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Construction of solvable Hill equations
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By extending the work of Casperson [Phys. Rev. A 30, 2749 (1984); 31, 2743(E) (1985)j, a procedure to
construct an analytically-solvable second-order linear differential equation with continuous periodic coeffi-
cients is found and presented here. An illuminating example with three-parameter coefficients is given
which might be applicable to the problem of an electron in two-atom semiconductor materials.

I. INTRODUCTION

Many physical systems that involve periodic variations in
time and space can be described, in their reduced form, by
the Hill equation,

d y+f(x)y =0,
dx

where f(x) is a periodic function of the independent vari-
able. x. The simplest form of f(x) that is continuous in all
orders of derivatives is the sinusoidal variation. The result
is the Mathieu equation,

+ [a —2q cos(2x) ]y =0 .
dx

(2)

F + 4G cos(2x)
[1+G cos(2x) ]4 1+G cos (2x)

y(x) = [1+Gcos(2x)] cos[P(x)+ a),
where

(3)

(4)

P( )
F'i' G sin(2x)

2(1 —G2) 1+ G cos(2x)
2

(1 G2) 1/2

Equation (2) has been studied extensively, and the solu-
tions are expressed in special functions. ' In general, those
functions ar'e difficult to work with, not only analytically,
but numerically. In most cases, approximate solutions of
Eq. (1) are possible using perturbation or stationary-phase
method if the periodic terms in f(x) are small or fast vary-
ing.

Recently, a class of solvable Hill equations with two-
parameter continuous periodic functions was reported. 3 (A
few applications of the Hill equation can be found in the
literatures cited therein. ) The periodic coefficient and the
solution given by Casperson' are

both equations are reduced to the same form in the limit of
small q and G. The coefficient in Eq. (3) was pointed out to
be applicable to the problem of an electron in a one-
dimensional periodic potential with single or double wells.

It is then irresistible to raise the following questions: Is
this the only type of solvable Hill equation? If not, what
other forms of coefficient could be? How can we find
them? How many independent parameters in the coeffi-
cient are allowed, etc? The purpose of this paper is to com-
plete the classification of solvable Hill equations and to
answer the questions mentioned above. It is concluded in
thi's paper that one can construct as many solvable Hill
equations as one can imagine. The constructing procedure
is simple and straightforward.

II. THEORY

In general, the solution y(x) is obtained by solving Eq.
(1) for a given f(x). Reversely, f(x) can also be found if
y(x) is known,

f( )
1 dy(x)

y(x) dx' (6)

It is required that y(x) not be zero, such that f(x) is
meaningful, over an extensive region. Equation (6) implies
that the forms of f(x) can be as versatile as one can give
for the periodic wave function, y(x). For example, if y(x)
is chosen as [1+G cos(2x) ], the coefficient becomes
4G cos(2x)/[I+ G cos(2x) ] which is identical to the second
term in Eq. (3).

It is interesting to study if a class of solvable Hill equa-
tions can be evolved from a single given y(x). These equa-
tions should describe the systems with similar wave func-
tions. Assume a periodic function g(x) is to be added to
the coefficient f(x) in Eq. (1). The equation becomes

d2y (x) + [g(x)+f(x) ]y (x) = 0 .
(1 —G')'i' tanx

1+6 (5) The solution of Eq. (7) is assumed to be

In Eqs. (3)—(5), a is an arbitrary constant; F and G are the
independent parameters. This is the first Hill equation with
a smooth coefficient f(x) that can be solved exactly in
terms of elementary functions. It is not a special case of the
Mathieu equation and neither of the reverse. However,

y(x) =yp(x) exp[iyi(x) ], (8)

where yp(x) is the original solution satisfying Eq. (1) and
yi(x) is the modification function to be solved. Both yp(x)
and yi(x) are real functions. By substituting Eq. (8) into
Eq. (7) and neglecting the common exponential factor,
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exp[iy~(x)], we have
r

d2yp(x) dyt(x)—yp(x) +yp(x)g(x)+yp(x) f(x)
QX

d2yt(x) dyp(x) dye(x)+i yp(x) 2
+2

CkC dX
=0

d'y&(x) dyp(x) dy~(x)yp(x), + 2 =0

dy) (x) = g(x)

(10)

Equations (10) and (11) can be solved to obtain

Since yo and yq are real, the real and imaginary part of Eq.
(9) should be identical to zero, separately. Using Eq. (1),
we have

(E) Steps (C) and (D) can be repeated, if analytically
possible, to obtain new coefficients and solutions with more
independent parameters.

In contrast to the ordinary equation-solving technique,
the constructing steps (A) and (8) lead to finding the equa-
tion by knowing the wave function in the first place. Be-
cause of the second-order derivative in Eq. (6), the form of
the coefficient is usually more complicated than the wave
function itself. However, if the construction proceeds to the
steps (C) and (D), the new coefficient is obtained algebrai-
cally. and the new solution is found through an indefinite in-
tegral. The form of the coefficient might be much simpler
than the wave function, which is observed in most physical
systems. Since step (C) involves an integration in Eq. (12),
it is important to choose a function form such that the
squared inverse of the function is analytically integrable. 4

This is the major difficulty found in repeating the steps (C)
and (D).

y, (x) = +F'i', dx
1

yp2 (x)
(12) IV. EXAMPLES

and

Fg(x)= 4( )
(13)

where F is an arbitrary constant. Choosing a starting func-
tion as

Except for the result given in Ref. 3, the procedure is
demonstrated in the following two examples using a similar
but slightly different starting function. The second example
becomes the first solvable Hill equation with a three-
parameter continuous coefficient.

(A) Choose the starting function as

yp(x) = 1 + G cos(2x) (14) yp(x) = [1+6 cos(2x) ]' ' (17)
we find

yt(x) = +F'~2

g(x) = F
[1+6 cos(2x) ]4

(16)

, d =+P(x), (IS)1+ 6 cos 2x

Following the procedure, we obtain the equation and the
solution,

'I

d y(x) + F+ 6'sin2(2x) + 2G cos(2x)
dx2 [1+6 cos(2x) ]2 1+6 cos(2x) y x =0

(18)
which is exactly the equation and solution reported in Ref.
3. The new parameter F controls the magnitude of the new
superposing periodic function g (x).

y(x) = [1+Gcos(2x)]' 2cos[Q(x)+ a]
where

(19)

III. SUMMARY

The general constructing procedure of analytically solvable
Hill equations can now be summarized in a sequence of
steps:

(A) Choose a suitable periodic wave function yp(x).
(B) Calculate the coefficient f(x) following Eq. (6). If

additional independent terms in the coefficient are desired,
continue the following steps.

(C) Use Eqs. (12) and (13) to obtain the new coefficient
g(x) and the modification function yt(x).

(D) The new solvable Hill equation and its solutions are
constructed according to Eqs. (7) and (8).

Q(x) = dx1+6 cos(2x)
1

F'i ) (1 —6')'i tanx
(I 62)1/2 I+ 6 (20)

yp(x) = [1+6 cos(2x) l' '[1+H cos(2x) ]' 2 (21)

which has two independent parameters, G and H. The
equation and the solution are found following the procedure

The coefficient appearing in Eq. (18) exhibits second-order
singularities when G is larger than one. In comparison to
f(x) in Eq. (3), which has fourth-order singularities, it
represents a smoother potential variation.

(B) In this example, the starting function is

d'y (x) F + 26 cos(2x) + 2H cos(2x)
dx' [1+G cos(2x) ]'[1+H cos(2x)]2 1+6 cos(2x) 1+H cos(2x)

r

+ — sin'(2x) y(x) =0
1+ 6 cos 2x 1+Hcos 2x

y (x) = [1+6 cos(2x) ]'i [1+H cos(2x) ] 'i cos [R (x) + a] (23)

8 (x) = [6[g(x)]G=G—H[0(x)]G=~] (24)
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FIG. 1. Coefficient f(x) and the corresponding wave function y(x) for a three-parameter Hill equation with F =0, G =0.8, and8= —0.9 in Eq. (22).

Comparing the starting functions in Eqs. (14), (17), and
(21), we found that the previous two examples are the spe-
cial cases of the last one, with H equal to G and 0, respec-
tively. When H is zero, it is easy to see that Eqs. (22) —(24)
are reduced to Eqs. (18)-(20). When H is equal to G, the
reduction of first two equations is obvious except for the
function R (x). The reduced form of R (x) should be

pie, we can choose E=O, G=0.8, and H= —0.9. The
normalized solution and the coefficient in this case are
shown in Fig. 1. It is interesting that f(x) is similar to a
periodic one-dimensional potential with alternating different
interaction strengths. This might be applied to the problem
of an electron in two-atom crystals, such as GaAs or other
III-V and II-VI compounds.

R(„) &[Gg( )l („)+Go'Q( )
dG dG

(25)
V. CONCLUSION

Using the integral form for Q(x) in Eq. (20), we found that

1R (x) JxH= G~ [1+ G cos(2x) ]
(26)

which is identical to the form shown in Eq. (15).
The coefficient in Eq. (22) has three independent parame-

ters and represents variations with two different amplitudes,
if the absolute values of 6 and H are not equal. For exam-

A general procedure has been established for the con-
struction of analytically solvable Hill equations. The result
is applied to obtain a solvable equation with three-parameter
continuous periodic coefficients. The equation can be ap-
plied to the problem of an electron in some two-atom com-
pounds. Other choices of the starting function might also
lead to useful types of Hill equations.
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