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Two recent studies of Lennard-Jones liquid-phase triple-point heat conductivity suggested very
different nonlinear dependences of conductivity on field strength. This difference appeared to be
paradoxical because the two calculations used very similar driving forces to generate heat flows.
Here we analyze two sets of model calculations parallel to the Lenkard-Jones work. The calcula-
tions describe a simple relaxation-time model for field-induced diffusive flow in a low-density gas of
two hard disks. The nonlinearities found in the simple model suggest that the difference between
the two Lennard-Jones conductivity calculations mainly reflects a difference in the comparable
strengths of the currents studied.

I. MOTIVATION

In a series of nonequilibrium molecular-dynamics simu-
lations Massobrio and Ciccotti' found a heat conductivity
independent of field strength. In these calculations the
strength of the driving field was varied over more than six
decades. In an independent study, Evans found a heat
conductivity which varied linearly with field strength, for
the same force law and thermodynamic state. Evans's
calculations spanned one decade in field strength.

The two sets of data, shown in Fig. 2 of Ref. 1, seem to
be contradictory. But the two calculations are different in
detail. Evans's steady-current calculations used a con-
stant external driving field. Massobrio and Ciccotti used
a relatively weak impulsive delta-function field and fol-
lowed the decay of the resulting heat current. Because a
delta-function field seems more abrupt than a steadily ap-
plied field, it seems natural to expect somewhat larger
nonlinear effects in the delta-function case, for compar-
able field strengths. Comparability of impulsive and
steady fields involves the choice of a characteristic time.
Massobrio and Ciccotti used the molecular-dynamics time
step in comparing the fields. The model calculations
described here suggest that a correlation time of the order
of the collision time is a better choice. The model calcula-
tions suggest that nonlinear effects similar to those seen
by Evans could also be observed with impulsive fields, but
at field strengths some 20—40 times larger than those
used by Massobrio and Ciccotti.

II. MODEL

We seek to clarify the apparent contradiction between
the steady- and impulsive-field' results by analyzing a
simple two-particle model for field-driven diffusion taken
from kinetic theory. The model we study here is an ini-
tially isoenergetic ensemble of two-body systems with no
center-of-mass motion. Every system in the ensemble
obeys the same equations of motion, but with different in-
itial conditions. We follow only the average behavior of
"particle 1," as described by the one-particle probability
density function f(r,p, t). It is assumed that the density

function for our ensemble is described by the relaxation-
time Boltzmann equation

(& f /&t)+ (&/&r)( fr )+ (t)/&p )(fp ) =(&f/&t).,ii;„o, ,

We are interested in the spatially homogeneous case
with f(r,p, t)=f (p, t), so that the spatial-gradient term in
the Boltzmann equation (t)/t)r)(fr') vanishes. We denote
the field-free equilibrium distribution by fo and the two-
particle collision rate, which is proportional to the
momentum p, by 1/~(p). The linear collision term
(fo —f)/v, is exact for two hard spheres, with momenta
+p, because hard-sphere scattering is isotropic in the
center-of-mass frame appropriate to such a two-body sys-
tern. Because hard disks lead to very similar results, with
less work, we describe only the hard-disk case here. Both
diffusion and shear viscosity ' have been studied for this
model, but with attention focused primarily on under-
standing steady-state flows.

We will consider two different forms of accelerating
field: (i) a constant field E producing a momentum
change Edt during the infinitesimal interval dt, and (ii) an
impulsive delta-function field Eht, producing a momen-
turn change Eht during any interval that includes the
time zero. The additional factor of bt in the impulsive-
field strength is required for dimensional consistency.

The possibility of momentum-dependent non-Hamil-
tonian constraint forces is included in (1). Such "ther-
mostat forces, " "linear" in the momenta, are used here
to maintain a nonequilibrium steady state with fixed ki-
netic energy. We put quotes around "linear" as a re-
minder that the friction coefficient multiplying the
momentum is itself a function of the momenta. Thus the
equation of motion is nonlinear.

An external field accelerates one particle, "particle 1,"
in each system to the right and the other particle, "parti-
cle 2," to the left. Thus the total moinentum pi+pz is
zero, and is unchanged by the driving and constraint
forces. The symmetry of the two-particle problem allows
us to infer the behavior of particle 2 from that of particle
1. Accordingly, we consider in what follows that the
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Boltzmann equation solution f(p, t), normalized to unity,
gives the probability density for particle 1 in momentum
space. The current (p) = f fpdp likewise is the one-
particle current due to particle 1.

Massobrio and Ciccotti used a form of linear-response
theory as the basis of their flow simulation. In linear-
response theory, transport coefficients can be measured in
a variety of ways, using delta function, step function, or
sinusoidal driving forces, with or without constraint
forces used as thermostats. In the nonlinear case there is
neither a general proof nor a reasonable expectation that
these various field-dependent nonlinear transport coeffi-
cients will coincide. In Sec. III we compare three dif-
ferent nonlinear mobilities or diffusion coefficients—
obtained by solving (1) with both steady and impulsive ac-
celerating fields.

III. RESULTS

We consider the steady-state solution of (1) as well as
two nonsteady solutions. The steady-state diffusion coef-
ficient, which gives the current resulting from a constant
field of strength E, has already been calculated from the
Boltzmann equation (1) for this system. In the nonsteady
problems the two hard disks are accelerated by an impul-
sive delta-function external field Eb, t. This field drives
particle 1 to the right and particle 2 to the left. In the
"adiabatic" case each system is allowed to heat up, or cool
off, as a result of this interaction with the field. In the
"isothermal" case an additional thermostat constraint
force F, = —gp, extracts or supplies kinetic energy at the
same rate that energy is gained from or lost to the field.
The same kinetic model which underlies the Boltzmann
equation, a low-density gas with no correlations between
successive collisions, and with random velocity directions
after collisions, is used here. For more details see Refs.
3—5 and the Appendix.

In all three cases, we consider an initial ensemble of
two-body systems with fixed center-of-mass momentum
(pi+pz ——0) and fixed kinetic energy kT =(pi+p2)/2m.
Initially, the momentum distribution in the ensemble is
uniform over the allowed states in momentum space.

In Table I we compare three different nonlinear dif-
fusion coefficients: (i) the steady-state coefficient from
Ref. 3, (ii) the adiabatic coefficient obtained with a delta-
function field, and (iii) the isothermal coefficient obtained
with field (ii) and a thermostat.

The three cases have been compared by expressing the
field strength in terms of the initial momentum po and
collision rate 1/ro. Ero/po and Eb, t/po are dimension-
less, and appear in column one of Table I. It must be ein-
phasized that the comparison requires choosing a time re-
lating the strength of the steady and impulsive fields. In
the two-particle case the natural time to choose is the col-
lision time ro. We use 2~0 in the isothermal case simply
because the resulting mobilities correspond better with
that choice.

The mobilities, ratios of current to field, have likewise
been compared in dimensionless form. In the linear re-
gime the steady-field response I/roE, and the impulsive-
field response f Idt/roEbt, match the value —,

' from Ref.

TABLE I. Mobilities as a function of field strength for two
hard disks according to the three methods outlined in the text.
The steady-state values are taken from Ref. 3. The steady-state
calculations use a field E. The delta-function calculations use
an impulsive field Eht applied at the initial time. I is the
"one-particle current, "

(p~ ) = —(pz). The energy of the two-
body system is po/m in the steady and isothermal cases. In the
adiabatic case the energy increases to an average value of p~/m.
For the comparison given in the table the dimensionless con-
stant C has been chosen equal to one in the adiabatic case and
two in the isothermal case.

«o/po
or

Eht /Cpo

I/vE
Steady

Idt/~Eh, t
Adiabatic Isothermal

0.0
0.1

0.2
0.3
0.4
0.5

0.5000
0.4975
0.4907
0.481
0.468
0.455

0.5000
0.4981
0.4928
0.4845
0.4741
0.4627

0.5000
0.4983
0.4934
0.4855
0.4749
0.4621

3. In the nonlinear case this dimensionless mobility falls
below the linear value. It is interesting to see that the
trends of the mobilities, for the fields shown in Table I,
are similar.

This comparison strongly suggests that the steady and
impulsive Lennard- Jones conductivities measured by
Evans, Massobrio, and Ciccotti' should also be compared
by choosing an appropriate "collision time" or "correla-
tion time. " Although this time is not a precise concept an
estimate can be based on the time required for the current
correlation function to fall to a value of 1/e, about
0.11(met /e)' in Lennard-Jones units, or on the time in-
tegral of the correlation function, about 0.14(mo /e)'~ .
These times are about 30 times larger than the value
h =0.0045(mtT /e)' used to compare the data in Fig. 2
of Ref. 1.

Accordingly, we expect that impulsive Lennard-Jones
conductivities at fields some 30 times higher than those
used by Massobrio and Ciccotti may well reveal non-
linearities similar to those found by Evans. This question
is being investigated.

APPENDIX

Here we outline the numerical calculation of the
impulsive-field mobilities given in Table I. In carrying
these calculations out, it is convenient to average over the
before-field probability density, with all momentum direc-
tions, corresponding to 0&8&2m, equally weighted. In
the adiabatic case (ii) there is no thermostat force. The
momentum p after applying the field is p =(po cos8
+Eht, po sin8) =(p„,p„). The post-field temperature
(p /mk) is equal to To+(Ebt) /mk. The time integral
of the current becomes

f Idt= f dt f dp f(p, t)p

=(1/2m. ) f d8 f dt p„exp[ —t (/pr)],

(A 1)
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(d /dt) in[tan(8/2)] = E/po . — (A3)

From (A3), the post-field momentum p can be expressed
in terms of the initial momentum (again making it possi-

where the collision rate is 1/r=4crp/m V. The hard-disk
diameter is o, 2p/m is the relative velocity, and V is the
(two-dimensional) "volume" of each two-particle system.
The integration over time gives

f Idt =( 1/2w)ppro f (p /p)d8, (A2)

where 10 is the before-field collision time 1/ro
=4opo/m V. The integral of this well-behaved integrand
was evaluated by Gaussian quadrature. Sixteen points
were sufficient.

The isothermal case (iii) involves the use of a thermo-
stat. As in Ref. 3, the corresponding equation of motion,
in polar momentum coordinates with p =go
&&(cos8,sin8) =(p„,p~) is

ble to integrate over 8 with a uniform before-field weight)
and the field strength

tan(8/2) =tan(80/2) exp( Eb—,t/pp) . (A4)

In this case the collision rate does not change with in-
creasing field. This is because the combined effect of the
field and thermostat is simply to rotate the momentum
vector without changing its magnitude. The current in-

tegra1 p„p can again be evaluated with 16-point
Gaussian integration.

In the limit of very high fields the mobilities for the
adiabatic and isothermal cases coincide. In the adiabatic
case the integrand (p„/p) in (A2) approaches unity. Di-
viding the integral by field strength gives a dimensionless
mobility which approaches zero as po/Eht. In the iso-
thermal case the current integral f Idt approaches polio
at high fields and again the dimensionless mobility ap-
proaches zero as po/Eb, t.
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