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Dynamic scaling and the surface structure of Eden clusters
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The evolution of the surface of two-dimensional Eden deposits grown in a strip of width L is related to
the dynamics of a set of "normal modes" of wave number q. Monte Carlo simulations show striking simi-
larities with critical phenomena. The amplitude squared of the modes relax in the long-time limit (t ~)
to a value S(q) —q 2, and the relaxation towards the steady state is dominated by a relaxation time scal-

ing as r(q) —q ', with z=1.55+0.15. This implies that the surface width has the scaling form
f(r L) —L ~2G(t/L') with G(x) ~ G(~)e0 as x~ ~ and G(x) —x'~ * for x~ 0.

The development of structure in growth and aggregation
models has been a subject of intense study in recent years. '

Despite this activity no satisfactory analytic theory has
emerged, and it is therefore still necessary to study the
simpler growth models. One such model is the Eden
model. Its simplicity lies in the fact that clusters grown ac-
cording to the Eden algorithm are compact, i.e., their frac-
tal dimension (D) is equal to the Euclidean dimension (d)
of the space in which growth takes place. The nontrivial as-
pect of the Eden process is the irregularity of the surface of
the clusters. As we have shown by simulating the Eden
process in d = 2 and 3 dimensions, ~ 6 the width (g) of the
active zone, i.e., the width of the surface zone of the clus-
ters grows according to the relation g —N" —R~", where N
is the number of particles in the cluster and R is the mean
radius. Since v was found to be not equal to 1/d, our result
implies the existence of a second relevant length scale (g)
besides the mean cluster radius R —X'~ . Clearly, a theory
of the Eden process should be aimed at explaining the ap-
pearance of this second length scale and at calculating its ex-
ponent v. In this paper we make a small step towards such
a theory by demonstrating the following two points.

(a) There is a close analogy between the Eden process
and relaxation in a thermodynamic system at its critical
point. Namely, appropriately defined surface perturbations
of wave number q have characteristic growth and decay
rates scaling as q' with z = 1.55 + 0.15 in d = 2.

(b) The second length scale g is intimately related to the
critical dynamics of the process, and v can be expressed in
terms of the dynamical critical exponent z. For example, in
d = 2 one finds v = (4z)

In order to establish the above points, we shall work with
version C of the Eden model on the square lattice. In this
version introduced by Jullien and Botet7 new particles are
added to the cluster according to the following two-step al-
gorithm: (i) An occupied surface site of the cluster is
chosen with the probability 1/n„where n, is the total
number of such sites. (ii) The new particle is then added
equiprobably to one of the adjacent empty sites.

It will be convenient to study this growth process in a
strip geometry, 7 s i.e., to restrict the growth to a strip of
width L (in units of the lattice spacing) and to use periodic
boundary conditions in the direction perpendicular to the
strip. As an initial condition we shall use a state (substrate)
in which all the sites are occupied up to a given height Ap,

which may be chosen to be the reference level ha=0. (The
height is also measured in units of the lattice spacing along

the strip).
The strip geometry provides a convenient separation of

the control parameters. The width of the strip L and the
average height of the deposit h, or, in appropriate units, the
time of the growth t —h can be varied independently. This
is to be contrasted with the "circular" geometry usually con-
sidered, ~ ' where the cluster grows from a seed particle
and a single parameter % controls both the "height, " i.e.,
the mean radius R —W', and the "strip width" which is
equivalent to the circumference at the mean radius,
2mR —%' 2. One expects that curvature effects are negligi-
ble for N ~ and, consequently, the scaling properties of
Eden clusters in "circular" geometry can be obtained from
those in strip geometry provided t —h —L —N' is
chosen.

The advantage of separating the control parameters is the
freedom to consider limits which are simple but inaccessible
in circular geometry, In particular, the t ~ limit is im-
portant, since in this limit the growth process becomes sta-
tionary and the surface properties of the moving front be-
come time independent. One might hope that this station-
ary state can be more readily treated by analytical methods
and that one might then connect to the t —h —L —N'
limit by studying relaxation towards the stationary state.

At this moment, however, we are still limited to studying
the process by Monte Carlo simulations. The first Monte
Carlo results are due to Jullien and Botet, who studied both
the relaxational and the stationary-state properties of the
surface thickness of the deposit. In our work we have un-
dertaken a more detailed characterization of the surface by
decomposing it into Fourier modes and investigating the
static and dynamic properties of these modes. Working with
the Fourier modes makes the analogies with dynamic critical
phenomena transparent, and, since the surface thickness
can be expressed through these modes, the derivation of the
formula v= (4z) ' becomes straightforward. Furthermore,
we, of course, recover all of the results of Jullien and
Botet."

Turning to the details of the calculations, note that in or-
der to define the Fourier modes we need a single-valued
function for the surface height. Although version C of the
Eden algorithm suppresses to some extent the formation of
overhangs and holes, the surface may consist of more than
one occupied site above a particular point of the substrate.
In order to obtain a single-valued representation of the sur-
face height, we first construct a local average by defining a
mean surface height h(i, t) for substrate point i at time t
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through the equation
n (it)

h(i, t)= g h, (i, t)
n, i, t

where h~(i, t) is the height of the jth surface site in column
i, n, (i, t) is the number of surface sites in column i at time t,

and t is measured in number of particles deposited per sub-
strate site. The width of the surface is then given by

g'(L, t) = —g [h(i, t) —h(t)]',L,=]
(2)

~'(L, t) = —g [h, (i, t) —h(t)]',
fls ij

where n, is the total number of surface sites and
h(t) = $&h~(i, t)/n, As L .becomes large, however, we find
that the scaling properties of ( and o. are identical.

Given a single-valved representation of the cluster boun-
dary, one can carry out a Fourier analysis of the surface by
defining

h(q, t) = g [h(j, t) —h(t)]e'6JX,=,
(4)

with q= +2k7r/L, k=1, 2, . . . , L —1. In terms of h we
can write

where h(t) =g, h(i, t)/L is the average height. This defini-
tion is a bit different from the usual definition' of surface
width o(L, t):.

Botet.7 The facts that the amplitude of the Fourier modes
scale as (!h(q, ~) I') —q and that the dependence on the
finite size (L) appears only through the lower cutoff in the
possible values of q are similar to those found in various
roughening models, " and for Ising interfaces. " The simi-
larity, however, stops at the static aspects of the phenome-
na. As we shall see below, the dynamics of the surface in
the Eden model is distinct from the dynamics of the inter-
face in the dynamical generalizations of the above models.

In order to study the relaxational properties of the Eden
surface, we first consider the time correlations in the sta-
tionary state, i.e., we measure" the correlation function

P(q, r) = lim (h(q, t+r) h( —q, t))5 q, t
(7)

for various values of q and L In Fig. 2, $(q, r) is displayed
as a function of the scaled time ~=q'v, and one can see
that the simulation points fall on two universal curves pro-
vided z = 1.55. (The range of z which yields satisfactory col-
lapse of the data is z = 1.55 + 0.15.) The upper curve
describes the decay of the smallest q mode, while the lower
one represents the relaxation of modes with q ) 27r/L The.
exponent z, however, is the same for all modes. Thus the
finite-size effects for dynamics are more complicated than
for statics. Apart from the cutoff in the possible values of
q, the smallest q = 2rr/L mode is singled out; it decays with
a smaller time constant. As the size of the substrate is dou-
bled, L'=2L, the q =2m/L mode becomes part of the

g'(L, t) = —g (!h(q, t)!') = QS(q, t)—,
L q

' L
(5)

where the angular brackets denote averaging over different
clusters. In Fig. 1 Monte Carlo results are displayed for the
function qzS(q, t) for various values of L in the limit
t ~. One can see that this function is practically in-
dependent of L and approaches a finite limit as q 0. This
immediately establishes that in the stationary state we have

f &

('(L, ~) — dq/q' —L (6)
& 2n/L

a result also observed in the simulations of Jullien and
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FIG. 1. The equal-time correlation function S(q, ~) [Eq. (S)]
multiplied by (q/rr)z for strips of width L =6, 12, 24, 48, and 96.
Clusters were first grown to a depth (time) 40L before calculation
of S(q, ~) and $(q, ~) [Eq. (7)] began. The total number of sam-
ples used was 30000 for L =6, 12, and 24, 15000 for L =48, and
7500 for L =96. For L =48 and 96, S(q, ~) and (t (q, v) were cal-
culated for the first nine points, q =2mj/L, j= 1, . . . , 9 in the Bril-
louin zone.

FIG. 2. The relaxation function @(q,7) [Eq. (7)] in the steady-
state regime plotted as a function of the scaled time t =7q' with
z =1.55 for L =6, 12, 24, 48, and 96. The same equilibration and
averaging procedure as used to obtain Fig. 1 was employed. The
upper cluster of points represents $(q, r) for q =2rr/L for all L.
The lower set of data is $ (q, r ) for q = rr /3 for L = 12, q = rr/6 and
rr/4 for L =24, q =m/12, m/8, and m/6 for L =48, and q =7r/24,
Dr/16, n/12, Srr/48, m/8, 7rr/48, and vr/6 for L = 96.
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emerging continuum (lower curve) and decays with the time
constant characterizing the rest of the Brillouin zone. Since
the upper curve represents only two points in the Brillouin
zone, it does not play any role in the calculation of macro-
scopic averages such as the width of the surface zone.

The observed scaling Q(q, r) = f(q*7 ) of the relaxation
function is a characteristic feature of the dynamics of sys-
tems at a critical point. This observation establishes our
first point (a) about the critical dynamics of the Eden
model. The result z =1.55 shows that the Eden dynamics
belongs to a different universality class than the dynamics
introduced into the roughening .models where z ~ 2 is
found. "'3

In order to make connection with the "circular"
geometry, we need the limit t —L. Thus we must consider
the far-from-stationary-state dynamics of the surface. For
this purpose we studied the initial growth of correlations,
i.e., the correlation function

(,) S(q, ) —S(q r)

S(q, ~)

4'(q, 8)

O8
0.8- ~

II

0.2—

0 ~~wg%Q $ gI'

('(L, r) —
J li —g(q'r) l,

2m/L q2
(10)

and letting q = x/L, we find a scaling form as L

g (L, t) —L'~'G ( t/L*)

with G(x) G(~)a0 for x ~ and G(x) —x' "' for
x 0. The scaling form (11) has already been observed in
the Monte Carlo simulations of Jullien and Botet, and their
estimate of the dynamic critical exponent z=1.7+0.3 is in
agreement with ours; z=1.55+0.15. What is new in our
results is that the small-x limit of G(x) is derived from Eq.
(10), while their simulations were not sufficient to obtain
G(x) —x' t"); they conjectured this behavior.

The small-x behavior of G(x) is important in deriving the
t —L limit of the surface width. Indeed, we have

(L L) —LV G(L' *) —Lt)'i2)

In Fig. 3, @(q,t) is plotted for various values of L and q as a
function of t= q't. We see again the collapse of data for
the same range of the dynamical critical exponent
z=1.55+0.15. In this case, however, the lowest q modes
do not form a separate branch of the scaling function. The
reason for this may be insufficient resolution in our data, or
it may be that the finite-size effects are simpler for the ini-
tial growth of the amplitude of the modes.

Figure 3 implies that the S (q, t) obeys dynamic scaling

S(q, r) — li —g(q'r) j
1

q
2

The scaling function g(x) is exponentially small for x
while 1 —g(x) —x for x 0. The consequence of this
functional form for the width of the surface is immediate,
since
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FIG. 3. Relaxation function @(q,7) in the far-from-stationary-
state regime [Eq. (8)I plotted as a function of the scaled time
t= q'7 with z=1.55 for L =6, 12, 24, 48, and 96. Clusters were
started from the initial configuration and grown to a depth of 3L.
Each point on the graph is obtained from an average of over 20000
different clusters. Data for the same set of q's as in Fig. 2 are plot-
ted.

rived at the second (b) point of our paper, namely, we have
shown that the surface exponent can be expressed through
the dynamic exponent z in the following form:

v= (4z) (13)

The exponent v is not accurately known. Its effective
value in subsequent decades, 6 is t = 0.18 (10' & W & 10'),
v =0.05 (103 & N & 104), and v ——0.21 (104 & W & 105).
Thus even clusters of size 105 in circular geometry are not
large enough to test this formula. Clearly, finite-size effects
in circular geometry are more important than in strip
geometry. Whether this is an effect of curvature or perhaps
due to a distortion of circular clusters into a diamond shape
at large sizes because of the fourfold symmetry of the
square lattice remains to be understood.

The importance of Eq. (13) is the connection which it es-
tablishes between dynamics and the surface properties of
Eden clusters. We believe that this connection is quite gen-
eral and that the dynamic scaling (9) which we have found
for the Eden model will apply to a large number of other
growth processes. This connection also demonstrates how
the description of growth processes involves at least two
length scales.

and, since L —%', the surface width in the circular
geometry is given by (—N' '~*) —W", and thus we have ar-
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