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Squeezing via optical bistability
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The spectrum of squeezing in the output field for the optically bistable system of an atomic medi-

um in a coherently driven cavity is analyzed. Good squeezing is attainable only in certain limits of
atomic parameters and cavity detuning.

I. INTRODUCTION

There has been recent interest in the generation of
squeezed states using cavities. The initial works of Mil-
burn and Walls' on parametric oscillation and dispersive
bistability and Lugiato and Strini ' on parametric oscilla-
tion and absorptive bistability focused attention on the
squeezing in the internal cavity mode. They obtained the
result that the squeezing attainable did not exceed much
more than 50/o in any of the proposed schemes. However
the recent realization by Yurke and Collett and Gardiner
and Gardiner and Savage that the relevant calculation re-
lates to the external field outside the cavity has lead to
more promising results. Of particular interest is the re-
cent work of Collett and Walls which indicates perfect
squeezing to be possible in the resonant external mode at
the critical points for dispersive optical bistability in a
single-ended cavity. This result is particularly important
given that dispersive bistability has been experimentally
realized. However, the work of Collett and Walls used a
macroscopic nonlinear polarizability model' which ig-
nored absorption due to the medium. Reid and Walls"
and Bondurant et a/. ' have shown loss to be important in
reducing the squeezing attainable in four-wave-mixing
systems. In a microscopic treatment modeling the medi-
um as 1V two-level atoms, Reid and Walls' show the ef-
fects of additional atomic fluctuations present at higher
intensities to also be significant in reducing the squeezing
attainable.

In this paper, we similarly model the medium as an en-
semble of X two-level atoms. Thus the full effects of loss
and spontaneous emission is analyzed. Using the tech-
niques developed by Collett and Gardiner and Collett and
Walls we calculate the squeezing spectrum for the field
outside the cavity. Good squeezing is possible in the
resonant external mode for certain limits of atomic pa-
rameters and cavity detunings. The effect of collisional
damping on the squeezing is also analyzed.

II. THE MICROSCOPIC MODEL
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a and a are the boson field operators and o.,+,o, ,o.„are
the Pauli spin operators describing the atoms. co, and co,
are the cavity and atomic resonance frequencies, respec-
tively. g is the electric dipole constant coupling the
single-mode interferometer field with the atomic medium.
I F is the field reservoir operator. I t and I, are reservoir
operators coupled to the atoms describing phase-damping
processes and radiative decay, respectively. e is the exter-
nal driving field of frequency col.

Following the analysis of Drummond and Walls, ' a
master equation in the Markovian approximation may be
derived. The method of Haken' was used to derive a
Fokker-Planck equation in a normally ordered representa-
tion, and a scaling argument assuming large X is used to
justify ignoring higher-derivative terms. Adiabatic elim-
ination of atomic variables is facilitated by converting to
equivalent Langevin equations. The final equation for the
field variable in the normally ordered generalized P repre-
sentation is

2CKna =e —Ic(1+i/)a — + I (t),(1+i')II

We follow the procedure of Drummond and Walls' by
describing the interaction of the single-mode radiation
field with an ensemble of two-level atoms via the follow-
ing Hamiltonian in the electric dipole and rotating-wave
approximations.

ci =e—Ic(1 iP)a — —.. +I (t),2Cvo,

(1+i5)II

I (t) is a stochastic term and the correlation properties of
I, I ~ are
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To simplify the analysis of the quantum statistics we
adopt a linearized fluctuation procedure by expanding to
first order about a stable steady-state solution ao. Writing
a.=ao+5a [where Xo ——

~
ao

~
Ino is a solution to the

state equations (5)], one has
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We have defined
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where
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is the cavity detuning,
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is the scaled atomic detuning,
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is the cooperativity parameter, and
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where 5a:—(5a, 5a* } and e(t) = (e&(t),e2(t) }, where
(e,(t)e, (t')) =5;,5(t —t') and
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where we have introduced the scaled variables
F=

~

e/v
~

/n This equ. ation has been analyzed by
Drummond and %'alls' and bistability exists under the
following conditions.

is the relative degree of radiation and collisional damping.
y~=yll/2+y„&, y„& being the collisional damping rate,
where yq and yI~ are the atomic transverse and longitudi-
nal relaxation rates, respectively, and ~ is the cavity
damping rate. (The adiabatic elimination has assumed
yq, yll »a. ) The steady state deterministic solution is

III. SQUEEZING SPECTRUM
IN THE OUTPUT FIELD

Of particular interest to us is the spectrum of squeezing
in the field outside the cavity. A method of calculation of
this squeezing spectrum from the linearized drift and dif-
fusion coefficients (A and D) in the P representation (in
which equal-time moments of the c numbers correspond
to normally ordered moments of the operators) has been
explained in Collett and Walls. The spectrum matrix
S(co) is defined as the Fourier transform of the two-time
stationary correlation matrix G(r) where

(G( ));,=(,( ), ;(0))

and we use the notation (x,y ) = (xy ) —(x ) (y ). In fact
the linearized spectrum S(co) may be obtained directly as
follows

(i) Absorptive bistability exists for C & 4.

5=/=0 .

(ii) Bistability exists for C & 275 /4 (C » 1).

/=0, 5~0.
(iii) Bistability exists for C &27/ /4.

$~0, 5=0.
(iv) Bistability exists for C & 4

~
5$

~

(C && 1).
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(6b)

(6c)

S(co)=(A+icoI) 'D(A itoI)—

a =e' (X&+iXz),

at=e ' (X~ —iX2) .

The spectrum of squeezing in the output field is

(10)

To examine squeezing, we define the quadrature phases
X& and X2 as follows:
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Squeezing is attained when:S12, „t(co): becomes negative,
ideal squeezing corresponding to:S12,„,(co):~—0.25.

To optimize the squeezing for a particular frequency
.coo, we select the phase L9 such that

K

21,2 out(~) S12(~)+S21(~)

S22(~0)+2 Re S22(to) . (13)
S22 ~0

The work of Collett and %"alls adopted a macroscopic
nonlinear polarizability model' for dispersive bistability,
in which loss due to the medium was ignored. Ideal
squeezing was shown to be attainable at the turning points
of the state equation (5) for to=0, the spectrum at the
critical point being a simple Lorentzian. We are presently
interested in investigating the limit of atomic and cavity
parameters corresponding to this ideal result. Selecting
top= 0 (to optimize for squeezing at co =0), we find
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Ai the turning points of the state equation

a
I
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The ideal fluctuation terms (19) are attained in the pure
radiative limit (f=1) with large detuning and low Xp as
follows:

and the squeezing spectrum simplifies to
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IV. PARTICULAR LIMITS

(16)

Firstly we write in our own notation the results of the
macroscopic theory used by Collett and Walls. One has

aR ——K, ar ——2 ~e'~ +f,
A =dg ——bg ——0,
dr=br=

/

e
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where
~

F
~

is a dispersion parameter. We see by compar-
ison with (7) that the model (17) neglects the loss
(represented by aR —a.) due to the medium and also
nonideal atomic fluctuations (represented, for example, by
a nonzero A and dR) which will become significant at
higher Xp values. The assumptions (17) give ideal squeez-
1ng at the turning points as co~0, i.e., :S12,«(to):~ ——,

as in the result of Collett and Walls. Thus the ideal
squeezing requires both minimal atomic absorption (both
in absolute terms and relative to the dispersion parameter
br), i.e.,

tr(A+ dR ):S+,„, 2(aR bR)—
x(A —dR)

«R+bR )'

(21)

At the critical point az ———bR, and the expression for the
spectrum simplifies to

These conditions parallel those derived by Reid and
Walls"' who used an identical two-level atomic model
to study squeezing produced via four-wave mixing. In the
present case of optical bistability there will be an addition-
al restraint on P, the cavity detuning.

To examine the results in more detail, we consider
separately the five special cases listed in Eqs. (6).

(i) Absorptive bistability 5=/=0. In this case we have
aI ——bi ——dI ——0. The result for the appropriate quadra-
tures is, for m=0
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It is apparent immediately that no squeezing is attained at
the critical point. Only a very small amount of squeezing
is possible, in S, below threshold. In fact the squeezing
predicted here for the external field is less than that
predicted for this system by Lugiato and Strini, whose
calculations focused on the internal field.

It is worthwhile to consider at this stage the system of
two-photon absorptive bistability. Calculations for the
internal cavity mode by Lugiato and Strini and Reid and
Walls' have shown a squeezing of just over 50% to be at-
tainable in the lower branch. The model Hamiltonian for
the two-photon example is obtained from Eq. (1) by re-
placing H2 with the two-photon interaction

JV

H2 ——ifig[g(at) ag e ' ga2cr+—e '] .

The method of linearization and calculation of the exter-
nal squeezing spectrum may be followed along the lines of
the one-photon example. Final calculations reveal the
maximum squeezing possible in the external field to be
less than 20%, considerably less than that predicted for
the internal mode. Thus the systems of one- and two-
photon absorptive optical bistability produce very little
squeezing.

(ii) /=0, 5&0. This situation is similar to the absorp-
tive case above. Bistability occurs as Xo -6 . That is, the
mechanism for nonlinearity is saturation and for such
values of Xc the ideal fluctuation condition (20) is violat-
ed. At lower Xo values (lower branch), loss dominates
and acts to counter squeezing. Thus any squeezing at-
tained in this situation is small.

(iii) /&0, 5=0. With 5=0, nonideal fluctuation terms
d~ and A are significant, hence limiting the squeezing at-
tainable.

(iv) 5/~0. This case can give squeezing, but is less
favorable than the following case (v).

(v) 5$&0. This case is the most favorable for squeez-
ing. We have parameters 5, C,Xc to vary and also P the
cavity detuning. The optimal 6, C, and Xo are deter-
mined similarly to the case of degenerate four-wave mix-
ing studied by Reid and %falls. ' For good squeezing we
require the ideal fluctuation conditions (20). In this limit,
the small loss condition (18b) simplifies to 5/Xc && 1, and
the order of magnitude for 5 and Xc is thus determined.
In fact 6& 10 gives near perfect squeezing, with the ap-
propriate choice of C and P. Condition (18a) for small
loss simplifies to 2C &&5, and this places an upper limit
on C for good squeezing. Also required is a large enough
dispersion parameter bl( 2C/)(5Xc/)5. Unless 2C/5
»1, the value of Xc required for this is such that the
ideal fluctuation condition is no longer satisfied. Thus
there is also a lower limit on C. The sensitivity to C is il-
lustrated for 5=100 in Fig. 1. For 5=10, the optimal C

0. 1
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I

800 1000
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FIG. 1. Effect of cooperativity parameter on the squeezing.
V=:S,„,(0}:+0.25 vs X0 the scaled cavity mode intensity. Solu-
tions correspond to the linearized result about the stable lower
branch. 5=100, f=1. a, C=200 (/=3. 6); b, C=400
(/=7. 2); c, C = 1100 (/=20. 6); d, C =3000 (/=57. 3); e,
C=8000 (/=153). The value of P for each C has been optirn-
ized to give the best squeezing.

P(2C/5 if C»1. (24)

This behavior is illustrated in Fig. 2 with parameters
6= 10 and C=2 & 10 . The transition to bistable
behavior occurs at P =398.4. The magnitude of squeezing
attained for values of P is shown in Fig. 3. As P increases
to 2C/5, the value of Xc for which the turning point
occurs is decreased. Thus the squeezing attainable at the
turning point improves, until one gets to the point of in-
flection (/=398. 4) where squeezing is optimal. Increas-
ing P further destroys optical bistability and the value of
X for best squeezing is not improved. The term ai in-
creases and squeezing reduces.

The theory presented here, assumes a single-cavity
mode. This assumption is valid where the cavity detuning

1.0

x, (~o')

0.00 8 16

v (&o')
FIG. 2. Qptical bistability in the dispersive limit. X0 the

steady-state cavity intensity vs 7 the external driving field in-
tensity. 5=10. C=ZX106. a, P=392; b, /=394; c, /=396;
d, P =398.4; e, P =400; f, / =402.

is 2)&10 . We have for simplicity illustrated the case of
pure radiative damping (f =1) only. Results are for the
stable lower-branch which, having a lower Xo value, is
more favorable to squeezing.

The squeezing attainable is also very sensitive to the
cavity detuning P. To obtain bistability, we require
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FIG. 3. Effect of cavity detuning on the squeezing.

V =:S,„,(0): +0.25 vs X0. Solutions correspond to stable
lower branch. 6=10 . f=1. C =2&(106. (The optimal choice
of C for squeezing for 8 = 10 .) a, P =392; b, P =396; c,
P =398.4; d, P =400; e, P =402.
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FIG. 4. Effect of collisional damping on the squeezing.
V=:S,„,(0): +0.25 vs Xo. 5=104. C=2)&106. /=398. 4. a,
f=0;b, f=0.85;c, f=0 9;d., f=0.95;e,f=l.

P is less than the cavity finesse I' (the ratio of the separa-
tion between cavity modes to the transmission bandpass),
related to the reflectivity R of the cavity mirrors by'

1 —R
(25)

Thus the above example giving an optimal squeezing
(94%%uo) for 5-10 with C-2X10 and /=398. 4 would
require a very high reflectivity (R &&0.99) for consisten-
cy. However, with lower R values one can still satisfy the
single-mode condition (P &F) and attain good squeezing
by reducing C appropriately. For example, consider pa-
rameters R=0.99 and 5=10. Taking C=10, the op-
timal P is 198.4 (within the single-mode assumption) and
a squeezing of 90% is still possible.

ctoL =3 2C= and oo —— A, p,
1 —R 2K

(26)

where o.o is the absorption coefficient below saturation, L
is the cavity length, R is the reflectivity of the mirrors, k
is the field wavelength, and p is the atomic density.
Hence p=2mC(1 R)/3A, L—. Taking C=10,
1 —R = 10, A, =6)& 10 m (for sodium) and a cavity
length L =0.5 m, one finds p-10"/cm . Resonant col-
lisions between sodium atoms increase the collisional
damping rate y„~ by 1100 MHz per 10' /cm pressure.
A typical value for the radiative damping rate (y/2) is 10
MHz. Hence an atomic density of 10"/cm corresponds
to f=0.999, sufficiently close to one to allow good
squeezing.

V. THE EFFECT OF COLLISIONAL DAMPING

The above results have assumed perfect radiative damp-
ing (f=1). The presence of phase-damping processes
such as collisions will provide additional quantum fluc-
tuation terms [as written in Eq. (3)] and will alter the
squeezing attainable. To study the effect of collisional
damping, we select the optimal atomic and cavity parame-
ters 5, C, and P of Fig. 3, and vary f from 1 (the ideal ra-
diative damping case) to 0 (the pure collisional damping
limit). The results shown in Fig. 4 are quite dramatic, a
reduction of f from 1 to 0.9 being sufficient to signifi-
cantly reduce the squeezing.

%"e wish to investigate whether the high values of C
(and hence high atomic densities) required for good
squeezing are compatible with a noncollisional damping
limit. The following relations hold for an optical cavity
filled with a two-level atomic medium. '

VI. CONCLUSION

%'e have analyzed the squeezing attainable in the out-
put field of a coherently driven cavity with a medium of
two-level atoms. Steady-state solutions reveal both ab-
sorptive and dispersive bistability to be possible. The
transmitted spectrum is calculated via a linearization pro-
cedure. One finds near perfect squeezing to be possible
only in the limits of pure radiative damping and large
atomic detuning, and with the cavity cooperativity param-
eter C appropriately optimized. The optimal value of the
cavity detuning is that corresponding to the onset of bista-
bility.
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