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Classical fluid in a periodic potential and the density-functional approach
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We investigate the equilibrium state of a one-dimensional fluid of hard-core particles subject to a
given external periodic potential. Starting from Percus's exact theory we obtain accurate numerical
results for the density profiles and the free energy. These are used for a quantitative test of an ap-
proximate free-energy functional frequently used in classical density-functional theories. We show
that the density-functional approach works well in a rather broad range of physically interesting pa-
rameters. Limits of its applicability are also discussed.

I. INTRODUCTION

The computation of equilibrium properties of nonuni-
form classical fluids has become a subject of increasing
importance for a variety of physical applications, includ-
ing liquid surfaces, ' the melting process, superionic con-
ductors, or submonolayer films adsorbed on a crystalline
substrate. The last two examples pose the problem of
computing structural and thermodynamic properties of a
fluid subject to an external periodic potential. A con-
'venient approach to the general problem is provided by a
classical density-functional theory, ' which yields infor-
mation on the density p(r) and the free energy of the
nonuniform state. Other treatments involve the two-
particle density p(r, r') and the Ornstein-Zernike relation.
Recent attempts in this direction have been based on the
Percus-Yevick approximation, but are limited so far to
one-dimensional systems.

The aim of this paper is twofold. Firstly, we make use
of an exact functional relationship, due to Percus, be-
tween an external potential u(x) and the density p(x),
valid for a one-dimensional system of particles interacting
via hard cores. This relationship is evaluated for the case
where v(x) is a given periodic potential. An interesting
feature of such a system is the interplay between the
periodicity of the external potential and the length scale
for short-range correlations among the fluid particles,
which reflects itself in the detailed behavior of the calcu-
lated density distribution.

Secondly, the system described above is treated approxi-
mately within a simple version of the density-functional
theory. We use a free-energy functional which consists in
an expansion up to second order in the density variation
about the spatially averaged density p. A functional of
this type has been used, for example, in a study of the
phase diagram of rare gases adsorbed on graphite and,
more recently, also in connection with the glass transi-
tion. ' A comparison of the method with our accurate re-
sults based on the Percus relationship provides a quantita-
tive test of the density-functional approximation (DFA).

It turns out that the DFA works remarkably well in a cer-
tain range of parameters, in particular in "incommensu-
rate" situations, where the density variation is reduced in
comparison with the case of noninteraciing particles. It
fails, however, in cases where the particles are substantial-
ly localized about the potential minima. "

In Sec. II we briefly recall the Percus relationship and
discuss some special cases, part of which are solved
analytically. The application of the density-functional
theory to our problem is outlined in Sec. III. Finally, in
Sec. IV we discuss our numerical results.

II. PERCUS RELATIONSHIP

—f dy y . (2.1)

In this relation a denotes the hard-core diameter, p the re-
ciprocal temperature, and z the fugacity. Furthermore,
the grand free energy satisfies

n= —p- f
1 —f dw p(w)

(2.2)

Basically, our aim is to calculate the density p(x) for a
given periodic potential u(x)=u(x+2sr/k) with spatial
average V. This means that we have to invert Eq. (2.1). It
is convenient to write p(x)=po+Ap(x), where po is the
density in the uniform case with u(x)—:V. From Eq. (2.1),

po ——ze ~(1—apo) exp
apo

1 —apo
(2.3)

and

Percus has derived an exact relationship between an
external potential v(x) and the induced density p(x) in a
one-dimensional fluid of particles interacting via hard
cores,

pu (x)+ = ln 1 —f dy p(y)
lnp(x ) x

r

pbu(x)+ln[p(x)/po]= ln 1 —p f dy bp(y)

x+a Z Z —1—y f dz bp(z)+ypo f dy bp(y) 1 —y f dy bp(y) (2.4)
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where y =(1—app}
' and b u (x) =v (x) —V.

A few special cases are easy to discuss.
(i) ak =2m.n. If the hard-core diameter a is a multiple

of the period 2m/k of the potential u (x), then the integral
Xf„.dy ~p(y) =apso

is independent of x. Here, the spatial average of bp(x)
has been denoted by poao. Equation (2.4) now reads

y apoao2

P bu (x)+ln[p(x)/pp] =In(1 —yappap)—
1 —yapoao

(2.5)

(2.6)

y a b,p(x)
Q exp

1 —ya Ap(x)
(2.7)

From Eq. (2.3) it can be shown that this is consistent
with the thermodynamic equilibrium condition
P[v (x ) +p(p(x ) }]=const, where p is the chemical poten-
tial as a function of density for the uniform system.

(iii) Hypernetted chain approximation Let u.s define an
effective potential u, ff(x) through

p(x) = const && exp[ —Pu, ff(x)] . (2.8)

The hypernetted chain (HNC) approximation can be re-
garded as an expansion of the difference ugff(x) —v(x) up
to linear order in bp(x). ' The general result is

/3[u, ff(x) v(—x)]= f dy —cp(x —y,pp)bp(y), (2.9)

where cp(x pp) denotes, the direct correlation function of
the uniform system. In fact, keeping only terms linear in
Ap on the right-hand side of Eq. (2.4), we obtain

P b, u (x) —ln[p(x)/po]

=y f dy hp(y)+y pp f dz f dy hp(y)
x+a

=y dy 1+ypo a —x —y hp y

(2.10)

This agrees with Eq. (2.9) in view of the expression

—y[l+ypp(a —~x
~
)], ~x

~

&a
'o( 'Po) 0, (x ( )a (2.11)

for the direct correlation function of a one-dimensional
uniform hard-core fluid.

In the linear-response (high-temperature) regime we
have p(x)=pp[1 —pu, ff(x)]. Then Eq. (2.9) leads to the
well-known relation

which shows that p(x) is proportional to exp[ —Pu(x)].
The constants on the right-hand side of Eq. (2.6) together
with Eq. (2.3) could be used to relate the fugacity to the
average density p=pp(1+ap).

(ii) Slowly varying potential Let u.s assume that the po-
tential u(x) varies slowly over the distance a, implying
ak « 1. Then the integral in Eq. (2.5) can be approximat-
ed by

asap(x).

This leads to the local relationship

p(x)=poe ~ ' '[1—ya bp(x) j

ueff, n So(nktpo}vn (2.12)

between the Fourier components u, ff „and u„referring to
the effective and the external potential, respectively. In
Eq. (2.12), Sp(k, pp) denotes the static structure factor of
the uniform fluid. For our special system we have'

2ypo 4 2 2 —1

So(k,pp) = 1+ sin(ka)+ 2
sin

2 2

(2.13)

III. DENSITY-FUNCTIONAL THEORY

p is a constant to be determined such that the solution
p(r) is consistent with a given p. Equation (3.3) has the
same form as the HNC equation (2.9) in connection with
(2.8). Note, however, that the direct correlation function
in Eq. (3.3) is taken at the average density p so that Eq.
(3.3) is independent of any reference state.

In the next section we solve Eq. (3.3) for a one-
dimensional hard-core fluid and calculate the correspond-
ing free energy from Eq. (3.2).

IV. NUMERICAL RESULTS AND DISCUSSION

For our explicit calculations we assume an external po-
tential u (x) of the form

u (x)= u [1+cos(kx)] . (4.1)

First we turn to the exact equation (2.4). Using the
Fourier expansion

Before proceeding to our explicit calculations, we make
a few remarks on the DFA and its application to our
problem. The general method is based on an exact
theorem which states that for a given pair interaction
there exists a functional of the density, M[p], such that
the equilibrium density in the presence of any external po-
tential u (r) is determined by minimizing the functional

Q, [p]=f d rp(r)v(r)+W[p] —p f d rp(r) . (3.1)

At the minimum, Q, [p] is equal to the grand free energy
of the system.

Various approximate forms for W[p] have been pro-
posed. ' Here we consider the simple expression

P [p]=Fp(p)+13 ' f d r p(r)ln[p(r)/p]

—(213) ' f d r f d r'cp(r —r', p)

&& [p(r) —P][p(r') —pj, (3.2)

which consists in an expansion of W[p] up to the second
order in density relative to its spatial average p. In Eq.
(3.2), Fp(p) and co(r,P) are the Helmholtz free energy and
the direct correlation function of a uniform fluid with
density p, respectively. These are input quantities as-
sumed to be known.

Minimizing II, [p] leads to the integral equation

Pu(r)+ln[p(r)/p]= f d r'cp(r —r', p)[p(r') —P] .

(3.3)
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gp(x) =po g a„cos(nkx),
n (&0)

(4.2)

we transform it into a set of equations for the coefficients
a„, which is solved by iteration. The truncation n
with N =7 turned out to be sufficient for most of our re-
sults.

The density distribution p(x) obtained in this way is
most conveniently discussed in terms of the effective po-
tential v,rr(x) defined through Eq. (2.8). An interesting
quantity is the effective potential amplitude
kv ff —[v, ff ( 0 ) v ff( m. /k) ]/2. Its k dependence is shown
by the full curve in Fig. 1 for the parameters pv =2 and
apo ——0.5. Note that in solving Eq. (2.4) we have fixed po
for reasons of numerical convenience so that the average
density P=po(1+ao) becomes k dependent, see Fig. 2.

According to Fig. 1, as k is varied, the system alter-
nates between states where the density distribution is more
localized (b,v,rr/v ~1) or more delocalized (b,v,ff/v &1)
as compared with the noninteracting case. The observed
oscillatory behavior of the effective amplitude reflects the
competition between the short-range correlation in the
fluid and the periodicity of the external potential. This
becomes most evident by noting that the effective ampli-
tude closely follows the k dependence of the static struc-
ture factor So(k,po), Eq. (2.13), which determines the ef-
fective amplitude in the linear-response regime according
to Ev rr/v =So(k,pp).

Now we turn to the corresponding predictions of the
DFA. We have solved Eq. (3.4) in one dimension by us-
ing Fourier expansions, co(x,P) being taken from Eq.
(2.11). Results for the effective amplitude are shown in
Fig. 1 by the dashed curve. The agreement with the accu-

' rate results (solid curve) is excellent, apart from a region
in the neighborhood of ak -5, where particle localization
is most pronounced. There the DFA is in error by about
15%.

Explicit density profiles together with a plot of the po-
tential v,rr(x) are shown in Fig. 3 for the extremal cases
ak=4. 8 and 8. Note the relatively high density near the
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FIG. 2. Average density pa as a function of ka for the case
Pv =2 and poa =0.5.
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potential maximum in the incommensurate case of Fig.
3(b), which is well reproduced by the DFA.

Starting from Eq. (2.2) we have also calculated the
Helmholtz free energy I', which is plotted in Fig. 4. The
DFA free energy, obtained from Eq. (3.2) is higher by
typically 0.5%%uo, the largest deviation of about 2% occur-
ring near ak-5.
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FIG. l. Effective potential amplitude P 4v, tr as a function of
k (wave vector of the external potential) for the case Pv =2 and
poa =0.5. ( ), exact result and ( ———), DFA values.

FIG. 3. Effective potential Pv, rt and density profile pa as a
function of position. ( ), exact results; ( ———), DFA
values; and ( ——~ —~ ), external potential for the case Pu =2
and poa =0.8. (a) "Commensurate" case: ka =4.8, pa =0.763;
(b) "incommensurate" case: ka =8, pa =0.768.
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FIG. 4. Exact Helmholtz free energy PFa for the case PU =2
and p~ =0.5 as a function of ka.

FIG. 5. Effective potential amplitude P b, u, rr as a function of
the external potential amplitude Pv for poa =0.8. (~), exact re-
sults and (0 ), DFA values. The lines are guides to the eye.

Clearly, the DFA based on the functional Fq. (3.2) is
expected to fail if the density distribution becomes more
localized. In order to test this we have calculated the ef-
fective amplitude for some larger values of Pu. Indeed,
Fig. 5 shows that on increasing PU the DFA potential am-
plitudes become too low, and the corresponding density
distributions will show insufficient structure.

Nevertheless, our results indicate that the functional
Eq. (3.2) repI'esents a sensible approximation in a rather

wide range of parameters of physical interest. We expect
that the range of applicability of the DFA found in the
present study holds in a similar way also for higher-
dimensional systems or more general interactions.
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