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Analytic solutions of the two-state problem for a class of chirped pulses
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Analytic solutions to the two-state-problem Bloch equations are obtained for a class of smooth chii. ped
pulses. The asymmetric pulses introduced by Bambini and Berman as well as the chirped hyperbolic secant
pulse of Hioe belong to the class of pulses discussed.

where col is the pulse-carrier frequency and Qp, the Rabi
frequency, is proportional to the transition dipole moment
and the typical electric field strength. F(t) is a complex en-
velope of the electric field: F(t) =f(t) exp[ig(t)1, where
f and g are real functions. Thus f(t) describes the ampli-
tude modulation and g(t) the frequency modulation (chirp)
of the pulse. We express the wave vector as

Ip) =exp u~(t) Il) +exp u2(t) I2)
—iE] t —I'E2t

Then the Schrodinger equation reduces to

u) = —i Ao/2f(t) exp [i[g(t) +b t]]n2

nq= —i Qo/2f(t) exp[ —i [g(t)+At])n~
(2a)

where the dot indicates d/dt; A=cuL, —coo is the detuning,
and coo = (E2 E&)/f. Intro—ducing the real quantities

N = cx20!2 0,'i 0,'~

u = n;n, exp [—i[g( t) +b tl ] +c.c. ,

v =ia2n) exp [—i[g(t) +At]]+c c.

(3b)

(3c)

Eqs. (2a) and (2b) become
r

0

v = 5+g(t)
0

0 u

n,f(t)
0

(4)

The Hamiltonian of the two-level atom driven by a
smooth resonant pulse reads (in the rotating-wave approxi-
rnation)

8= E)I1) &I I +E2I2) &2I

+ [F(t) exp(icot, t) I I ) (2 I +H.c.]
h fLp

2

t = r/2 ln[z/(1 —z) '+~], A. & —1 (6)

which is a one-to-one mapping of the entire time axis on
the [0,1] interval. ' In (6) r is the characteristic time scale
in the problem. We make also the ansatz'

it2(I ) iiz

hz+1 (7)

in order to recover the results of Bambini and Berman in
the limiting case g(t) =0. The choice (7) implies

p +co
S = IIO~ dt f(t) = Aprn (g)

where S has the meaning of the unchirped-pulse area. In
terms of the new variable z, Eq. (5) becomes

z(1 —z) aI'+ ' —' —z —ig'z(1 —z) uI
2 2

there exists a class of unchirped, asymmetric pulses for
which analytic solutions of (2) may be obtained. The first
solution for the chirped pulse is due to Hioe, 4 who has tak-
en f(t) =sech(t/v), g(t) —tanh(t/r). Finally, Bambini
and Lindberg' discussed a class of symmetric pulses, which,
however, are not analytical functions of time, as they are
obtained by a symmetrization procedure applied to the
pulses. '

The aim of this Brief Report is to show that there exists
an entire class of pulses described by the complex envelope
F(t), for which analytic solutions to (2) [and thus (4)] may
be found. The chirped pulse of Hioe and the asymmetric
pulses of Bambini and Berman belong to this class.

Let us combine (2a) and (2b) into a single, second-order
differential equation for the lower-level amplitude n~(t):

u) +[ —i(A+g) —f/f]a) +f2(02O/4) u) =0

(a similar equation can be written for nz). We introduce
the new variable z = z( t) defined by

which are the famous Blach equations for the optical or
(originally) magnetic resonance problem. For their funda-
mental importance it is extremely useful to have analytic
solutions to (4) [or, equivalently, (2)], as they provide
deeper understanding of the underlying physics than straight
numerical integration of these equations. Rosen and Zener'
showed that for an unchirped [g(t) =0] pulse with en-
velope f'(t) = echs(t/v), where r is the pulse duration, the
solution to (2) may be expressed in terms of the hyper-
geometric functions. ' Up until the 1980s the Rosen-Zener
result was the only analytic solution of the problem [for
smooth F(t)] for an arbitrary detuning b and Rabi fre-
quency Ap. Bambini and Berman' were able to show that

z(1 —z) aI'+ [c—(a + b +1)z]nI —aha~ =0

This requires the g' to be of the form

$z +$
z(1-z)

(10)

where, since g' should be real, the same holds for P and P.

+r'(II2O/4)u) ——0, (9)

where the prime denotes d/dz. We will be able to write
down the general solution for the amplitude a~(t) immedi-
ately if Eq. (9) has the form of the hypergeometric equa-
tion2
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In terms of the time variable, Eq. (11) yields

~ 2 $z+$
Zz+1 (11a)

The quantity coL+g has the meaning of the instantaneous
pulse frequency [compare (2) or (4)]; thus, g should vanish
for maximum of f(t) (as coL is supposed to be the carrier
frequency). This requirement allows us to eliminate one of
the parameters P, @. For amplitude modulation (7) the
maximum of f(t) corresponds' to z,„=l/(2+5.). There-
fore, (11a) may be expressed as

(2+) )z —1

A.z +1
where p=2$(2+8. )v ' is the amplitude of the chirp in the
frequency units. As t goes from —~ to +~ (z changes
from 0 to I), g changes from —p to p. For X =0, Eqs. (7)
and (12) become

f( t) = sech( t/7)

g(t) =ptanh(t/r)

reproducing the pulse of Hioe. Obviously, for p=0 we get
g =0, and the unchirped pulses of Bambini and Herman are
recovered.

For v fixed, the duration of the pulse T defined as the
full width at half maximum of the amplitude modulation
f(t) strongly depends' on A. ; a similar A. dependence exists
for the time interval over which g changes significantly. To
compare the pulses with equal durations one must, there-
fore, for each A. value, choose v appropriately. This adjust-
ment has been applied to plot the amplitude f(t) and the
frequency g(t) modulations for different values of A. in
Figs. 1 and 2. We have chosen Qo equal to 1 (in some fre-

» = ' [) ~+(2+) )p],
4

{Qo—[)tA + (2 + X)P]'/4]' '
2

y, = m r (p —b.) /2

(14a)

(14b)

(14c)

Thus, the general solution for the probability amplitude o, ~

reads

nt = A ) 2Ft(a, b;c;z)

+B~z' '2Ft(a —c +l, b —c +1;2—c;z) (IS)

where 2F~(x) denotes the hypergeometric function. The
second amplitude of interest, o,2, may be obtained with the
help of Eq. (2b) by differentiation of (15). We can also
make use of (3) to obtain the components of the Bloch vec-
tor. This way, analytic expressions for the atom transient
response to the chirped pulse defined by Eqs. (6), (7), and
(12) may be found.

%e discuss in detail only the long-time properties of the
solution. Assuming the initial conditions

nt(t = —~) =nt(z=0) =1

n2(t = —~) = n2(z =0) =0

i.e., the atom which was in the lower state in the remote

quency units) for X =0, and for better comparison of curves
changed 0&& with X to assure equal areas S (8) under the
amplitude-modulation curves ( Ao = I/r). Note that the
chirp functions g have rather similar time dependences,
whereas the shape of f( t) changes appreciably with chang-
ing A..

With g of the form (12), Eq. (9) becomes the hyper-
geometric equation with parameters a, b, c given by

a, b = (i yt + y2)/n, c = ~ +i y3 /m, (14)

where for future purposes we introduced the short notation

~ ~ ~ ~

»10

FIG. l. Amplitude modulations Q() f(I;) as a function of time in
units of vo, the value of v for P =0. Solid, dashed, and dotted lines
correspond to A. =O, A. = —0.8, and A. =5, respectively. For further
explanation, see text.

FIG. 2. Frequency modulations (chirp) g(t)/P for the same
values of parameters as in Fig. 1.
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n)(t) =2F((a,b;c;z)

The known properties of the hypergeometric function

(17)

2F~(a, b;c;I )=,Re(c —a —b) )0I (c)I'(c -a -b)
I'c —a I c —b

(18a)

and the Euler gamma function'

I'(~ +z) I'( ~ —z ) = rr sec( mz)

allow us to express P~ in terms of elementary functions:

Pf sech y3 sech ( y3 —2 y) )

x [cosh (y& —y3) cos y2+sinh(y~ —y3) sin y2] . (19)

To get the insight into the nature of the solution (19), let
us discuss the special cases.

(i) X=P=0. We obtain the Rosen-Zener' solution for
the hyperbolic secant pulse. Then

and

y( =0, y2=7rrgp/2, y3= —mob/2

P) =1 —sech2(m. rb/2) sin2(mrIIp /2)

(20)

(21)

and the behavior of P~ is governed by the pulse area
S =2y2 (8). The atom always returns to its initial state for
S =2mn regardless of the detuning. The notion of the pulse
area plays an important role in the theory of light propaga-
tion through the resonant media. The famous self-induced
transparency solution of McCall and Hahn corresponds to
n =I (pulse with area S =2m). On the other hand, for
S = (2 n —1)4r the transition probability. P2 is maximal:
P2 =sech'(%Pre/2) and for 5=0 all atoms end up in the
upper state.

(ii) Case X = 0, the Hioe4 chirped pulse In that ca. se,

past, we look at the probability for the atom to remain in its
initial state: P~ =lim,

~ a~(t) ~2. Alternatively, we could
discuss the transition probability

P =lim, „~u (t)~'=I P)—

or the long-time inversion w(t = +~) =P2 P~. —With the
initial conditions (16), the solution (15) becomes

P~ may be expressed as

h
4rh(X+ I)P] = sech sech

1

, ~r( 02p —Z2A2/4) 't2
& sinh +cos 25

and

p h
err'

h
mrk(1 +A) . h2 organ(h. +2)P;„=sech — sech sinh

Oscillations of P~ are determined by

y2 ——Z[S' —(mrna/4)']'", (26)

which depends not only on the pulse area S but also on the
asymmetry parameter P as well as on the detuning b.

(iv) X, P& 0. In the most general P, Pe0 case the oscilla-
tory behavior of Pt (19) is governed by

y — [ n —(XA+(2+A. )P) /4]'t
2

(27)

and depends on all pulse parameters Qp, P, A. and on the de-
tuning A. Note, however, that for the chirp amplitude
P = —X4/(2+A. ), P~ (19) reduces to

I

P~ =1 —sin (4rrOp/2) sech, (28)2 , ~r&(I +))
2 2+X

and oscillations of P] are determined by the area of the cor-
responding unchirped pulse. In that case, for arbitrary pulse
shape the atom returns to its ground state whenever this
area equals 2am. In other words, for a given chirped asym-
metric pulse (A., P fixed) there exists a detuning such that
the tendency of the chirped pulse to invert the atomic popu-
lation' is compensated by the asymmetric pulse shape.

The second interesting special case occurs when b = —P.
Then the instantaneous detuning b+g vanishes at t
i.e., the pulse instantaneous frequency coL, +g comes closer
and closer to the atomic frequency coo. In that case

and, only for 6 =0, P~ is governed by the area S (8). For
5&0, P; oscillates' between

P h
nrt4

h
4rrh(1+X) h2 mrA(X+2)P ,„=sech sech cosh

y, =~rP/2, y, =~r(n,2 —P2)'t2/2 (22)
y, =~rP/2, y2=~r(np' —P')''/2, y, =~rP (29)

and for 5 =0, one obtains

Pi =sech(4r7P/2) cos2[4rr( Ap —P') 'i'/2]

which is maximal for

and the long-time population P~ becomes completely in-
dependent of the shape of amplitude modulation f(t), i.e. ,

S=mr(Qp —P )' '=2y2=2nn (23)
~r ( II 2 P2) 1/2

P~ =sec h( 7rrP) sinh2 +cos2
2 2

(30)

and P~ =0 for S =(2n —1)4r. Thus, for the chirped pulse
of Hioe the behavior of P] is governed by S rather than by
S. Hioe named S the "effective area" of the chirped pulse.
This notion allows for discussion of the chirped-pulse (13)
solution, with the help of concepts borrowed from the pro-
pagation theory.

(iii) Case P =0, the asymmetric pulses of Bambini and Ber
man. 3 For P =0 one obtains (14):

The oscillations of P] are governed now by
mr(Op2 —P2)' ', i.e., by the "effective area" S (23) intro-
duced by Hioe for the symmetric pulse (13) only. P~ oscil-

,lates between

P,„=sech( mr P) cosh'( mr P/2)

y, =~r) ~/4, y2=~r(np2 —) 2&2/4)'t2/2,

y3 = —mr 6/2
(24)

;P„=se h(cP4r)rsinh2(vrrP/2)

being maximal for S =2m n and minimal for S = (2n —1)m.
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Therefore, the notion of the "effective area" may be useful
also for chirped asymmetric pulses. It is easily- understood
if we compare this result with the resonant, unchirped-pulse
case 5, P = 0. Then for arbitrary pulse shape the atomic
evolution (and thus the long-time behavior also) is entirely
governed by the pulse area. ' For P = —b„ the chirped pulse
is at long times practically resonant; thus long-time probabil-
ity I'] should not depend on the pulse shape but rather on
the pulse "effective area. "

We have so far discussed the'"undamped" two-level sys-
tem. Robiscoe'0 has shown that any nonresonant two-level
problem soluble without damping can be easily treated so as
to include damping caused by the escape out of the system,
e.g. , spontaneous decay of the upper level towards addition-
al uncoupled levels. In such cases the important informa-
tion about atomic evolution can be obtained from the ener-
gy spectra of spontaneously emitted photons. These spectra
exhibit an interesting feature; they are multipeaked, with
the number of peaks determined by the pulse area. For de-
tails see Lewenstein, Zakrzewski, and Rzaiewski, "who dis-
cuss only the hyperbolic secant pulse, but the analytic solu-
tions may be obtained for the entire class of pulses dis-
cussed here. " The damped Bloch equations' which may
describe, e.g. , spontaneous decay within the two-level sys-
tem, are more difficult to handle, but some exact solutions
have also been obtained. "'

Finally, let us point out that the specific form of the
time-variable transformation (6) is the only transformation
which allows us to express Eq. (5) in the form of a hyper-
geometric equation [with f( t) and g ( t) given by (7) and
(12)], provided that we require the transformation to be a
one-to-one mapping of the time axis on [0,1] interval. The
proof may be carried out, e.g. , in a manner similar to that
proposed by Bambini and Berman for the unchirped pulses.

To summarize, we have found the entire class of pulses
having both amplitude and frequency modulations for which
the analytic solution of the undamped two-state problem
may be obtained (15). Analytical time pulses introduced be-
fore3 4 belong to the class of pulses discussed here; thus in a
sense we generalize the previous treatments of the problem.
It turns out that for every unchirped asymmetric pulse'
there exists its generalization in the form of a chirped pulse
for which an analytic solution of the problem may be given.
%e found that the notion of "effective area" introduced by
Hioe" for the symmetric pulse (13) is useful also for the dis-
cussed, more general class of pulses.

Since this paper was submitted I have learned that essen-
tially the same results have been obtained independently
and a bit earlier by F. Hioe and C. Carrol. "
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