to support the
existence of the so-called long-time tails, viz., that the
time correlation function p,(¢) for transport coefficient u
decays at long times as

pult) may,(t/tg) %%, , )
where t, is the mean free time, for systems of dimension
d =2 or 3 and for u including self-diffusion D, shear
viscosity 77, and thermal conductivity A. Indeed, many re-
gard the evidence for the validity of Eq. (1), particularly
for the case of the self-diffusion coefficient (for which pp
is the velocity autocorrelation function), as overwhelming.

On the other hand, under critical examination, the evi-
dence is seen to be less than complete. Fox* has recently
summarized some of the weaknesses of the case for Eq.
(1). Inasmuch as the theoretical arguments, whether from
kinetic theory or from mode-coupling theory, have never
claimed rigor, the ultimate case for long-time tails (and
hence for the assumptions underlying the theory) rests on
the numerical results and the concurrence of these results
with the predictions of the theory. Fox has stressed the
inability of the molecular-dynamics method to generate an
accurate N-particle trajectory beyond of the order of ten
mean free times. Since the long-time behavior in question
is certainly not manifested before a time of perhaps 15¢,
there is clearly reason to be concerned.

In addition, the numerical evidence, even if accepted as
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accurate within its apparent statistical uncertainty, is not
at all compelling except for the case of self-diffusion in
two dimensions.*® The calculations for other transport
coefficients contain relatively larger statistical uncertain-
ties by virtue of the fact that only the velocity autocorre-
lation function pp(t) (abbreviated VACF hereafter) is a
single-particle function and hence can be “observed”
simultaneously for each of the N particles in the system
(although all N such observations may not necessarily be
independent).

For the case of two dimensions, the present authors
have made extensive comparisons between molecular-
dynamics results and a finite-system version of the mode-
coupling theory.”® These comparisons showed satisfac-
tory agreement over a broad range of density. The effect
of trajectory accuracy was also investigated by using two
separate calculations of the VACF, one based on “single-
precision” arithmetic for the trajectory calculation (14
floating-decimal digits) and one based on “double-
precision.” At the level of statistical precision achieved,
no significant difference was found between the two sets
of results over the time interval 10¢, to 20, for which the
double-precision trajectory remains accurate while the
single-precision calculation has lost its accuracy. While
this result is in the right direction to answer Fox’s criti-
cism, it nonetheless does not extend long enough in time
and is for a lower density than those cases for which evi-
dence for the long-time tail is strongest.

For the case of three dimensions, the numerical evi-
dence is not particularly strong, even for hard spheres.
The comparison made by Alder and Wainwright! between
the observed coefficient ap and the mode-coupling theory
appeared on reexamination®® to show evidence for
disagreement. The calculation by Levesque and

3(f)
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Ashurst>® of pj,(¢) for a truncated Lennard-Jones poten-
tial supported the functional form Eq. (1), but no compar-
ison was possible between the observed coefficient and the
theory because the transport coefficients D and n which
determine ap theoretically are not known for that interac-
tion potential.

It is our purpose here to present some extensive numeri-
cal results for the VACF of systems of hard spheres at a
series of fluid densities and to compare our results with
the theory by using the finite- N version of mode-coupling
theory which was detailed in I [Ref. 3(f)]. In Sec. IT we
summarize the numerical methods and the scaling of the
results. In order to answer Fox’s criticism, we investigate
in Sec. III the accuracy of the trajectory calculation, find-
ing that the present results for the VACF are accurate for
times as large as 100 mean free times, depending on densi-
ty. In Sec. IV we present our VACEF results at a series of
densities and describe the comparison with theory. In ad-
dition to making these comparisons using our VACF data
from some initial time to the final time for which we have
data (viz., to final times of 60 to 240 mean free times, de-
pending on density), we also make comparisons over more
limited time intervals, viz., for values of the time which
are sufficiently long that the long-time tail has become
dominant and yet sufficiently short that our trajectory
calculation remains accurate.

II. METHOD

The method used to obtain estimates for the VACF has
been described in considerable detail previously.” To sum-
marize, we consider a system of N hard spheres of mass
m and diameter o which, at time ¢, have positions
r¥(t)=(r(8),ry(t), ...,ry(t)) and  velocities v™(¢)
=(v,(2),v5(8), ... ,vN(2)), subject to periodic boundary
conditions (PBC’s). It will be convenient here to describe
our system in terms of the “infinite-checkerboard” version
of PBC’s, whereby the r;(¢) designate the positions of the
N particles, irrespective of crossings of cell “boundaries;”
with this stipulation, the r;(¢) are the integrals of the v;(¢).

To obtain estimates for the VACEF, define

O)u (1)),
u;(t)=v;(t)—P(t)/Nm , (2)
P(t)=m X v(1),

in which u; is the velocity in the center-of-mass reference
frame and the angular brackets denote an average over an
equilibrium statistical mechamcal ensemb]e of initial
states x™(0), where x™(¢)=[r"(2),v™(¢)] is the phase. By
virtue of the PBC’s, the linear momentum P(t) is con-
served; P(¢)=P for all t. Our calculations consist of the
application of the Monte Carlo method to obtain a se-
quence of Q initial states x (t) (p=1,2,...,0Q) sampled
from the microcanonical ensemble For each such phase,
we then generate a molecular-dynamics (MD) trajectory
(t) of fixed time length, from which we obtain an estl-
mate ppp(t) as an average over “time origins”
t =0,0h,2wh, ..., Qh in which A is the fundamental ob-
servation time along the trajectory (see I for details). The
overall mean values of the VACF as well as estimates of

D(t)=<u1x(
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its statistical precision are obtained from the Q values
{pr(t); p=12,...,0}. We refer to this combined cal-
culation as the Monte Carlo, molecular-dynamics
(MCMD) method.

In analyzing our hard-disk data, we found in I that, in
some instances, it was statistically favorable to obtain
pp(t) from the mean-square displacement,

S()=3 (Ari(1)?) /(2dNt) ,

i
Ar,-(t)=r,-(t)—r,-(0)—Pt/Nm ’
using the relation
pp(t)=d*S (t)/dt? . @)

In particular, at long times, we estimate pp(¢) through the
second difference of £S(z), denoted by ,[£S(¢)]"” in which
kh denotes the central differencing interval; provided k is
chosen equal to the time-origin spacing w, the differenced
quantity typically (for small enough whk) has a smaller
standard deviation than the directly computed VACF. At
times less than roughly 20¢,, the systematic error in ap-
proximating the second derivative, Eq. (4), by second
differences dictated against the use of [#5(#)]”. In the
present calculations the spacing of time origins is such
that the systematic errors appear to affect the results in a
number of cases. In many instances, then, we report the
directly computed pp(2).

As in I, we define reduced quantities relative to the pre-
dictions of the Enskog theory,

D=D/Dg=limD(s) ,

§— 0

- s (5)
D(s):foﬁD(s’)ds’,
with, then, the reduced VACF and the reduced time de-
fined by

ﬁD(S)ztopD(Sto)/DE .
(6)
S :t/to

in which the Enskog value is
Dr=1.01896Dy /X ,

V(mp)'”?
N(20)27T1/2 4

with X denoting the pair correlation function at contact.

00 =

III. ACCURACY

The assessment of the accuracy of the MCMD results
for the VACEF is discussed in this section, not from the
point of view of the statistical uncertainties inherent in
simulation methods, but rather with respect to the numer-
ical errors which arise in the generation of the MD trajec-
tory.

To make the dlscussmn quantitative, we follow Ref. 5
in defining the phase Xp N(t;m) to be the numerical repre-
sentation of the true trajectory x, N(1), based on the use of
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m-digit arithmetic in the trajectory calculation. Further,
we define the reduced root-mean-square errors A,(z,m)
and A,(¢,m) in position and velocity, respectively, as

> > Alre;m) —r(O])

A2t m) = —
No

Aﬁ(t,m):ﬁ—nl 3 ([vi(t;m)—v; (D) .
3N <

While it is clear that the accuracy of x,fv (¢;m) depends on
the number of particles N as well as on the arithmetic
hardware in a particular computer and the computer code
used to generate numerically the trajectory, we expect the
errors to depend largely on “register length” m; only the
latter dependence is notated.

To estimate A, and A,, we generate a series of trajec-

tories from the same initial configurations in both “sin-
gle” and “double” precision, i.e., using m =14 digit accu-
racy and 28-digit accuracy, computmg A, and A, as in
Eq. (8), except that the x, N(t;2m) replace the exact
x}V(2). For times ¢ such that the double-precision trajecto-
ry retains some degree of accuracy, the MCMD quantities

g EZ[r,p t;m)

Arm)= rp(t;2m)]?

Al(t;m)= 3NQ zz[v,p t;m)—vy,(t;2m)]?

will be estimates of Af and A2,

In Fig. 1 are shown semilog plots of A, and A, as func-
tions of the time for four different values of the reduced
volume 7,

T= V/ VO 5

(10)

Vo=Na®/217%,
where V, is the close-packed volume, viz., 7=10, 3, 2,
and 1.7. While each of the calculations is for a system of
108 particles, the results are nearly independent of system
size over the range of N reported in this work. We note
that for each density the error A, appears to reach a pla-
teau which is independent of density and very close in
value to that expected if vy, (¢;m) and v,,(¢;2m) were in-
dependent Maxwellian velocities. On the other hand, A,
appears to grow slowly at long times, consistent with the
expectation that the single- and double-precision values of
r;(t) “diffuse” away from each other in the infinite check-
erboard. The slopes of these curves at late times are, in
fact, of the order of magnitude one would predict from
the diffusion constant in the Enskog-theory approxima-
tion.

It is interesting to note that the growth in error seen in
Fig. 1 is accelerated at late times at least in the case of the
two higher densities. The time at which this effect takes
place is found to agree with the time at which the single-
precision trajectories typically omit collisions which occur
for the double-precision trajectories. Evidently, the
growth of error is controlled by a rather different mecha-
nism beyond this point than the exponential divergence of
trajectories which holds while the trajectory is more accu-
rate.
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FIG. 1. Root-mean-square difference in particle (a) velocity

A, and (b) position A, Eq. (9), between single- and double-
precision trajectory calculations, as a function of reduced time s
for four different values of the reduced volume 7.

We associate, then, the time of attainment of the pla-
teau with the complete loss of accuracy on the part of the
single-precision trajectory, viz., t/ty=13, 33, 38, and 48
for 7=10, 3, 2, and 1.7, respectively. Except for a very
few calculations, our VACF calculations reported below
were done in double precision. Thus the loss of accuracy
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for such calculations can be expected to occur at double
these times.

In assuming that these times represent the limits for the
generation of accurate MD trajectories, it is important to
recognize the additional assumption that time averaging,
as introduced in Sec. II, introduces no bias in the statisti-
cal averaging. For the present purposes we regard the va-
lidity of MD time averaging as an empirical result, based
on the well-known agreement® of Monte Carlo and
molecular-dynamics calculations of the equation of state.”
Attempts to justify MD time averaging® on the basis of
the Anosov-Bowen theorem of ergodic theory cannot be
completely justified for hard spheres and disks, as dis-
cussed by Fox.*

Finally, we remark that the MD results for the VACF
might be accurate at times beyond those at which the tra-
Jectories lose their accuracy. In I we reported a compar-
ison of the VACF from a single-precision and a double-
precision calculation. Such a study could have shown a
significant difference in the VACF between the two in the
time interval for which only the double-precision trajec-
tories were accurate. Instead, the comparison showed no
statistically significant difference, with at most a 10%
difference in the mean VACF’s at the 95% confidence
level.

IV. VACF AT LONG TIMES

The velocity autocorrelation function has been calculat-
ed using the MCMD method described in Sec. II for the
systems tabulated in Table I. The various parameters dis-
cussed in Sec. II are included in the table, along with the
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observed values of the mean free time. In Figs. 2—10 the
observed VACEF is plotted as a function of time, in units
of the mean free time, along with the predictions of the
theories. The latter include (a) the infinite-system long-
time tail, Eq. (1) (the dotted curves in the figures), with
ap given by

ap=(2/3nBm)[4m(D +v)t,]~3/?, (11)
where n is the number density and v is the kinematic
viscosity, n/nm, and (b) the finite-system version of the
mode-coupling theory, called the Ernst—Hauge—van
Leeuwen (EHVL) finite-N theory (the curves labeled by
the number of particles).

The evaluation of the theoretical curves, as detailed in
I, requires values for the coefficients of self-diffusion and
shear viscosity and also the thermal conductivity in the
case of the EHVL finite-N curves. The question of what
values should be wused has been discussed
repeatedly. 2?3301 oyr present considerations we
shall primarily use Enskog values for these transport coef-
ficients, as was done in I. In addition, we shall use values
for the finite-system transport coefficients, defined as the
infinite time integral of the appropriate finite-system time
correlation function. We refer to the latter procedure as
“self-consistent,” even though more elaborate self-
consistent methods have been proposed.’

Expressions for the Enskog transport coefficients are
given explicitly in I for both two and three dimensions.
For hard spheres they depend on the pair correlation
function at contact [i.e., g(ry,) for ry, =0], which can be
obtained from the equation of state. For the latter, we use

TABLE 1. Parameters of the Monte Carlo, molecular-dynamics calculations of the velocity autocorrelation function of hard
spheres. Q is the number of trajectories; the notation “/n” indicates that observations for n trajectories were coarse-grain averaged.
h is the time-step length. w is the time-origin spacing in units of 4. M is the maximum number of time steps for which the VACF
was evaluated. 0 is the total number of time steps in each trajectory. N, is the total number of collisions (in millions) for all trajec-
tories. p denotes the arithmetic precision of the trajectory calculation, 1 for single precision, 2 for double precision. The quoted un-

certainty in the mean free time is one standard deviation.

V/Vy N Q h/ty w M 0 N, P to/too

25 4000 50 0.5 4 120 320 17 2 0.927 32+0.00022

18 4000 73 0.5 4 120 320 26 2 0.90021+0.00021

10 } 500 150/3 0.5 4 120 480 11 2 0.823 52+0.00024

10 4000 100 0.5 4 120 320 39 2 0.82418+0.000 13
5 108 100/2 0.1 20 600 14400 6 1 0.67011£0.000 37
5 500 100 0.1 10 620 5000 12 2 0.667 66+0.000 18
5 4000 50 0.5 4 120 320 24 2 0.666 84+0.000 13
4 108 100 0.2 10 300 7200 13 2 0.597 52+0.000 24
4 1372 50 0.2 10 300 7200 12 1 0.59536+0.000 14
3 108 200 0.2 10 120 1000 5 2 0.487 56+0.00026
3 500 50 0.2 10 120 1000 5 2 0.486 63+0.000 19
3 1372 30 1.0 2 16 100 4 2 0.48583+0.00021
3 4000 99 0.5 4 120 320 66 1 0.486 11+£0.00006
2 108 72 0.1 10 200 1000 1 2 0.306 57+0.00026
2 500 32 0.1 10 200 1000 3 2 0.305 14+0.000 09
2 1372 15 1.0 2 20 100 3 2 0.305 62+0.00020
2 4000 50 0.5 4 120 320 52 2 0.305 38+0.00005
1.8 4000 50 0.5 4 120 320 63 2 0.25592+0.000 04
1.7 4000 88 . 0.2 4 100 320 49 2 0.22927+0.000 04
1.6 4000 100 0.2 4 100 320 64 2 0.201 40+0.000 04
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the Padé 3 X 3 approximant to the virial series of Ree and
Hoover;!? at the level of accuracy of the present VACF
calculations, the difference in the theoretical VACF based
on a more exact equation of state!! would not be conse-
quential. .

The quantitative comparison between the EHvL finite-
N theory and the molecular-dynamics results is summa-
rized in Table II, which gives the results of application of
the Hotelling T2 test'? of multivariate statistical analysis
for the various systems. While the application of the test
is detailed in I, for the present purposes it is sufficient to
note that P(T?) is the cumulative distribution function

for the T? statistic, evaluated at the value of T2 observed
in a particular comparison. For a particular density and
system size, the value of T2 depends on the magnitude of
the deviations between theory and ‘“experiment” and on
the observed correlations between the values of the VACF
at successive values of the time. Values of P(T?) greater
than, say, 0.95 would indicate, under the hypothesis that
the theoretical VACF is correct, an unexpectedly large
disagreement between numerical results and the theory,
while values near zero would indicate an unexpectedly
close agreement. The parameter Ag o5 is an approximate
measure of the sensitivity (power function) of the 72 test

TABLE II. Hotelling T test results for the comparison of MCMD results with the finite-N EHvL
theory. Column labeled f specifies the manner of evaluation of the VACF: d denotes direct evaluation,
as in Eq. (2), and s denotes evaluation from S(¢), via Eq. (4).

V/V, N k s sf P(T? Ago.os f
10 500 21 21.9 70.4 0.85 299.5 s
10 4000 23 17.0 70.4 0.98 1.5 s

22 19.4 70.4 0.33 1.8 s

5 108 23 20.9 86.6 0.53 s
22 23.9 86.6 0.37 188.4 s

5 500 31 22.5 89.9 0.99 d
30 24.7 89.9 0.78 2.9 d

13 22.5 494 0.94 d

12 24.7 49.4 0.37 2.7 d

5 4000 22 24.0 87.0 0.94 s
21 27.0 87.0 0.80 0.6 s

10 24.0 50.9 0.96 s

9 27.0 50.9 0.72 0.5 s

4 108 24 20.1 97.1 0.98 s
23 23.4 97.1 0.46 12.2 s

4 1372 23 23.5 97.4 0.97 s
22 26.9 97.4 0.46 0.5 s

3 23.5 30.2 1.00 s

2 26.9 30.2 0.93 0.5 s

3 108 9 16.4 49.2 0.95 d
8 20.5 49.2 0.06 3.2 d

3 500 9 16.4 49.3 1.00 d
8 20.5 49.3 0.84 0.4 d

3 1372 5 16.5 32.9 1.00 d
4 20.6 32.9 0.85 0.6 d

3 4000 24 28.8 123.4 0.93 d
23 32.9 123.4 0.71 0.2 d

9 28.8 61.7 0.98 d

8 32.9 61.7 0.88 0.2 d

2 108 18 9.8 65.2 © 092 d
17 13.0 65.2 0.63 0.5 d

2 500 18 9.8 65.5 0.97 d
17 13.1 65.5 0.39 0.2 d

2 1372 10 9.8 65.4 0.96 d
9 13.1 65.4 0.15 0.3 d

2 4000 29 13.1 196.5 0.93 d
28 16.4 193.2 0.58 0.1 d

11 13.1 78.6 1.00 d

10 16.4 75.3 0.72 0.1 d

1.8 4000 33 171.9 234.4 0.96 d
39 27.4 101.6 0.94 d

37 31.3 101.6 0.85 0.2 d

1.7 4000 6 65.4 87.2 0.97 d
1.6 4000 5 79.4 99.3 1.0 d
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to an actual disagreement. Large values of Agg o5 indicate
that the true VACF could be far from the EHvL finite-N
theory, in the sense of a multiplicative factor 1+Agg o5
applied to the theoretical pp(z). If the true VACF were
given by (1£Agg0s)pp(t), then the T? test would reject
the hypothesized pp(z) with high probability. The calcu-
lation of Agg 95 is, however, approximate and only acts as
a guide to the significance of the T2 test.

Our procedure in making the test is to select a time in-
terval [¢;,¢7], or in reduced units [s;,s7], over which to
make the comparison, with a spacing of time values At
such that the number k of values of the time in the inter-
val is less than the number of trajectories Q; the T statis-
tic is singular at k =Q —1. Typically, z, was chosen to
be the final time for which the VACF was calculated, al-
though we present results for more limited comparisons as
well. T2 was then calculated for a number of values of ¢;
(and thus k), so as to find values for which the test yields
a large P(T?) (say roughly 0.95 or greater) for one value
of t; and a more nominal value of P(T?) for the next
larger value of ¢;. In Table II, then, we have entered the
test results for this pair of ¢; values. It should be noted
that this procedure will probably tend to give values of
P(T?)>0.5 for the “next larger value of #;.”

In the following we discuss the data for each density in
turn, beginning with the lowest-density system.
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FIG. 2. Reduced velocity autocorrelation function for 4000
hard spheres at a volume of 25 ¥} as a function of reduced time
s. Curves show the theoretical results, with the asymptotic
large-system result [from Dorfman and Cohen, DC, Ref. 2(a)]
given by the dotted curve. The dash-dot curve (and, in subse-
quent figures, the dashed curves as well) is the prediction of the
finite-system mode-coupling theory. The latter is coincident
with the pp =0 axis beyond s =20. Arrows mark the acoustic
wave traversal time.

A. Low densities: 7>10

For the lowest-density case, viz., =25, a single realiza-
tion, for N =4000, is shown in Table I. In Fig. 2 we plot
the observed VACF as well as the usual theoretical pre-
dictions. The finite-N EHvVL theory is, however, indistin-
guishable from the pp =0 line. At this density the long-
time tail is so small (i.e., pp is so small) that the VACF is
reduced to the level of the statistical fluctuations in the
long-time region. The T? test (not given in Table II for
this realization) indicates satisfactory agreement with the
finite- N theory even to very early values of the time, but
the values of Agg s are so large that it is clear that the
agreement is not very meaningful—the test would also in-
dicate agreement for a theoretical value of ap 100 times
as large. The situation shown in Fig. 3 for 7=18, again
for N =4000, represents only a slight improvement in this
regard.

For a volume of 10V, realizations for 500 and 4000
particles are listed in Table I, with data for both realiza-
tions plotted in Fig. 4. Because the 500-particle realiza-
tion is relatively short (11X 10° collisions) and because
finite-systems effects reduce the VACF to the level of the
statistical fluctuations at relatively early times, a compar-
ison with theory is not very productive; Table II shows a
typical value of P(T?) which does not change greatly for
quite a range of time intervals [ ¢;,27] for the comparison.
The N =4000 realization is more interesting because
finite-system effects are delayed to later times. As seen
from Table II, the T? test indicates satisfactory agreement
between the MCMD data and the theory for ¢;=19.4¢,.
Moreover, the value of Agg ¢5=1.8, while yet large, is not
astronomical as is the case for the 500-particle realization
(as well as for the 7=18 and 25 comparisons).
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FIG. 3. Same as Fig. 2, but for a volume of 18 V.
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FIG. 4. Same as Fig. 2, but for a volume of 10¥, and two
different system sizes.

B. Intermediate densities: 5>7>2

At a volume of 5V, results have been obtained for sys-
tems of 108, 500, and 4000 particles, as shown in Fig. 5.
While the 108-particle run is short, the others are quite
extensive. The T? tests in Table II show the 108-particle
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FIG. 5. Same as Fig. 2, but for a volume of 5V}, and for sys-
tems of 108, 500, and 4000 hard-sphere particles.

realization to agree with theory, subject to very large un-
certainties. On the other hand, the 500- and 4000-particle
results, for s;=24.7 and 27.0, respectively, show rather
sharper agreement as reflected in the smaller values of
Ago.os- -

It is worthwhile to observe that the efficacy of the
finite- N version of the EHvVL theory is evident from Fig.
5. The infinite-system theory (dotted curve) lies well
above most of the data except at early times; the finite- N
theory demonstrates a remarkable improvement. In terms
of the T? test we find a significant difference [P(T?)
>0.95] (not displayed in the table) between the data and
the infinite-system theory even for s; as large as 33.

Both of the above 500- and 4000-particle comparisons
were made over the entire length of times s >s; for which
the VACF was evaluated. If, instead, we limit the com-
parison to those times for which the trajectories are ex-
pected to retain some accuracy, viz., s <50 by rough in-
terpolation of the results of Sec. III, then we obtain the
second set of test results listed in Table II. Again, the
values of P(T?) continue to support the validity of the
theory, with values of Agg g5 not very different from the
comparison to longer times. Evidently, the data support
the theory in the range 25 <s <50 for which the trajec-
tories are accurate and at longer times as well.

At 7=4, realizations of 108 and 1372 particles are
given in Table I, with the VACEF plotted in Fig. 6. While
both realizations are rather extensive in terms of the total
number of collisions, the N =108 VACEF is reduced to the
magnitude of the error bars for times beyond 20¢, because
of finite-system effects. The T? test has a significant
P(T?) when all the points in the figure are included in the
comparison. When the leftmost point is excluded, the test
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FIG. 6. Same as Fig. 2, but for a volume of 4V, and for sys-
tems of 108 and 1372 particles.
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shows no significant disagreement. Nonetheless, Ag o5 is
large. For the 1372-particle realization, the test results in
Table II indicate agreement with the theory for s >23.
Because this realization uses single precision in the trajec-
~ tory generation, it is seen from Fig. 1 that the trajectories
lose accuracy at roughly s =30. The comparison for time
intervals only up to s =30 is also given in Table II, with
results consistent with the full-interval comparison, al-
though the P(T?) are slightly larger, to the point that one
would tend not to claim agreement at quite so early a
time.

For 7=3, realizations of 108, 500, 1372, and 4000 par-
ticles are shown in Table I, with the data plotted in Fig. 7.
The 4000-particle calculation is much more extensive than
the others. In addition, only for the 4000-particle run are
data beyond s =50 available. For thé three smaller sys-
tem sizes, the values obtained from the T2 test, Table 11,
show agreement with the finite-N EHvL theory beyond
roughly 20¢,. The more precise data for N =4000 show
disagreement unless ¢ > 32z,

If we limit our comparison to those times for which the
MD trajectories retain some accuracy, then for =3 we
consider times less than s =65 only (for double-precision
calculations). Only the 4000-particle results are then af-
fected. The second pair of entries in Table II for this real-
ization shows the effect of this limitation; while the values
of T? for a given s; are less probable, the value remains
unexceptional for ¢; =32.9¢,.
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FIG. 7. Same as Fig. 2, but for a volume of 3 ¥, and for sys-
tems of 108, 500, 1372, and 4000 particles. The dash—triple-dot
curve with “AW” appended to its identifier in the legend is the
finite- N version of the theory, but using MD estimates for the
transport coefficients from Alder and Wainwright (Ref. 1) listed
in Table III. The error bars for the 4000-particle results are
roughly the size of the plotting symbols.
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FIG. 8. Same as Fig. 7, but for a volume of 2 ¥, and for sys-
tems of 108, 500, 1372, and 4000 particles.

At a reduced volume 7=2, realizations for N =108,
500, 1372, and 4000 are tabulated in Table I. The VACF
is shown in Fig. 8. We note that the 4000-particle data
have much smaller error bars than the smaller-system re-
sults and extend to much longer times, viz., s =190. In
Table II we tabulate the results of the T2 tests, comparing
the observed VACF with the finite-N EHvL theory. The
values of the time for which the tests indicate unexcep-
tional values of T? are seen to be somewhat smaller than
for lower densities. Moreover, the uncertainty in the indi-
cated agreement with theory as reflected in Agg 95 is much
less than at lower densities, especially for the largest sys-
tem. Finally, if the time interval of the comparison is
limited to times less than roughly 76¢,, so that the MD
trajectory retains some accuracy, then the T2 test yields
the second set of entries in Table II for N =4000, again
indicating agreement with the theory. For the smaller
systems, this limitation on the time holds for the entire in-
terval for which data are reported.

C. High densities: 1.8>7>1.6

For the higher densities, only realizations of 4000 parti-
cles were generated. Figure 9 shows the data for 7=1.8
which includes results to 234¢(; every second data point is
plotted. T2 comparisons between these data and the
finite- N EHVL theory are characterized by the presence of
a marginally significant difference at long times; in Table
II the comparison for s; =172 is typical. Comparisons
over longer ranges of the time are similar. Detailed sta-
tistical analysis shows that the long-time data lie below
the theory on the average. If we compare only up to the
time (s =100) for which the trajectories retain some accu-
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FIG. 9. Same as Fig. 7, but for a volume of 1.8 V.

racy, then we seem to obtain more favorable test results,
as seen from Table II. There is perhaps the suggestion,
then, that the observed VACF decays slightly more rapid-
ly than predicted by the theory at times beyond roughly
100¢(; whether the effect is an artifact of the loss of accu-
racy of the MD trajectory or a real effect is open to specu-
lation.

The two highest-density realizations studied here are
for 7=1.7 and 1.6. The VACEF for each of these is shown
in Fig. 10, along with the theoretical curves for both den-
sities which are indistinguishable on this scale. For these
realizations, the VACF was calculated only to times up to
roughly 100¢,; every second point is plotted in the figure.
Evidently, these differ significantly from the theory, ir-
respective of the time interval for comparison; typical re-
sults are given in Table II.

A similar discrepancy was observed at high density in
our study of the VACF of hard disks.*® There we hy-
pothesized that a self-consistent interpretation of the
theory might be useful, based on the use of the actual
transport coefficients in the theory, rather than the En-
skog values. For the case of hard disks, values for the ac-
tual transport coefficients (self-diffusion, shear viscosity,
and thermal conductivity) are largely unknown; indeed, in
the thermodynamic limit the mode-coupling and kinetic
theories predict them to be infinite. For hard spheres,
values are known for a number of densities and system
sizes from the MD calculations of Alder, Gass, and
Wainwright,*® the present authors,®? and the current
calculations. We have therefore repeated our comparisons
between theory and the MD “experiments,” using
molecular-dynamics estimates for the transport coeffi-
cients for several densities at which the transport coeffi-
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FIG. 10. Same as Fig. 7, but for volumes of 1.7V, and
1.6 ¥V,. The arrows mark the acoustic wave traversal time, with
the lower-density value on the left. The theoretical curves for
7=1.6 are indistinguishable from the r=1.7 curves, except
those using actual (AW) transport coefficients.

cients are appreciably different from the Enskog values,
viz., 7<3. The values used for D/Dg, 7/mg, and A/Ag
are tabulated in Table III, and the associated 72 test re-
sults are given in Table IV, including those for the same
values of [s;,5¢] as in Table II as well as those for some
additional intervals. In the cases in which large-system
values are not known, the 108- or 500-particle values were

TABLE III. Transport coefficients relative to the Enskog
values, used in evaluating the EHvL theory of the VACF for T2
tests in Table IV.,

V/Vy N D/DE 7]/7]5 }"/)\'E Notes
3 108 1.13 1.02 1.00 a
500 1.22 1.02 1.00 a,b
1372 1.26 1.02 1.00 a,b
4000 1.27 1.02 1.00 a,b
2 108 1.06 1.11 1.02 a
500 1.14 1.10 1.07 a
1372 1.16 1.10 1.07 a,b
4000 1.19 1.10 1.07 a,b
1.8 4000 1.06 1.10 1.03 a,b
1.7 4000 0.94 1.27 1.04 a,b
1.6 4000 0.78 1.48 1.05 a,b,c

*Values from Ref. 3(b) or interpolated (or extrapolated) from
values given in Ref. 3(b).

*Value of D /Dy obtained from present calculations, from D (s),
Eq. (5), evaluated at the time ¢ =Mh. :

“Value of 17/7g from Ref. 3(d).
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TABLE IV. Hotelling T2 test for the comparison of the MCMD VACF results with the finite- N

EHVL theory, using Table III values for the transport coefficients.

V/V() N k S; Sf P(TZ) Ago,gs
3 108 9 16.4 49.2 0.98
8 20.5 49.2 0.07 3.8
3 500 9 16.4 49.3 1.00
8 20.5 49.3 1.00
7 24.7 49.3 0.71 0.8
3 1372 5 16.5 329 1.00
4 20.6 32.9 0.91 0.6
3 4000 24 28.8 123.4 1.00
23 329 123.4 0.98
22 37.0 123.4 0.98
21 41.1 123.4 0.82 0.3
9 28.8 61.7 1.00
8 32.9 61.7 1.00
5 453 61.7 0.95
4 49.4 61.7 0.88 0.5
2 108 18 9.8 65.2 0.77 0.4
17 13.0 65.2 0.82 0.7
2 500 18 9.8 65.5 0.58 0.2
17 13.1 65.5 0.23 0.3
2 1372 10 9.8 65.4. 0.56 0.3
9 13.1 65.4 0.72 0.4
2 4000 29 13.1 196.5 1.00
28 16.4 193.2 0.89
28 19.6 196.5 0.99
27 22.9 193.2 0.82 0.1
11 13.1 78.6 1.00
10 16.4 75.3 1.00
9 26.2 78.6 1.00
8 29.5 75.3 0.63 0.2
1.8 4000 33 27.4 230.5 1.00
41 23.4 101.6 0.99
39 274 101.6 0.66 0.2
1.7 4000 12 393 87.2 0.97
11 43.6 87.2 0.65 0.4
1.6 4000 9 59.6 99.3 1.00
8 56.7 99.3 0.37 0.7
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used, e.g., for 7 and A for 4000 particles. The modified
theoretical VACF is also shown in Figs. 7—10. In Table
IV we note that the non-Enskog values of the transport
coefficients lead to improved agreement with the data for
7=1.6 and 1.7. Provided we limit our comparison to
those times for which the MD trajectory remains accu-
rate, the 7=1.8 agreement is also improved. At lower
density, however, the modified theory does not agree as
well as the theory using Enskog coefficients. This
disagreement is particularly increased at early times, as
can be seen in Figs. 7 and 8 for the 4000-particle systems,
and is borne out by the values of P(T?) reported in Table
IV. Indeed, the time at which satisfactory agreement is
achieved is moved to later times. For the smaller systems,
the values of the self-diffusion constant lie nearer the En-
skog values and the MCMD data are not so extensive;
hence the modified theory has little effect on the compar-
ison.

Overall, then, it does not seem that the self-consistent
approach leads to a better representation of the data, ex-

cept at high density. The theory based on Enskog coeffi-
cients appears to fit all the data except the highest two
densities.

V. DISCUSSION

Our aim has been to compare the molecular-dynamics
data for the VACF with the predictions of the mode-
coupling theory, taking into account the recent critique of
Fox* which indicates we should limit our comparison to
times for which the MD trajectories are accurate. It is
clear that the use of the finite-N modification of the
theory permits us to extend the comparison to a much
broader range of system sizes and times than would be
possible using only the asymptotic Eq. (1). We have
demonstrated satisfactory agreement with the theory ex-
cept at high density, thereby providing strong support for
the theory.

Moreover, at high density, by using molecular-dy-
namics estimates for the transport coefficients based on



422 JEROME J. ERPENBECK AND WILLIAM W. WOOD 32

the given values of N and density in place of the Enskog
value in order to evaluate the theoretical VACF, we find
agreement for the high-density results. However, using
the same approach leads to less satisfactory agreement at
lower densities. We conclude, therefore, that the mode-
coupling result is well supported by the available data, ex-
cept perhaps at high density, viz., 7< 1.8 (and perhaps at
7=1.8 for times beyond those for which the trajectories
remain accurate). In this regard, it should be emphasized
that finite-system effects exist in addition to those ac-
counted for by the finite-N EHvL theory. The remaining
discrepancies between theory and the MD results might
reasonably be expected to arise from such effects.

In addition, we recognize that the mode-coupling
theory most certainly does not give a complete description
of the VACF at long times. Thus, at high density the
VACEF contains a negative piece (see Fig. 10) which per-
sists to quite large values of the time. Inasmuch as such
behavior is not predicted by the mode-coupling approach,
the apparent negative discrepancy between the MD data
and the theory might well reflect a long-lived contribution
associated with this “backscattering” effect.

We would also like to draw the reader’s attention to the
way we have estimated the power function in our compar-
isons with theory. In addition to the approximate nature
of this calculation, it should be noted that the test was
contrived only with respect to a multiplicative factor ap-
plied to the theoretical VACF. The test does not, for ex-
ample, speak to the suitability of the functional form of
the theory or the value of the exponent of the time depen-

dence of the long-time tail. Such questions can presum-
ably be treated by means similar to those used here, but
we have not attempted to consider them for the present.

With regard to the concerns raised by Fox,* the data
show no evidence for a different behavior beginning at the
time of loss of trajectory precision. The one exception
occurs at a volume of 1.8V, for which the VACF was ob-
tained for times as large as 240¢,, a time well beyond the
100z, for which the individual trajectories are accurate.
Limiting the comparison to shorter times shows satisfac-
tory agreement. Beyond 100¢, the data seem to contain
an oscillatory component not accounted for by the finite-
N mode-coupling theory. While one might attribute this
to the loss of trajectory precision, one can equally well as-
cribe it to the beginning of the high-density region for
which the mode-coupling theory, at least based on Enskog
transport coefficients, is not valid. This also suggests the
possibility that we are seeing another manifestation of
some unknown process which dominates the high-density
behavior of the time-correlation function for shear
viscosity*? at similar values of the time and which also is
not accounted for by mode-coupling theory.
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