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Generalized multistability and noise-induced jumps in a nonlinear dynamical system
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A study of the forced Duffing equation is reported, with particular reference to a region of the
parameter space where five different attractors coexist. This coexistence, reported in some recent
experiments, is called generalized multistability. The role of external noise in bridging the otherwise
disjoint basins is explored. Noise-induced couplings are shown to be ruled by simple kinetic equa-
tions under a general assumption for the geometry of the boundaries. These kinetic equations yield
low-frequency power spectra in qualitative agreement with the experimental results.

I. INTRODUCTION —THE DUFFING
OSCILLATOR

In the last few years many papers have dealt with the
transition from order to chaos in dissipative dynamical
systems. ' Three routes to chaos (period doubling, inter-
mittency and quasiperiodicity) have been extensively stud-
ied as possible "scenarios" chosen by a nonlinear system
to eventually land into a strange attractor, and. the ways a
strange attractor loses its stability (crises) have been inves-
tigated.

Here we study another, rather general, characteristic of
dynamical systems, namely, the coexistence of many dif-
ferent attractors for the same control parameters. We
have called this property "generalized multistability", ' in
order to distinguish it from the ordinary coexistence of
stationary solutions. The relevance of the coexistence of
infinitely many periodic unstable solutions is by now suf-
ficiently clarified and taken as synonymous of a deter-
ministic chaotic motion. In such cases, the role of an ad-
ditional random noise is not relevant since the structure of
a strange attractor is not substantially modified.

On the contrary, not much attention has been given by
physicists to the possible coexistence of infinitely many
periodic stable solutions, as was conjectured by New-
house. We report the core of his conjecture from Ref. 7:
".. . in the parameter range where the horseshoe is in the
process of creation, an infinite number of families of
stable periodic orbits are created. " The region of coex-
istence of these many stable orbits is a critical one, since a
small noise may switch the physical system from one or-
bit to any other, adding a new feature to usual chaotic
scenarios. Such a coexistence was numerically explored
by Ueda without, however, attempting to evaluate the
transition rates.

A qualitative hint on the role of multiple basins of at-
traction is contained in some experimental observations of
hydrodynamic' ' " instabilities.

Clear evidence of generalized multistability was first
shown in an electronic oscillator' and then in a modulat-
ed laser system. In both cases, the appearance of dif-
ferent attractors in phase space was associated with a
low-frequency spectral component due to noise-induced

jumps among different attractors. Both measurements,
however, might be considered as experimental artifacts.
In fact other systems show evidence of single attractors
made of two subregions with infrequent passages from
one to the other (see, e.g., the Lorenz attractor' ). In such
cases the low-frequency tail corresponds to the sporadic
passages (deterministic diffusion), ' ' and it does not re-
quire added noise. Therefore measurements of the power
spectra are insufficient to discriminate between the two
phenomena, and we must in addition specify the role of
noise.

The noise-induced couplings have been studied so far in
a simplified model, namely a cubic recursive map, allow-
ing for two simultaneous attractors plus a long transient
bridging the two solutions. ' Here we present a numerical
study of differential systems, that is, the forced Duffing
oscillator with a double-well potential,

x'+yx —x+4x =A cos(cot) .

Many relevant features of this oscillator have been studied
by Holmes and a thorough report can be found in Ref. 7.

Before entering into details, we realize already that two
limit cycles can coexist for the same control parameters
(A, co), thus showing a simple example of generalized bi-
stability. It is indeed well known that the amplitude
response curve versus the frequency of the forcing term of
a nonlinear oscillator is a curve bent as in Fig. 1, thus
yielding a hysteresis phenomenon (bistability). ' This
means that, even inside a single potential well, two stable
periodic solutions can coexist.

Dynamical systems with more than one final state have
a highly complex interlacing of basins of attraction. In
general the basins boundaries are not simple curves but,
instead, their fractal dimension' is usually larger than 1,
that is, there exist infinitely many points in the phase
space whose neighborhoods (of radius E) arbitrarily con-
tain many points belonging to different basins of attrac-
tion for any e value.

In Sec. II we present a numerical study of a limited re-
gion of the parameter space (A, co) with particular refer-
ence to a fixed set of parameter values, where five attrac-
tors simultaneously coexist. In the Appendix the struc-
ture of a particular basin of attraction is studied in detail.
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FIG. 1. Generic response curve X(co) for a nonlinear damped
oscillator vs the forcing frequency and for a fixed value of the
external force. The values co~ and co& indicate the boundaries of
the hysteresis region.

In Sec. III we discuss the role of external noise in jumping
from one attractor to the other, evaluating the escape
times and the reinjection probabilities, thus yielding the
necessary information for evaluating the power spectra.

II. THE PARAMETER SPACE

Numerical study of Eq. (1), performed for limited
ranges of the external parameters A and co, and for fixed
y =0.154, yields many coexisting periodic islands. They
correspond to attractors whose Poincare section is made
of a finite number N of points and hence they have a
period N times that of the external force (Nth subhar-
monic).

The Poincare section is built by plotting both x and x
any time the phase of the external crosses a preassigned
value. Each period N attractor arises by tangent bifurca-
tion. ' As the control parameters drive the system toward
chaos, each of the N points of the Poincare section gen-
erates a new one in its neighborhood, up to when we have
N disconnected chaotic region„each one made of a Can-
torlike set. For instance, if we start from period 3, each
of the three points of the Poincare section gives rise to a
neighborhood of 2" points at the kth bifurcation, but the
three neighborhoods are still located around the initial po-
sitions and they are visited sequentially so that they can
be considered as a perturbed period 3 even in the chaotic
limit, where the number of points in each cluster is no
longer finite. Since, starting from a period-N attractor,
we can follow its N subregions up to the chaotic limit, we
call "period X" that region of parameter space that in-
cludes both the strictly periodic solutions characterized by
X points, as well as the chaotic ones characterized by X
subregions sequentially visited. Only when, through a
crisis, the X regions merge together, the attractor loses its
individuality and we speak of death of the period-N at-
tractor.

In Fig. 2 the contours of the stability regions for some
of these attractors have been drawn and the respective
periodicity indicated by the attached numbers.

FIG. 2. Phase diagram of the Duffing equation showing the
type of solutions for each pair of driving parameters (A, m).
The borderlines are the frontiers of the parameter regions corre-
sponding to ordered motion, and the associated numbers denote
the periodicity. Curves C and D show the upper limit (in the
amplitude A) for the stability region of solutions confined in one
valley. The vertical bar at co=1.22 indicates the region where
the escape times have been measured.

The meaning of the lines C and D is understood by
referring to the two valleys of the potential of Eq. (1).
Line C is a borderline above which there are no longer
stable solutions confined in one valley. Below line C there
is a manifold of lines, approximately parallel to it, which
corresponds to a sequence of period doubling bifurcations
and with mutual distances ruled by the Feigenbaum 5.
These have been omitted for clarity reasons. They have
already been observed experimentally (see Fig. 1 of Ref.
20) in an electronic oscillator ruled by Eq. (1); which is,
however, affected by too large a noise to display the other
interesting details reported in Fig. 2.

On the left of line D, there is a small limit cycle con-
fined in one valley. This limit cycle does not undergo
subharmonic bifurcations and it dies via tangent bifurca-
tions, crossing line D.

Hence in the triangular region below the two lines C
and D there is the coexistence of the small limit cycle
with another one belonging to the above-mentioned
Feigenbaum cascade.

The interplay between the two attractors can be appre-
ciated if we draw the oscillator response versus the driving
frequency at constant amplitude A, (moving horizontally
in Fig. 2). A qualitative sketch of such a response has
been already given in Fig. 1, where we see that two stable
branches may coexist for co, &co &co&. More precisely, at
co=co@ (co~), the smallest (largest) limit cycle disappears,
yielding a point of line D ( C) of Fig. 2. It is important to
recall that the response curve shown in Fig. 1 is evaluated
by means of perturbative techniques' that converge only
for small amplitude solutions, when the nonlinear terms
can be suitably taken into account. This may not be the
case for the upper branch solution that visits highly
anharmonic regions. Indeed, Fig. 1 describes only the
disappearance of the large response solution, without any
reference to subharmonic bifurcations, first observed in
Ref. 21.

Let us return to Fig. 2 and focus our attention to the
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FIG. 4. Basin of attraction of one period-4 solution for the
same values of A and co as in Fig. 3.

Poincare section with the phase of the external force put
equal to 0. The x coordinates are distributed in the inter-
val ( —0.75,0.75) while the velocities stay within
( —0.4, 0.4). Each point of the grid, considered as the ini-
tial condition for Eq. (1), generates a trajectory that
asymptotically falls in one of five coexisting attractors.
Every initial point is consequently associated with the
basin of attraction of the respective asymptotic solution
(Figs. 3—5). Notwithstanding the mirrorlike symmetry
between even-period limit cycles, their basins of attraction
do not exhibit any symmetry [compare Figs. 3(a) and
3(b)]. Indeed, solutions of Eq. (1) are invariant not under
the reflection (x,x)~( —x, —x) only, but if further one
shifts the phase of the forcing term by m. .

Furthermore, to give a better feeling for each basin of
attraction, we have reported, together with each point of
the initial grid, the next two iterates on the Poincare sec-
tion. Referring, for instance, to Fig. 5, we notice seven
dense regions, showing the fast contraction rate towards
the seven-point attractor.

Figures 6(a) and 6(b) are magnified versions of the cen-
tral parts (around the origin) of Figs. 3(a) and (5), respec-
tively, for an x interval ( —0.09,0.09) and an x interval
( —0.06,0.06). The superposition of the two graphs gives
an idea of the intimate interlacing of the different BA's,
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FIG. 3. Basins of attraction of the two period-2 solutions for
2 =0. 117 and co = 1.17.

FIG. 5. Basin of attraction of the period-7 solution, taken in
the same conditions as the previous figures.

two period-6 regions: they correspond to different attrac-
tors both extended over the two potential valleys and ac-
companied by the respective symmetric ones. Indeed, if
x(t) is a solution of Eq. (1), it is readily seen that also

x(t—) is a solution, with the only difference being a shift
of m. relative to the phase of the forcing term. Hence the
symmetry properties immediately tell us that any asym-
metric attractor (as the period 4 and the two period 6
ones) is accompanied by its mirrorlike image.

We have discussed a very small part of the parameter
space, but it is already so rich of relevant details that the
rest of the paper will be confined to discuss the phenome-
na occurring in pieces of Fig. 2.

In the region denoted by a cross in Fig. 2 we have the
coexistence of five attractors, namely, two period 4, one
period 7, and finally, two period 2. Their basins of attrac-
tion (BA) are sketched in Figs. 3—5; namely, Fig. 3(a) and
3(b) refer to the two period-2 attractors, Fig. 4 to one of
the two period 4 (the other is not given for simplicity),
and Fig. 5 to the single period 7. The construction of the
different BA s requires, in principle, the knowledge of
their boundaries, that is, of the unstable manifold of suit-
able saddle points. However, such curves are so interlaced
that it is practically impossible to draw a globally accu-
rate picture. Thus we have preferred to follow a more
direct approach, while leaving to the Appendix partial ap-
plication of the formal method.

We start from a uniform grid of 150&&100 points in a
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the attractor that spreads up to the border of its BA.
As for the intermittency, we can introduce a relevant

parameter to describe a noise-induced crisis, that is, the
mean escape time T from the attractor. Such a parameter
has been proved to depend, through a universal scaling
law, on the noise-amplitude o. and on the distance from
the crisis value e.

T=o F(elo~) . (2)

-0.06:
-0.09 0 X 009

For the case of a logistic map the exponents are (Ref. 5)
a= ——,

' and P=1.
Indeed, referring to the logistic map and for a Gaussian

noise, the time T is
0.06

X
T=~&2 loe' /D 3/2(elo ), (3)

where D is the parabolic cylinder function.
Quite below crisis, for e &&o, the main dependence of T

on the noise amplitude is an exponential one
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thus showing how a tiny displacement in the initial condi-
tion may imply a change of the asymptotic solution, as
shown recently by Grebogi et al. ,

' who have given evi-
dence of the fractal nature of the border of a BA in a
two-dimensional iteration map with two distant attrac-
tors. The same task for a differential equation is much
more difficult, however a comparison between Fig. 6 and
the previous Fig. 3, shows how an improvement by a fac-
tor of 8 in the definition of the initial grid does not permit
a clear-cut discrimination among the BA's.

III. ROLE OF EXTERNAL NOISE—LOW-FREQUENCY
SPECTRA

In the previous section we have considered the noise-
free dynamical system, focusing our attention on the oc-
currence of different asymptotic solutions and on the
structure of their BA's. Now, by adding an external white
noise in Eq. (1), jumps among different attractors become
possible. Such a phenomenon is particularly evident close
to the marginal stability points of the attractors, when the
occurrence of even very small noise spikes is sufficient to
let the point leave the attractor. In the standard multista-
bility (coexistence of different fixed points) marginal sta-
bility means that we are near a tangent bifurcation. In
this case of generalized multistability another class of crit-
ical phenomena must be considered, namely the crisis.

Indeed, the distance of the attractor's support from the
border of its BA is equal to zero both for a tangent bifur-
cation and for a crisis. However, in the former case the
BA itself shrinks to zero, whereas in the latter case it is

FIG. 6. Expansion of the central part of Fig. 3(a) (period-2
attractor) (a), and of Fig. 5 (period-7 attractor) (b).

very similar to the Kramers diffusion law. Here, how-
ever, the physics is wholly different. Let us consider the
small noise limit in order to make a sensible comparison
with Kramers's approach. In our case the density of
points on the attractor is generated by the deterministic
equations and is barely affected by the small noise. In
contrast in Kramers's problem, the probability density
within the potential valleys is essentially determined by
the applied noise as in any Langevin problem.

Even though the above relations (3) and (4) have been
derived for discrete maps, we can reasonably assume that
the same qualitative behavior has to be expected also for a
differential equation. In fact for the Duffing equation (1),
we have studied the dependence of the mean escape time
on the noise amplitude for different values of the external
force (see vertical bar in Fig. 2), moving from below to
above the crisis of the period-7 attractor. Specifically, at
each integration step (which was, ~ of the forcirig
period) x has been shifted by a random number selected
from a Gaussian distribution with zero mean and rms o.
Due to the smallness of the integration step, such a pro-
cedure is a good approximation of a white Gaussian noise.
The results are plotted in Fig. 7. For amplitude values
below the crisis, the exponential growth clearly appears
and, moreover, approaching the marginal stability point,
the rate of change of T shows a slowing down that even-
tually leads to a saturation above the crisis value 3 =2,.
Indeed, for 3 & A„ the attractor looses its stability and
even without noise it jumps out of its previous BA. So far
we have discussed the escape from an attractor. If we
want to complete the description of the jumps among the
attractors, we need also some information on the reinjec-
tion probabilities. The escape problem requires knowledge
of the pseudo-invariant distribution of any single attractor
and the distance from the border of its BA; the reinjection
deals with the interlacing of the different BA's and it is
clearly connected with their respective areas.

As we have seen in Sec. II, all the BA's are interlaced
over infinitely small length scales, and this makes possible
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FIG. 8. Logical schemes showing the possible coupling
among the attractors in two different cases: (a) Duffing equa-
tion with the three attractors (one period 7 and two period 2); (b)
one-dimensional antisymmetric cubic map with two period-3 at-
tractors plus a long transient {T).

a probability analysis of the reinjections because any at-
tractor may be within reach (via a jump induced by a suit-
able noise amplitude) from a larger number of BA's that
are surrounding the attractor itself.

Let us then refer to a generic situation with m simul-
taneously coexisting attractors and call p;(t) the instan-
taneous probability to be on the ith attractor. According
to the previous assumption, the rate equation for p; is

Pi aip'i + g sij ajpj r

j=l
(5)

where a; is the inverse of the mean escape time (1/T)
from the ith attractor and s,J is the jump probability from
the jth attractor onto the ith one, and is grossly given by
the area of the ith BA spanned from any point of the at-
tractor by a leap of the noise amplitude order.

Two terms containing p; are present in the right-hand
side of Eq. (5). Indeed, besides —a;p;, which is the escape
rate from the ith attractor, +s;;a;p; takes into account the
occurrence of an immediate reinjection. This leads to a
distinction between the mean escape time T=1/a; and
the residence time that is increased by jumps from the at-
tractor onto itself. Such a distinction is meaningful when
the transients the system takes to "decide" which attrac-
tor to land on, are very short compared to T. This is
indeed the case we have analyzed (co=1.22, 3 =0.114)
with two period-2 and one period-7 attractor. Whenever
such transients become very long, it is still possible to
describe the evolution by means of equations like Eq. (5),
but the transient has to be considered as another region
(like those occupied by attractors) that bridges all the mul-
tistable solutions together without any other direct cou-
pling. An example of such a behavior has been described
in Ref. 16 where, in a one-dimensional cubic map, two
period-3 attractors were coupled only through a long tran-
sient.

The logical schemes referring to the two different con-
ditions (Duffing with three attractors and cubic map)
have been sketched in Fig. 8.

As shown in Ref. 16, solution of kinetic equations al-

4
A@10

FIG. 7. Mean escape time for the period-7 region vs the in-
verse of the noise amplitude. All the curves refer to the same
frequency, but with different 2' s. Namely, the symbols
8„, , 0, 0 represent, respectively, 3 =0.1170, 0.1171, 0.1172,
and 0.1173 ()3, ).

lows the evaluation of the correlation function and hence,
under the general assumptions listed in that reference and
plausible in the present case, evaluation of the stationary
power spectrum. Calling x=x(t) and x'=x(t+r), the
correlation function of the dynamical process is defined as
the ensemble average over the joint probability distribu-
tion p(x)p(x

~

x') of the two events, that is,

R(t, t+r)= f dx f dx'xx'p(x)p(x
~

x') (6)

and the averaged correlation function can be written as

(R(r)) = lim f R(t, t+r)dt .1

t~ oo

As said previously, the motions within each attractor can
be taken as decorrelated from the jumps as well as
decorrelated from one to another attractor. Therefore, the
time average yields either the correlation function
(x;x;(i)) or just (x;)(xj & for i&j, where x; coincides
with x(t) onto the ith attractor and is 0 elsewhere; analo-
gously the probabilities p(x),p(x

~

x') reduce the the jump
probabilities p; and pj(r, i). These latter ones are those
solutions of Eq. (5) taken with the following criteria:
p ( jir) is the conditional probability ofj at time r, when
p;=1 at r=0; p; is the asymptotic probability of i for
r—+co, independent of the initial condition. With such
assumptions, the above correlation function becomes

(R(r)) = g (x;xj(r))p;pj(v, l )

(8)

Neglecting the oscillating terms of (x;xj(r)), which con-
tribute to the high-frequency spectrum, and besides a
zero-frequency component, the low-frequency spectrum is
made in general of m —1 Lorentzians, plus a background
corresponding to the fast mixing within the transient re-
gion.

We have thus shown that the simultaneous coexistence
of I attractors leads in general to a power spectrum made
of m —1 Lorentzians. Symmetries in the attractors may
reduce the number of independent coefficients and hence
the number of Lorentzians that make the spectrum. This
can be particularly relevant for fitting a limited region of
the low-frequency spectrum with a power law S(f)=f
as discussed in Refs. 12 and 16.

We specify the above arguments with the numerical re-
sults obtained for 2 =0.114 and m=1.22. For an exter-
nal noise rms equal to 2.5)&10, the mean escape times
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of the correlations within each stable attractor is practi-
cally not affected by the noise.

APPENDIX: NUMERICAL CONSTRUCTION
OF THE BASIN BOUNDARY

OF A PERIODIC ATTRACTOR

2'
log, of

FIG. 9. Power spectrum for the Duffing oscillator for
A =0.114, 2 =1.22 and for different external noise levels the
following: (a) 2.5)& 10, (b) 2. 5 & 10, (c) 5.0&& 10 ", (d)
2.0)&10 3. The peak on the right corresponds to f=1.22/14
and comes from the period-7 attractor.

from the period-7 attractor and the two period-2 attrac-
tors are, respectively, 158+10 and 180+10 (the period of
the forcing term being the time unity), while the mean
residence times turn out to be 413+20 and 206+10. The
large difference between the two averages referred to the
period-7 attractor yields a large value for the reinjection
probability s&7 from such attractor back to itself, which
is, indeed around 62%. Therefore, since s77+2sq7 has to
be 1, s27 turns out to be 19% awhile the probability s22 of
a jump back to the period 2 is lower, namely 12%. In-
cidentally, s2 2 is very close to s22, even if this is not im-
posed by the symmetry properties. Finally, again from
the normalization condition s22+s 22+s72 ——1, s72 is
76%, hence even larger than the probability of a jump
from the period-7 attractor back onto itself.

All of these data contribute to determine the power
spectrum S of x(t) shown in Fig. 9 (see curve b). A com-
plete characterization of the low-frequency part is, howev-
er, not yet possible, since we should also add the contribu-
tion of jumps between two different period-7 solutions (see
Sec. II) and the low-frequency component of the two oth-
er attractors (2, —2). A qualitative analysis of Fig. 9
shows, anyhow, that, when increasing the noise level from
2.5 X 10 to 2;5 && 10, 5.0& 10 and 2.0& 10
(respectively, curves a, b, c,d), the following sequence of
events occurs: in a, no jumps occur during the measure-
ment and the solution remains in the initial attractor
(namely, a period-7 one); in b, a well-defined low-
frequency contribution shows up and, finally, it broadens
in c,d indicating faster decay rates.

Here we show as example, the boundaries of the
period-7 attractor. The seventh iterate of the Poincare
map, is made of seven distinct fixed points. Each one of
them corresponds to the same attractor except for being
observed with a different phase. For simplicity we
focused our attention on the lowest point on the right of
Fig. 5 and reconstructed its BA in the vicinity of the point
itself (see Fig. 10).

Since the period-7 attractor arises via a tangent bifurca-
tion, it is accompanied by its unstable counterpart. This
is for instance shown in Fig. 10, where S and U indicate,
respectively, the stable and unstable solution.

The contour of the BA is simply defined by the stable
manifold of U, and it is made of two distinct curves E
and I, as it appears from Fig. 10. We now study the
behavior of E and I in the regions P, Q, where they ap-
proach one another.

We start by considering a transverse section of the basin

IV. CONCLUSION

We have shown how addition of noise to deterministic
chaos induces a low-frequency spectral component made
in general by the superposition of m —1 Lorentzians, m
being the number of coexisting attractors that characterize
a multistable region of the parameter space. On the con-
trary, the high-frequency spectrum describing the decay

FIG. 10. Boundaries of the BA of the period-7 attractor
around one of the points that make its Poincare section, namely,
the lowest one on the right of Fig. 1. S is the stable solution,
while U indicates the unstable period 7 born together with the
stable one via tangent bifurcation. E and I are the stable mani-
fold of U. The expanded view around U is reported in the circle
at the lower left and the role of the points P and Q is discussed
in the text.
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of attraction in the region P, Q. Let PE (Qz) and PI (QI)
be the end points of a section in region P (Q) belonging,
respectively, to E and L By iterating seven times PE
(QE ) and Pt (QI ), in order to have again the same phase,
two new points PE (Q@) and PI (QI ) are generated.

If we specialize to. the region P, PE and Pt both fall at
left of U. Moreover, when letting PF and PI move ac-
cording to the arrow, PE and PI appear to converge to-
wards the same point P'. Hence for continuity reasons, a
point exists where E and I join together, perhaps forming
a cusp.

The behavior of E and I is entirely different in the re-
gion Q. Indeed, the points QE and QI lie on E, but on
opposite sides with respect to U and, moreover, the dis-
tance QEQI increases when Qz and Qt move along the
arrow. Therefore, the expansion rate QEQI /Q@QI seems
to diverge because QEQI increases as Q@QI decreases.

However, we can reasonably suppose that, moving for-
ward QE and QI, the distance QEQI, starts decreasing
after having reached a maximum value, thus solving the
apparent paradoxical result.

This phenomenology is shared by the other six subre-
gions of the period-7 attractor, and it seems to be a rather
common feature. The phase plane x,x is, therefore,
decomposable into a finite number of filamentous regions
that are infinitely interlaced. This is a characteristic of
complex dynamical systems that causes a high sensitivity
to initial conditions in the sense of Ref. 18.

Finally, in order to show the stretching and folding
properties of the seventh iterate of the Poincare map, we
have drawn the image of a transversal segment AB. Both
the iterates A' and 8' of A and B fall in the neighbor-
hood of U, while the interior of AB extends from U to-
wards S as shown in Fig. 10.
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