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Parametrized equation of state for dense hydrogenic plasmas

DECEMBER 1985

Shigenori Tanaka and Setsuo Ichimaru
Department ofPhysics, University of Tokyo, Bunkyo ku,-Tokyo 113, Japan

(Received 2 July 1985)

We derive analytic formulas for the interaction and excess-free energies of dense hydrogenic plas-
mas, which accurately parametrize the numerical data calculated earlier in the hypernetted chain
approximation at various degrees of intermediate Fermi degeneracy of the electrons and which ex-

actly satisfy the known boundary conditions at complete degeneracy as well as in the weak- and
strong-coupling regimes. The resulting equation of state is valid over a wide range of densities and
temperatures, as long as the system is in a liquid-metallic state.

In a recent series of publications, ' Mitake, Yan, and the
present authors developed a general theory of interparticle
correlations in dense plasmas within the framework of the
hypernetted chain (HNC) approximation, and thereby
calculated various physical quantities for the special cases
of the hydrogenic plasmas where the ionic charge number
Z = 1. The interaction energy E;„,was computed, in par-
ticular, for 32 parametric combinations at various degrees
of intermediate Fermi degeneracy of the electrons in III;
the numerical results were then parametrized in analytic
interpolation formulas.

For hydrogenic plasmas we define a set of dimension-
less parameters as

1/3
e 4mn

k~T 3

8= (3m. n)
2mkg T

(2)

1/3 2
' 2/3

me 1 9m

2 4

where m is the rest mass of an electron and n refers to the
number density of the electrons (or the protons). 1, 8,
and r„respectively, are the Coulomb-coupling constant of
the ions, the Fermi degeneracy parameter, and the density
parameter of the electrons.

The interpolation formula for E;„, derived in III had a
simple structure and was capable of reproducing all the 32
cases of the computed values for 8=0.1, 1, 10, and I &2
with disgressions of less than 2%. Although successful in
reproducing those computed results, the formula did not
take a proper account of the existing knowledge on E;„, in
the limit of 8—+0 or 1 ~0, nor did it describe appropri-
ately the behavior of E;„, in the strong coupling regime,
r»1.

The purpose of the present paper is therefore to revise
and improve on the interpolation formulas obtained in III,
so that those limiting properties are correctly taken into
account as well. Such formulas have been derived for the

electron one-component plasma (OCP) in the Singwi-
Tosi-I.and-Sjolander approximation ' elsewhere.

We begin with consideration of various limiting
behaviors in E;„,.

(a) 8~0. When 1 is kept at a finite value, r, ap-
proaches zero in this limit as Eq. (3) indicates. The elec-
trons thus form an unpolarizable negative-charge back-
ground to the ions. The system may be looked upon as an
independent superposition of an ionic OCP and a collec-
tion of free electrons. The contribution E» of the elec-
trons to the interaction energy is given by the Hartree-
Fock value,
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where N is the total number of the electrons in the sys-
tem. For the ionic OCP contribution, —(1/I )(E22 /
Nkts T ), we take note of the Debye-Huckel values
(v 3/2)l '~ for I &0.003, the HNC values and parame-
trization for 0.003&I &1, and the Monte Carlo (MC)
simulation values and fitting formula for I ) 1. Conse-
quently, in the limit of 8~0, we have
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where a represents the coefficient of the Madelung-like
strong coupling contribution in —E22 /Nktt T.

(b) 1 ~0. In the weak coupling limit, the lowest-order
exchange energy of the electrons is the dominant contribu-
tion to E;„„sothat we may express

=a(8)+O(I' )I Ãk, T

An accurate fitting formula for a(8) has been obtained by
Perrot and Dharma-wardana' as
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which we adopt. In the classical limit (8~Do), a(8)
naturally vanishes and the second term in Eq. (6) propor-
tional to I' becomes the leading contribution in the
weak coupling regime; this term can be evaluated in the
two-component Debye-Huckel calculation as
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(c) I' » l. In the strong coupling regime, both
Eii /Nktt T and Ezz /Nktt T behave proportionally to I,
as one can confirm in the numerical values listed in
Tables I—III as well as in the local-field correction curves
in Figs. 1 and 2 of III. We note also in Tables I—III and
in Fig. 3 of III that the electron-ion interaction energy,
Eiq/NkttT, tends to be proportional to I / in the large
I' domain. As a comparison between the local-field
correction and random-phase approximation curves in
Fig. 3 indicates, this new feature appears to be a conse-
quence of the strong coupling effects described by the
local-field corrections. In the expression for E;„,/NkttT
we must therefore retain a term proportional to I

Taking account of those boundary conditions men-
tioned above, we propose an analytic formula parametriz-
ing the 32 values of E;„, in III as
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where a (8) has been given in Eq. (7), and
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It is clear that the boundary conditions, Eqs. (5)—(8), are
exactly satisfied with the coefficient a=0.88903 in Eq.
(5). The formula (9) reproduces the 32 computed values
for 0. 1 & 8& 10 in III with disgressions of less than 0.4%%uo.

It also fits the HNC ' or MC results for 0.003& I & 160
at the boundary 8~0 with relative errors less than 0.8%.

As we observe in Fig. 1 of I, the strong coupling regime
I & 10 corresponds to 8&0.1 and I 8&0.6. It thus fol-
lows t'hat e(8)I & d(8)l even in the strong coupling re-
gime, so that the former term remains the leading
contribution in the numerator on the right-hand side of
Eq. (9).

The excess free energy is then given by the coupling-
constant integration of Eq. (9) as
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We confirm that the condition, 4—e(8) & 0, is satisfied at
all the possible values of 8.

In conclusion we have derived the analytic expressions,
Eqs. (9) and (14), for the interaction and excess-free ener-
gies of hydrogenic plasmas, which are valid as long as the

system is in a liquid-metallic state.
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