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Photodetachment of the positronium negative ion
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Recent interest in the properties of the negative ion of positronium has encouraged us to compute its
cross section for photodetachment. To simplify the calculation, we have used the asymptotic form of the
bound-state wave function and a plane wave for the final-state wave function, following the work of Ohmu-

ra and Ohmura in the case of photodetachment of H . We have obtained the needed normalization con-
stant from a very precise and extensive Hylleraas wave function for the three-particle bound state.

The positronium negative ion (Ps ) has for years' been
known to be particle stable and has been the subject of
many theoretical investigations, 2 4 but only recently has it
been produced in the laboratory. Further investigations
have resulted in good measurements of its annihilation life-
time, which agree

' within experimental uncertainty with
theory. It has also been suggested' that Ps could be
used to generate positronium (Ps) beams of controlled ener-
gy; this ~ould involve acceleration of Ps ions and photode-
tachment of one electron. For this application, as well as on
general principles, it would be interesting to know the pho-
todetachment cross section of Ps

The formulation of the problem is straightforward: The
dipole transition matrix element is calculated with use of a
sufficiently accurate initial wave function of the bound ionic
state as well as a p-wave continuum function describing the
e -Ps final state. In this report we will describe a calcula-
tion which simplifies the description of the initial bound
state by representing it by an asymptotic form whose nor-
malization comes from the most accurate Hylleraas wave
function of the ion. ' [This is justified by the very small
binding energy (0.326 eV) of the Ps ion]. We make a fur-
ther simplifying assumption by taking the final state to be a
plane wave. (Note that some work designed to take into ac-
count the scattering has already been done. ')

In Rydberg atomic units, the Hamiltonian of the system
consisting of two electrons (pt, pz) and one positron (x) is

0= —V —V —V2 2 2 2 2 + 2

Ipt —xl Ipz —«I Ipi —pzl

For the initial bound state of Ps, it is convenient to
transform to the following center-of-mass coordinate sys-
tem:

Omitting R, which describes uniform motion of the center
of mass, we previously wrote a wave function for the Ps
ground state in the Hylleraas form as follows:

I +1 "2"p;(rq, rz, r~z) = g C(l, m, n ) [rtrz e
I, m, n

I m "2 "j
] n

and obtained an extremely accurate variationa1 energy. " For
the final state of the photodetachment, on the other hand, it
is more appropriate to describe the Ps+e system in an
asymmetric form, since the correct kinematic description in-
volves the motion of an electron relative to the center-of-
mass of the Ps atom. That is, we use the coordinate
Rz= rz —rt /2 in place of rz, while retaining the other coor-
dinates as before. The Hamiltonian in these unsymmetric
coordinates is

0„=—2 V,, +4VR +—+ 1

IRz+ —,r) I

The final state, involving the relative motion of a free elec-
tron and Ps in the ground state, must be a p state. In this
paper, we will assume that the scattering in the p state is
very small, and will write the final-state wave function as a
properly symmetrized product of the Ps wave function and
(the p-wave part of) a plane wave in the relative coordinate:

0 f [@(r~)e + @(rz)e '], where E =
z

k'
2

(6)

Given the above forms for the initial and final wave func-
tions, the photodetachment cross section can be written as

R=T(pt+pz+x), r~= pt —x, rz= pz —x1 (2) (7)

where R is the coordinate of the center of mass of the en-
tire system, and the other two coordinates measure the dis-
tances between the electrons and the positron. In these
coordinates the Hamiltonian takes the following symmetric
form:

'2 '1 '2 r 1 r 2
t

where the dipole transition operator in the velocity form is

Qv= 2k (V'~, + V'p, —Vx)

in terms of the fine-structure constant o. , the unit wave vec-
tor of the relative Ps-e motion k, and the energy of the in-
cident light oi. [In Eq. (7) the effect of the relationship
between energy and relative momentum in the final state
has been taken into account; it gives a factor of T when

compared with photodetachment from an infinitely massive

32 3745 1985 The American Physical Society



3746 BRIEF REPORTS

atomic ion. ] In the usual ways the cross section can be
rewritten in the length form

0.20

where the dipole transition operator in the length form is
0.15—

Q, =k (p, +p2-x) . (10)
CC 0.10—

These transition operators can be rewritten in terms of the
unsymmetric relative coordinates:

Qy=k (—%22+4'7, , +2Vg )

QL = k. (R+ rt+ ) R2)

So far, the only approximation made has been the use of
plane waves in the final state [Eq. (6)]. At this point we
make the second simplifying assumption; we represent the
initial bound state in the following asymptotic form:

e4;= C @(rk), for R, )) rk (12)

—(3.0274x 10 cm ) IMvl'
y2+k

= (6.8115x10 "cm')k(y'+k') IMLI'
(13)

where we have set the Ps electron affinity equal to 3y /2.
The two forms of the matrix element are written as follows:

e
—yR

MY= 2&2C Jl dR k V'ae'"'

M = C ldR k Re'"'"

Since both the initial and final wave functions used here are
eigenfunctions of a single local effective Hamiltonian, the
usual derivation of the identity of the length and velocity
forms of the cross section is valid; it is a useful check on
our procedure that we do get the same result. That is,

k C
a t

= a-L = (3.8245x10 ' cm ) (k2 + 2)3 (15)

This approximation was first introduced, for deuteron pho-
todissociation, by Bethe, and its justification was the fact
that the weakly bound deuteron is almost always outside the
range of the forces, where the asymptotic form is quite ac-
curate, especially for lower energies which do not probe the
inner parts of the system in detail. Since then, it has been
used many times, mainly for the similarly weakly bound
ground state of H, for photodetachrnent, '0 and also for
calculations of polarizability and other matrix elements. "
[This approximation is even more useful for Ps than for
H . Without it one would need to evaluate expressions
containing mixed coordinates: ri, r2, ri2 from Eq. (4), as well
as R~ from Eq. (6).l Since the electron affinity of Ps is only
about half that of H, we expect the approximation to be
good in the present application also. The constant C is ei-
ther the normalization constant of the asymptotic wave
function taken literally (the zero-range approximation), or,
better, it is obtained from a detailed wave function like our
Eq. (4).

Inserting the appropriate constants and dropping the
operators not involving 82, which do not contribute to the
photodetachment process in this approximation, we finally
obtain
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FIG. 1. Normalization constant C(R), obtained from the Hyl-
leraas wave function, as a function of the coordinate R. Note that
the main effect of increasing the expansion length is to lengthen the
plateau.

It remains to evaluate the constant C from the variational
wave function of Eq. (4). After setting rt=0, r2=r]2=82
= r, we define C (r ) as

C(r) = (82r)'i re2"0"; (O, r, r ) (16)
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FIG. 2, Photodetachment cross sections (dashed lines) in the

asymptotic approximation for Ps and H as functions of the
wavelength of the incident light. The length and velocity forms of
the H cross section are from the more elaborate theory of Ref. 12
(solid lines).
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where the numerica1 factor comes from the normalization of
the Ps ground-state wave function @. In Fig. 1 we have
plotted C (r ) over a wide range in the "asymptotic" region
to demonstrate its near constancy; from the plateau in the
region 20 & R & 40 we obtain the value C = 0.1856(2).
Our final result for the photodetachment cross section is, in
terms of the relative momentum k,

ka. = (1.32 x 10 '~ cm2)
2 2 2 (17)k2+~2 2

or, in terms of the wavelength A. of the incident light,

'3/2 ' '3/2

a = (650x10 "cm') 1—,for Z~ Xo . (18)
Ap Xp
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From Ref. 4 the best variational value of the Fs bind-

ing energy is 0.024 010 113 Ry, corresponding to
y = 0.126 517 75 and to a threshold wavelength Ap

= 37953.46 A. In Fig. 2 we have plotted the present results
[Eq. (18)l, compared with the corresponding resultsto for
H . In the latter case the asymptotic approximation is seen
to compare fairly well with the more elaborate calculations, "
and we expect the present results to be similarly reliable.

One additional test of the calculation can be made. The
result can be compared to the sum rule'

=+~&(rt+r2) ) pp [4&rt') —&r12) ] (19)

where the brackets represent expectation values in the Fs
ground state. We obtain the values'3 &ri') =48.4152 and
& rtq ) = 93.1714; the left-hand side of Eq. (19) in the
present approximation is 31.7, and the right-hand side is

29.775. Our approximate cross section thus exceeds the
sum-rule limit by 6.5%, almost exactly the same error as in
the case of H . Remember, however, that this sum rule
emphasizes short wavelengths, where the approximation is
poorest. Further work, involving better scattering func-
tions, is to be encouraged.¹readded in proof. From the quantities 7r and C it is
possible to estimate the singlet e -Ps scattering parameters
at low energies [T. Ohmura, Y. Hara, and T. Yamanouchi,
Prog. Theor. Phys. 20, 82 (1958)]. The scattering length a
and effective range ro (in units of ao) satisfy the equations
ra=(1/7) —(1/4mC ), (1/a)=7 —~ro7, from which we

obtain the values a =12.233+0.006 and rp=5. 594+0.005.
The former agrees fairly well with the value a = 12.38 +0.07
obtained by a direct Kohn variational calculation. ~

%e wish to thank Dr. A. Temkin for general encourage-
ment and for reminding us of the applicability of the
method of T. Ohmura and H. Ohmura to the Fs photode-
tachment problem.

~J. A. Wheeler, Ann. N. Y. Acad. Sci. 48, 219 (1946); E. A. Hyl-
leraas, Phys. Rev, 71, 491 (1947).

~A. A. Frost, M. Inokuti, and J. P. Lowe, J. Chem. Phys. 41, 482
(1964).

Y. K. Ho, J. Phys. B 16, 1503 (1983).
4A. K. Bhatia and R. J. Drachman, Phys. Rev. A 28, 2523 (1983).
5A. P. Mills, Jr., Phys. Rev. Lett. 46, 717 (1981).
6A. P. Mills, Jr., Phys. Rev. Lett. 50, 671 (1983).
~S, J. Ward, J. W. Humberston, and M. R. C. McDowell, J. Phys. B

18, L525 (1985).
S. Chandrasekhar, Astrophys. J. 102, 223 (1945); S. Chan-

drasekhar and D. D. Elbert, ibid. 128, 633 (1958).
H. A. Bethe and R. Peierls, Proc. R. Soc. London, Ser. A 148, 146

(1935); H. A. Bethe and C. Longmire, Phys. Rev. 77, 647 (1950).
T. Ohmura and H. Ohmura, Phys. Rev. 118, 154 (1960); B. H.
Armstrong, ibid. 131, 1132 (1963).
S. A. Adelman, Phys. Rev. A 5, 508 (1972).
K. L, Bell and A. E. Kingston, Proc. Phys. Soc. (London) 90, 895
(1967).

t3To be compared with the values (rt~) =48.75 and (rid) =93.94
obtained by W. Kolos, C. C. Roothaan, and R. A. Sack, Rev.
Mod. Phys. 32, 178 (1960).


