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The Hamilton-Jacobi canonical transformation theory is extended to treat nonintegrable Hamil-
tonian systems with a continuous Fourier spectrum. By a natural analytic continuation of the
Fourier variable to the complex plane, a nonunitary operator for the canonical transformation is ob-
tained. We apply this transformation to describe Chirikov's diffusion process near a separatrix in
nonlinear systems with two degrees of freedom. Our formalism shows a clear distinction between
the irreversible evolution of an ensemble with a finite measure from the reversible evolution of a tra-
jectory in nonintegrable systems with chaotic motion. The condition for obtaining the irreversible
kinetic equation in Hamiltonian systems is connected to the condition for the existence of homoclin-
ic points around the separatrix. We also show that Prigogine s dissipativity condition in nonequili-
brium statistical systems is equivalent to the nonintegrability condition for nonlinear systems with a
few degrees of freedom.

I. INTRODUCTION

We have studied in a previous paper' the derivation of
an irreversible kinetic equation which describes Chirikov's
diffusion process near a separatrix in a nonlinear Hamil-
tonian system with two degrees of freedom. The deriva-
tion has been done using asymptotic perturbation theory
where we have collected the contributions, coming from
the resonance effect, which give the most diverging terms
in the asymptotic time limit t~ao. Asymptotic pertur-
bation theory was first introduced by Van Hove, where
he derived a quantum kinetic equation for a system with
an infinite number of degrees of freedom. Then, this
theory was extensively developed by Prigogine and his col-
leagues for quantum and classical nonequilibrium sta-
tistical systems. Qne of the main results of their develop-
ment is that they could clearly distinguish the role of
dynamics in the evolution of the system from the role of
statistics. The statistical assumption involved in their
theory was imposed only on the initial conditions. In his
discussion, Prigogirie summarized a dynamical condition
for irreversibility as the "dissipativity condition, " that is,
the "condition of the existence of nonvanishing collision
operator. " In spite of some remarkably successful appli-
cations, however, there were still unclear aspects of their
asymptotic perturbation theory in the following sense: If
there are truly irreversible processes in Hamiltonian sys-
tems, then why does one need the asymptotic argument to
derive the irreversible kinetic equation? What is the rela-
tion between the irreversible evolution in an ensemble of
the system described by the Liouvillian formalism and the
reversible evolution of a trajectory described by the Ham-
iltonian formalism'? These questions also arise in our
derivation of the irreversible kinetic equation in the non-
linear dynamical system with two degrees of freedom. '

To answer these questions for infinitely large systems,
Prigogine and his colleagues ' have developed a transfor-

mation theory by constructing a nonunitary operator
which transforms the evolution operator with a group
property to a new evolution operator with a semigroup
property. In contrast to the asymptotic perturbation
theory, the nonunitary transformation is not restricted to
the long-time limit for describing the evolution of the sys-
tem. Their idea to construct the transformation operator
is the following. First the concept of "correlation" as a
Fourier component of the distribution function with
respect to the coordinates is introduced. Then, from a
formal solution of the Liouville equation in a perturbation
analysis, a projection operator Hk associated with a
Fourier variable k is constructed, which projects a com-
ponent of the distribution function the evolution of which
is governed, independently of another correlation com-
ponent, by the "subdynamics. " In constructing IIk, how-
ever, if there is a continuous spectrum of k, then there ex-
ists an ambiguity in analytic continuation of k into the
complex variable. To remove the ambiguity, George' has
introduced a mathematical prescription of the analytic
continuation which is called the "ic. rule. " This rule is
similar to the analytic continuation in scattering theory in
quantum mechanics, but much more involved. Then,
solving the operator equation Hk ——APkA ', where Pk is
a projection operator which projects an eigenstate of the
unperturbed Liouvillian, they determine the transforma-
tion operator A. Due to the ic rule, A is not a unitary
operator. The nonunitarity gives the irreversible evolution
of the system.

The purpose of this paper is to construct a similar
nonunitary transformation operator for the nonintegrable
Hamiltonian system with a few degrees of freedom. We
may summarize our results in the following three state-
ments.

(i) The nonunitary transformation theory can be inter-
preted as a natural extension of the Hamilton-Jacobi
canonical transformation theory to systems with the con-
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tinuous Fourier spectrum.
(ii) Reversible evolution of a trajectory in the nonintegr-

able Hamiltonian system does not contradict the irreversi-
ble evolution of an ensemble of the system whose distribu-
tion function in phase space satisfies a certain natural
condition.

(iii) Prigogine's dissipativity condition is equivalent to
the nonintegrability condition for systems which have
homoclinic points in phase space.

In this paper, we do not directly follow the method of
the construction of the nonunitary operator given by Pri-
gogine et al. Our method is more straightforward and
makes the physical meaning of the i c, rule clear, at least in
the nonintegrable system with a few degrees of freedom.
To obtain the transformation operator, we first recon-
struct the Hamilton- Jacobi canonical transformation
theory in terms 'of the Lie-algebraic formalism. "
Then we construct, by a perturbation analysis, a canonical
transformation operator which makes the given Hamil-
tonian cyclic. As is well known, the generating function
of the canonical transformation has the "small denomina-
tor." The small denominator introduces a serious diffi-
culty in the ordinary perturbation theory, when the sys-
tem has a discrete Fourier spectrum. However, we point
out that if the system has a continuous Fourier spectrum,
then the Fourier series with the small denominator
reduces to the Fourier integral with the form of the Cau-
chy integral which is evaluated on the real axis. Here is a
crucial part of our formulation. Note that for. a suitable
analytic continuation the Cauchy integral becomes well
defined, in contrast to the Fourier series, so that there is
no difficulty of the small denominator. To determine the
branch of the analytic continuation, we impose a physical
boundary condition to the evolution of the system. Then,
we obtain the well-defined transformation operator that
we want to construct.

In order to make the physical meaning of our boundary
condition clear, we consider a nonintegrable system which
has homoclinic points in phase space around the separa-
trix of the unperturbed integrable system. Examples of
the system are given in Sec. IV. There, we will show that
the Fourier spectrum is continuous in the limit of ap-
proaching the separatrix. When we investigate the evolu-
tion in this system, we must distinguish between two ex-
tremely different cases: one is the evolution of the trajec-
tory and the other is the evolution of the ensemble, the
distribution of which has a "5-function singularity" in its
Fourier representation. In the first case, we impose the
boundary condition that the transformation operator gen-
erates the motion of the trajectory on the unstable mani-
fold. We will see that this boundary condition has a close
analogy with determining the solution as the incoming
plane wave in scattering theory in quantum mechanics.
Then, this condition gives a unique analytic continuation
of certain matrix elements of the transformation operator
at least in the lowest-order approximation in the perturba-
tion theory. In this case, we do not see any irreversible
processes in the evolution.

The second case is another crucial part of our formula-
tion. The importance of the existence of the 5-function
singularity in the distribution function in obtaining ir-

reversible kinetic equations for systems with an infinite
number of degrees of freedom was first pointed out by
Prigogine and Balescu. In Sec. V we will show that for
our nonintegrable-system this corresponds to the case that
we choose the initial ensemble such that its distribution
function contains a homoclinic point with a finite mea-
sure, such as the step function. The measure may become
as small as we wish. Because of the 5-function singularity
the Fourier component of the distribution with zero
Fourier argument plays a distinctive role, in contrast to
the case of the trajectory where this component is negligi-
bly small in the Fourier integral. In this case, we impose
the physical boundary condition that the Fourier com-
ponent with zero Fourier argument approaches the steady
solution in the limit t—++ oo. This boundary condition
determines the analytic continuation of the remaining ma-
trix elements of the transformation operator which were
not determined by the boundary condition which was im-
posed in the case of the trajectory. Combining both cases,
we are able to determine every matrix element of the
transformation operator. The form of the transformation
operator obtained by this method coincides with the one
obtained by the use of the is rule, at least in the lowest-
order approximation from the perturbation analysis. Ap-
plying this transformation operator to the Liouville equa-
tio'n, we will derive correctly the same kinetic equation for
Chirikov s diffusion process which was obtained by the
asymptotic perturbation theory in the previous paper. '

An interesting observation of our result is that because
of the second boundary condition, the generating function
of the transformation operator does not reduce to a single
function, in contrast to the ordinary canonical transfor-
mation. Owing to this fact, the transformation operator
is not a unitary operator, but a "star™unitary" operator,
the concept of which was introduced by Prigogine et al.
to discuss the origin of irreversibility for infinitely large
conservative systems.

We further note that if the transformation operator acts
on the distribution function of the trajectory, then we can
neglect the contribution from the matrix elements ob-
tained from the second boundary condition. This means
we cannot distinguish our transformation operator from
the ordinary unitary operator in the evolution of the tra-
jectory. In this sense, the reversible evolution of the tra-
jectory does not contradict the irreversible evolution of the
ensemble of the system. Because infinitely many homo-
clinic points are distributed in a very complicated fashion
around the hyperbolic fixed point, it seems to us almost
impossible to construct a distribution function which does
not have the 6-function singularity, except for a prepara-
tion with infinite accuracy such as the distribution func-
tion for a single trajectory.

In our formulation, the existence of the homoclinic
point is essential to obtain the irreversible kinetic equa-
tion. On the other hand, the existence of the homoclinic
point in nonlinear Hamiltonian systems with a few de-
grees of freedom implies that the system is noninte-
grable. ' ' In the last section, we will show by construct-
ing the Melnikov function' ' that Prigogine s dissipativi-
ty condition is equivalent to the nonintegrability condition
in the nonlinear system which we address in this paper.
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II. CANONICAL TRANSFORMATION OPERATOR

The Lie derivative Lz generated by a function F(q, p)
is defined by its action on an arbitrary function f (q, p)
such that

LFf =i IF,f I (2.1)

where q=(q), q2, . . . , q~), p=(p),p2, . . . ,p~), and IFf]
is the Poisson bracket of F and f. In a phase space of di-
mension 2N,

LF ——i
a

Gp; Bq;
(2.2)

Suppose that F also depends on some parameter g (such
as a coupling constant) so that F=F(q,p;g). Then the
canonical transformation operator AF which gives
(q, p) =-(Q,P) by Q=A~q and P=A+p is defined as a
solution of the operator equation"

F(q p'g) = g g F +1(q p)
n=0

(2.10)

H(p;g)= g g"H„(p) .
n=p

Then, Eqs. (2.7) give

(2.1 1)

AP ——1+igL ) + ,
'
g [(iL—)) +iL 2]+ (2.12a)

A~'=1 igL, +——,'g [( iL)) ——iL2]+, (2.12b)

where 6k=6k]„Akz, . . . , Ak&, k;=n; Ak; with integer
n; and k q=k&q&+kzqz+ +k~q~. In other words,
we have assumed that the perturbation depends periodi-
cally on q; with period 2vrlb, k; for i =1, . . . , N. The
period generally depends on the momentum p, and that
some of the periods can become infinite for certain values
of p. We further assume that the coupling constant g is
very small so that we can expand I' and H in power series

OAF—i =LFAF
Bg

(2.3) where L
&

——LF, L z
——LF, etc. Substituting Eqs.

(2.10)—(2.12) into (2.8), we obtain
with the initial condition

Ap(g =0)=1 . (2.4)
—iL (Hp+ V=H),

(2.13)

The inverse operator AF satisfies the equation

i =AF LF
Bg

with

AF '(g =0)=1 .

Equations (2.3) and (2.5) have the formal solutions

AF=1+i
0 dgi L~(gi)

+~ JO dgl Jo dg2 LI'(gI )LF(g2)+

AF
' ——1 i f dg)—Lp(g()

+( ~) fo dgl Jo dg2LF(gl )LF(g2)+

(2 5)

(2.6)

(2.7a)

(2.7b)

—iL 2HO+ —,[( iL ) ) H—o 2iL ) V]—=2H2,

f(q)=(q f) . (2.14)

The momentum p is regarded as a parameter. Then, the
complete orthonormal basis of the Fourier expansion in
Eq. (2.9) is represented by

~k ik q (2.15)

and so on.
Because the above formalism and the following argu-

ment for the time evolution of the Liouville equation have
a close analogy with the formulation of quantum mechan-
ics, it is convenient to introduce a "Dirac bra-ket" nota-
tion. In this notation, any periodic function of q is
represented as an inner product of abstract bra and ket
vectors in a Hilbert space

I.et us now specify the generating function I' such that
the operator Az makes a given Hamiltonian H(q, p;g) cy-
clic in the form

The complete orthonormality is expressed in terms of the
projection operator Pq =

~

k) (k
~

as

AF 'H(q, p;g)=H(p;g) . (2.8)

We assume that the Hamiltonian H consists of the unper-
turbed part Hp and the perturbation g V of the form

gPg ——1,
k

~k~k' +k~k, k' ~

(2.16a)

(2.16b)

H(q p g)=Ho(p)+gv(q p)

=Ho(p)+g hk g Vl, (p)e' '~, (2.9)

where 6k k ——5~ ~, 5~ ~, X . X6~
1~ 1 2~ 2 N~ N

The matrix element of the Lie derivative is introduced
by

m /hk )
n./hkN

F~ & J—xal q' f z~a q~ F (2.17)
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Let us assume that the generating function F is expanded
as a Fourier series

F(q, p)=6k g'F(, (p)e'"'q,
k

(2.18)

where the prime on the summation sign stands for k&0.
Then, we have

& k
~
LF

~

k'& =&t((,k —Fg (, (k —k').
Bp

a. ~+
Bp

V'b, k, (2.19)

i V(, (p)
k'N

(2.21)

where k a) =k)~)+k2co2+ +k~co~ and
to; =BHo/Bp;. Similarly we can solve the second equation
in Eq. (2.13) and higher-order equations for F~„(p) and

H„(p), step by step, and obtain

where k.(B/Bp) =k(asap, +k,avdp, + +k„ay(3p„.
We now apply the Dirac notation to solve Eq. (2.13).

From the first equation we obtain

—i &k IL(10&&0 I
Ho&+&k

I

V&=&k IH( &ho (220)

where &0
~

Ho & =(2m) (hk) ' Ho(p) and &k
~

V&
=(2m. )

~ (hk)' V(,(p). For k=0, the first term in the
left-hand side of Eq. (2.20) vanishes and we obtain
&0

~
H( &= &0

~
V&, i.e., H((p)=5k Vo(p), this being

called the secular term of the Hamiltonian. For k&0, we
have

the new perturbation. We assume that the spectrum of k2
is discrete in the domain of phase space in which we are
interested, while k~ has a continuous spectrum in the lim-
it of p(~p», where p,„ is a certain value of momentum
in the domain. In Sec. IV we will show by specific exam-
ples that if there is a separatrix which comes from and
goes to a hyperbolic fixed point in the phase space of the
unperturbed system, then the spectrum becomes continu-
ous in suitable canonical variables at the separatrix. In
the limit of the continuous spectrum, i.e., b,k(~0, the
Fourier series with respect to k~ reduces to a Fourier in-
tegral.

Let us consider the time evolution of the system. The
evolution is governed by the Liouville equation

. a
i p(q, p, t)=LHp(q, p, t) .

at
(3.1)

Here p is the distribution function of the ensemble of the
system in phase space, and LH is called the Liouvillian,
which is defined as a Lie derivative generated by the
Hamiltonian. Corresponding to the decomposition of the
Hamiltonian, the Liouvillian is decomposed into two
parts, the unperturbed Liouvillian and the perturbation:

La =L o+S &L (3.2)

where Lo LH and——5L =Ly. Because Lo —— iso ()—/q is

simply the derivative operator, it is clear that the com-
plete orthonormal basis of the Fourier expansion Eq.
(2.15) is just the eigenfunction of Lo with the periodic
boundary condition belonging to the eigenvalue k.m. In
the bra-ket notation, it is represented in terms of the pro-
jection operator by

2 „ap (2.22a) LoPk = (k'co )Pg (3.3)

F~2(p) =
k co

a .k'
ap

Ak Vk

V„, a(ak V„)
(k —k').

(k —k') co Bp

p=9'p .
at

(3.4)

Our interest is in how the Liouville equation, Eq. (3.1)
is transformed by the operator AF defined in Eq. (2.8).
To consider this problem, we introduce new notations
p=A+'p and y=Az'LHA~. Then, we obtain from Eq.
(3.1)

(2.22b)

and so on. Note that there appear the so-called small
denominators (k o3) in the solutions. Thus, the above
solutions are still formal and not well defined at this

stage. In the next section we will show that if sotne of the
Fourier spectrum is continuous, then the solutions become
well defined by a suitable analytic continuation of k to the
complex plane.

III. TRANSFORMATION OPERATOR
W'ITH CONTINUOUS SPECTRUM

In order to make our argument transparent without us-
ing intricate notation, we hereafter restrict the number of
degrees of freedom to N =2. Extension to arbitrary X is
straightforward. For convenience in the following argu-
ment, we redefine the unperturbed Hamiltonian in Eq.
(2.10) to include the secular term so that gVo ——0 holds in

b,k ~ ~( )
i(q qo)'k2~ p —poe

(2m)
(3.5)

In this case the Fourier component with k&
——0 has the

same order of magnitude as the component having k(&0.
Therefore, in the limit of the continuous spectrum

The evolution operator y is called the "collision opera-
tor." We construct y by using the perturbation expansion
for F which is given in Eq. (2.10). To talk about the evo-
lution, however, we must distinguish between two ex-
tremely different cases: one is the evolution of the trajec-
tory and another is the evolution of the distribution func-
tion which has the 6-function singularity in the Fourier
representation k ~ at the initial time t =0.

For the first case, i.e., the trajectory, the distribution
function is given by

P(P q 0)=@q—qo»(p —Po)
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Ak~~0, we can neglect the contribution from the com-
ponent having k

&

——0 to the integration of k &.

For the second case, the distribution function is more
precisely defined by the Fourier expansion

hk
p(p, q, o)= g po ~ (p)

(2n. )

+~ki g Pk, , k (p)e
k)

(3.6)

k; Vg
p; =AF 'p; =p; —g b,k g' e' ' i . (3.7)

Since the Hamiltonian is cyclic in the new representation,
the solution of p;(t) and q;(r) is given in this approxima-
tion by p;(t)=const and q;(t)=co;t+qo;. Substituting
them in Eq. (3.7), we obtain the solution for p; (t). This
solution is, however, still formal, because Eq. (3.7) in-
cludes the small denominator. Note that if we take the
continuous limit Ak~~O, then the second term in the
right-hand side reduces to the following type of the Cau-
chy integral which is evaluated on the real z axis,

Here po i, stands for the component having k i ——0 and

pi, i, for the component having k i &0. We assume that

po i, and pi, i, have finite values in the limit of b,kiddo.
That is, the distribution function has the 5(ki) singularity
in the Fourier integral of ki. Note that the Fourier com-
ponent having ki ——0 is 1/b.ki times larger than the one
having k i&0. Therefore, po i, plays a distinctive role in

this case, in contrast to the case of the trajectory. The im-
portance of the existence of the 5-function singularity to
obtain irreversible kinetic equations for systems with an
infinite number of degrees of freedom was first pointed
out by Prigogine and Balescu. We will discuss the physi-
cal meaning of the 5-function singularity in more detail in
Sec. V.

Let us first consider the case of the trajectory. In the
lowest-order approximation of g the old momentum p;
(i = 1,2) is related to the new canonical variables (q, p) by

boundary condition to determine the Riemann sheet of the
analytic continuation of k~ to evaluate the value of Eq.
(3.7). To do it, we notice that the above argument has a
close analogy with scattering theory in quantum rnechan-
ics when we distinguish between the incoming plane wave
and the outgoing plane wave. ' By analogy, we impose
the boundary condition that the perturbed solution p&(t)
in Eq. (3.7) reduces to the unperturbed solution pi in the
limit of t~ —oo. Then, we obtain the solution

()— — hkgf dk
k co —lE,

2

(3.9)

where c is a positive infinitesimal. The corresponding
generating function is given by

+~ iVi (p)
Fi+(q, p)=bk2 g f dk& e' 'i .

k co —lE
2

(3.10)

(o,k, ~P(r))
. a
at

(0&k2 AF LHAF
~

0 k2, ) (O, kp
~
P(&) ) . (3.1 1)

The matrix element in Eq. (3.11) is given in the lowest-
order approximation by

In Sec. IV we will apply the above boundary condition to
specific nonlinear systems with a hyperbolic fixed point.
Then we will show that Eq. (3.9) is the solution on the un-
stable manifold. Similarly, if we impose the boundary
condition such that p &(t)~p& in the limit t~+ oo, then
we obtain the solution p i (t) on the stable manifold and
the generating function Fi (q, p) which has the same
form as p i+ and F,+ except that E is replaced by —e.

Next we consider the case of the distribution function
Eq. (3.6) which has the 5-function singularity. We first
consider the time evolution of the component pak . Be-
cause the Hamiltonian is cyclic in the new representation,
the evolution operator y is commutable with the projec-
tion operator I'q. This implies that po k obeys the closed

equation

@(z)= f dx (3.8)

As discussed in detail by Balescu, if the function f(x)
satisfies suitable analytic conditions, which we assume to
be satisfied in our case, then the Cauchy integral is well
defined but has finite discontinuities on the real axis of z.
This means that the solution of Eq. (3.7) is well defined in
the continuous limit Ak~~O, but we need a physical

(Oyk2 AF 'LHAF
~

o,k2)

=g2(o, k2
~ y2 ~

O, k2)

=g (O, k2
~
[( iL j)5L+LiLOL—i

+5L(+iLi)]
~

O, k2),
where

(3.12)

(O, k, ~( —iI. , )5L, ~O, k, )=v'ak g
k'

k2 ~~,—~.(k2 —k')
Bp (k2 —k') c0 BP2 (k2 —k') c0

X —Vi, g (k' —k2) + k2 Vi,
~P ~72

(3.13)
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and so on, where we have used the notation kq for the vec-
tor (0, kz).

For sufficiently small Ak~, we can replace the summa-
tion of k& by the integration, and we obtain the Cauchy
integral once again. In order to determine the branch of
analytic continuation, we impose the physical boundary
condition that the distribution function pp k approaches
the steady solution in the limit of t~+ oo. In other
words, we impose the condition that the Hermitian part of
the collision operator (kz

I ipse I
ki & is non-negative in the

Hilbert. space defined by phase functions with the periodic
boundary condition for q. For a given analytic continua-
tion, this condition is tested in a way similar to the proof
of the H theorem in the kinetic equation of an infinitely
large system. Then we see that this condition uniquely
determines the analytic continuation of the matrix ele-
ment of AF which is put between the states

I
kz& and

I

k'
& in the lowest-order approximation

( k,
I
A~

I

k &=ig(kp
I

L i k'&,

(k
I
A~

I
kq&=ig(k

I
Li~ I

kp& .

(3.14a)

(3.14b)

«
I
A~ Ik'& =i«k ILi+ Ik'& (3.14c)

An interesting observation of the results Eqs. (3.14) is
that the generating function of the transformation opera-
tor AF does not reduce to a single function Fi+ because
of Eq. (3.14a). Owing to this fact, AF is not a unitary
operator, but a star-unitary operator, i.e.,

A~(L~ ) =A~ '( LH ), — (3.15)

where AF stands for the Hermitian conjugate of AF. The
concept of the star-unitarity operator was introduced by
Prigogine et al. to discuss the origin of irreversibility for
infinitely large conservative systems. The nonunitarity is
essential to discuss irreversible evolution for the distribu-
tion function which has the 6-function singularity. Note,
however, that if the transformation operator AF acts on
the distribution function of the trajectory, then we can
neglect the contribution from the matrix elements in Eqs.
(3.14a) and (3.14b), so that we cannot distinguish the
above operator AF from the unitary operator Az which

consists of a single generating function F+. This implies
that if we observe time evolution of the trajectory, then we
cannot see any irreversibility, while if we observe time
evolution of the ensemble with the 5-function singularity,
then we can see it in the same system. In this sense, we
have a compatibility of the irreversibility with the reversi-
bility in the nonlinear Hamiltonian system.

Here Li~ is the Lie derivatives generated by Fi+(p, q)
which have been defined in Eq. (3.10) and following.

To complete the form of the operator AF, we must also
determine the analytic continuation of the matrix element
(k

I
AF

I

k'& for ki&0 and k'»0. For this element, we
impose the boundary condition that if the collision opera-
tor ( k

I yz I
k & operates on the distribution function of the

trajectory corresponding to Eq. (3.5), then it gives an evo-
lution on the unstable manifold. Notice that for the case
of the trajectory, the matrix element Eq. (3.12) is ir-
relevant. Then we obtain from Eq. (3.10) that

From the transformation operator Eqs. (3.14) we can
explicitly construct the kinetic equation. For example, the
momentum distribution function which is just p&& o(p) in
Eq. (3.6) is governed by the diffusion equation for suffi-
ciently small Ak&,

a
pp 0(p, t)

Bt

lim =p —+i ir$(x),1 1

a~0+ X ~ jp
(3.17)

where P stands for the principal part thereof. Equation
(3.16) completely coincides with the equation for describ-
ing Chirikov's diffusion process in the stochastic layer
around the unperturbed separatrix, ' which has been ob-
tained based upon the different philosophy that we have
collected the most diverging terms in time in the limit of
trop and g —+0. Note that the right-hand side of Eq.
(3.16) is proportional to a small factor b,k. Hence, the
right-hand side has a contribution only for sufficiently
large time t, such as the effect of the cross section in the
scattering problem. '

IV. EXAMPLES OF THE SYSTEM

In this section we give two examples which reduce the
Hamiltonian Eq. (2.9) with continuous spectrum in cer-
tain canonical variables. The first example is a system
with a double-well potential and the second is a nonlinear
pendulum. Both are coupled with a linear spring.

For the first example, the Hamiltonian is given by

H(x, y;g) =Ho(x, y)+gV(x),
where Ho ——H~+H2 with

X X
H j

—— — +, H2 ——u2y2,2 2 4 '

(4.1)

(4.2)

and

2
g P = ——,gX (COSX2 (4.3)

and y; is a generalized momentum which is a canonical
conjugate to x;. The unperturbed system with H& has a
hyperbolic fixed point at the origin and two elliptic fixed
points at (+1,0) in the phase space of (xi,yi). The energy
on the separatrix is H~ ——0.

In order to reduce the Hamiltonian equation (4.1) to the
form of Eq. (2.9) we introduce new canonical variables
(qi,pi) in which the Hamiltonian FIi becomes cyclic in
the form

Hi ———,(pi —1) . (4 4)

The new variables are given by the following canonical
transformations.

=erg g kb, k
I

Vi,
I

5(k a))k b, kp() p(p, t) .
Bp Bp

(3.16)

Here we have used the Plomelj formula
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V'2(1+1 i )
q1,c

2p1
y1 =+ sn

V'1+pi

+2(1+pi )

P1

+cn
P1

q1,C

(ii) For pi ——1 (at the separatrix),

x i ——+~2 sech(2q i ),

y i ——+V 2 tanh(2q i )sech(2q, ) .

(i) For 0&pi &1,

+2(1+pi )
x, =++l+p, dn

P1
(4.5a)

(4.5b)

where c in Eq. (4.5a) and c ' in Eq. (4.5c) are the squares
of the moduli of the Jacobi elliptic functions' defined by

2p jc=
1+p1

(4.6)

H= —.(Pi —1)+ ipz+gU(rIi Pi)cos~»2

where

(4.7)

The signs in Eqs. (4.5a) and (4.5b) correspond to the
branches of the motion. Note that our canonical transfor-
mations are well defined and continuous at the separatrix
H1 ——0.

Applying the canonical transformation in Eq. (4.5) to
the Hamiltonian in Eq. (4.1) and putting qz ——xz, pz ——yz,
we obtain the new Hamiltonian

(iii) For p» 1,

2q1 1x, =Ql+p, cn

2q1 1 2
y i

———+pi (1+@i )sn, —dn
Pi ~ Pi

(4.5c)

V'2 —c——,dn 2q1,c, 0&p1 & 1
C

U(ei Zi) = '

—7cn 2q1
2 2—c

1/2
1 p1)1 .
C

The Fourier component of the interaction is given by

(4.8)

r

c E c
8V'2 —c p ' 4e2 —c sinh(kiIC'c/2V 2 —c )

c
8V'2 —c

Vc c' C k1E + %5k, 0—+, (1—5k, 0)
p c ' 4V2 —c sinh(k, IC' Vc/2V'2 —c ) '

(4.9)

X(&k, i+&k, i), pi » .

2mv'2 —c
0&p1 & 1Ec
1/2

27T 2 —c
K c , p1) 1

Here k1 ——n Ak1 with any integer n and

(4.10)

The unperturbed pendulum Hi has a hyperbolic fixed
point at (m, 0) and the elliptic fixed point at the origin of
phase space (x i,y i ). The energy on the separatrix is
Hi ——1. The canonical transformations are given by the
following.

(i) For pi ) 1 (rotation),

H(x, y; g) =Ho(x, y) +gV(x),

where Ho ——K1+K2 with

(4.11)

and K =K (c), E =E(c) are comp—lete elliptic integrals of
first and second kind with the square of the modulus c,
respectively. K' is the complementary complete elliptic
integral defined by X':IC (c') with c'—= 1 —c, and
IC =K(c '), E =E(c '), and so o—n.

The second example is a coupled nonlinear pendulum
with a linear spring, the Hamiltonian of which is given by

X1 q1 q1
sin =+sn, c, y1 ——+dn, c

2 2' ' 2'

(ii) For pi ——1 (at the separatrix),

q1
sin =+tanh, y1 ——+sech

2 2' 2

(iii) For 0 (p, & 1 (libration),

(4.14a)

(4.14b)

and

2 1Hi ——yi+ —,(1—cosxi), Hz ——cozy' (4.12)

Vc 1 Vc
sin =p1sn q1,—,y1 ——p1cn q1, —

g V= —cosx1cosx2g
2

(4.13) (4.14c)
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where c =1/pl. By putting q2
——x2, p2 ——y2, the Hamil-

tonian Eq. (4.11) becomes

U(qi pl}= '
2
—sn

2
,c, p] 01

(4.16)
H =p I +tp2pq+gu(q I,p I )cosq2, (4.15) pl 2

—sn 2 vc 1

2
«&p» &1.

where The Fourier component of the interaction is given by

~kk=
1~ 2

r

2. 1
2pI '

2p I ~

c k)E+ ——1 K 5kl, p+ h, (1—5kl.p) (5kz, l+5k2, 1)-, pi &1
smh 2kIK

1 kl~CE + 2
—C K 5k,p+ . (1—5k,p} '(5k, 1+5k,—1)~ 0(pl ( 1

sinh(2p I k IK' )

(4.17)

where kl ——n hk& with integer n and

(4.18)

—m. (x ~ & m. Then, the hyperbolic fixed point corre-
sponds to xl ——+m. By the canonical transformation Eq.
(4.14) the hyperbolic fixed point is mapped to
ql ——+2K(c) for c & 1. We first consider a special initial
distribution function which includes the hyperbolic fixed
point and is given by

Note that in the limit of the separatrix, i.e., p& —+ I, the
Fourier spectrum of kl becomes continuous, i.e., Ak ~

—+0,
for both cases of the example.

Let us now show that the solution given by Eq. (3.9}
corresponds in these examples to the trajectory on the un-
stable manifold. We first note that the generating func-
tion F,+ in Eq. (3.10) vanishes in the limit of t~ —oo.
Hence, in this asymptotic limit, we have p I+ —+pl ——1 and

q &+ ~col(t tp) where —tp is a constant. Substituting
these limiting values in the canonical transformations of
Eqs. (4.5b) and (4.14b), we see that the solutions approach
their hyperbolic fixed point in (x I,y I) space in the limit of
t~ —oo. This implies that the solution Eq. (3.9) is just
the solution on the unstable manifold. Sinularly, we can
prove that the solution pl and q~ generated by F&
corresponds to the trajectory on the stable manifold.

V. MEANING OF THE 5-FUNCTION SINGULARITY

In Sec. III we showed that the 5-function singularity is
essential for the irreversible kinetic equation Eq. (3.10) to
have a meaning in nonlinear systems which have a hyper-
bolic fixed point in phase space. In this section, we dis-
cuss the physical meaning of the 5-function singularity in
more detail.

Qur assertion is the following: If the initial distribution
function includes a homoclinic point with a finite rnea-
sure, such as the step function, then the distribution func-
tion has the 5-function singularity no matter how small
the measure is. Here the homoclinic point is defined as a
point of transverse intersection of the stable and unstable
manifolds in a Poincare surface of section.

To make our assertion clear, let us consider the example
of the nonlinear pendulum given in Eq. (4.7). The system
is periodic in xl, so that we restrict the domain of x, to

p(x, y) =C5[y ~+ —,
' (1—cosxl ) —pfp]5(y2 —p2p}

X [6(x& —x, )+B(xb —xl )], (5.1)

where P Ip, Pqp, x„and xb ( & x, ) are given constants, C is
a normalization constant which depends on x, and x~,
and 6(x) is the step function defined by

~( )
1, x)0
0, x&0. (5.2)

& [e(q, —q. }+e(qb—q, }], (5.3)

where q; (i =a, b) is given as the solution of Eq. (4.14)
with xl ——x;(i =a,b) and c =1/pip. In the continuous-
spectrum limit, i.e., plp~l, the domain of ql becomes
—oo (ql &+ oo. Thus, we can represent the step func-
tion in Eq. (5.3) by the Fourier integral, and obtain

p(q, p}=C5(p )
—1)5(pp —p2p)

+cc, 1 ik1(q1 —q )
eak

ik1(,q1 —qb )
e

kl +PE,
(5.4)

where c, is a positive infinitesimal. By applying the

In other words, the ensemble is restricted to the unper-
turbed energy surface, and the angle x, is distributed as
the step function around the hyperbolic fixed point. Be-
cause the effect of the perturbation is small around the
hyperbolic fixed point, we prepare the initial distribution
Eq. (5.1) near the hyperbolic point, i.e., x, =m and
xb — ~. In the n—ew representation (q, p), the distribution
function Eq. (5.1) is written as

p(q p)=C5(pf —pip)5(p2 —p~p)
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Plomelj formula Eq. (3.17), we can conclude that the dis-
tribution function Eq. (5.4) has the 5-function singularity
in the Fourier representation. An important observation '

of this example is that if the distribution function includes
the hyperbolic fixed point with a finite width in x l space,
then it has the 5-function singularity no matter how small
the width.

Let us now consider a more general distribution func-
tion with a finite measure which does not necessarily in-
clude the hyperbolic fixed point, but includes at least one
homoclinic point. This means that the ensemble contains
continuously distributed points on the unstable manifold
on both sides of the stable manifold. By the definition of
the homoclinic point, it approaches the hyperbolic fixed
point in the limit of t~+ ao. Therefore, because the un-
stable manifold intersects transversely with the stable
manifold at the homoclinic point, the ensemble will even-
tually distribute around the hyperbolic fixed point with a
finite width, no matter how small the initial width. Con-
sequently, the distribution function has the 5-function
singularity as we have asserted. Because infinitely many
homoclinic points are distributed in a very complicated
fashion around the hyperbolic fixed point (indeed they are
distributed as a Cantor set' ), it seems to us almost impos-
sible to construct a distribution function which does not
have the 5-function singularity, except for a preparation
with infinite accuracy such as the distribution function
for a single trajectory given in Eq. (3.5).

VI. DISCUSSION: IRREVERSIBILITY
AND NONINTEGRABILITY

(t, tp) =X l &(t —tp )yl+ (t tp )

y—„„(t t—,)x, (t, t, ) . (6.2)

Here (xl,„,yl,„) is the unperturbed solution on the separa-
trix and (xl+,y, +) are the perturbed solutions on the un-
stable manifold (+ ) and the stable manifold ( —), respec-
tively, which satisfies the condition

x l,~(0)[x l+ ( to, to ) —x l~~(0) ]

+yl, (0)[yl+(to tp) —yl. (o)]=o .

From Eqs. (6.1)—(6.3), we can easily obtain that

l
~(to to)

I
=t[x -(o)'+ly ~ (0))']'"

X ( [X 1+(tomato) Xl —(to~to)]

+ [y l (to to) —y - (t to) ]'] '" (6.4)

Therefore, the Melnikov function characterizes the dis-
tance between the unstable manifold and the stable mani-
fold. If the Melnikov function b(tp, to) is not identically
zero but oscillates around zero as a function of tp, then
the unstable manifold intersects transversely with the
stable manifold. Applying the perturbation expansion in
Eq. (6.2) such that 5+ bp+gb, l++g 52++—— . . around
the unperturbed solution on the separatrix, we obtain after
a simple manipulation that

gal+(t, tp)= jHO, H] „, (6 5)
In the preceding section we have shown that the irrever-

sible kinetic equation (3.16) has meaning when the system
has a homoclinic point. Ori the other hand, one can prove
by constructing Smale's horseshoe map' around the
homoclinic point that if the Hamiltonian system has a
homoclinic point, then the system is nonintegrable. ' ' In
the following argument, we discuss this relation in more
detail.

In the context of derivation of irreversible kinetic equa-
tions for infinitely large systems in nonequilibrium statis-
tical mechanics, Prigogine has summarized a dynamical
condition for irreversibility as the "dissipativity condi-
tion. " This condition states that if the collision operator
is not identically zero, theri the system has irreversibility.
In the following argument we will show that the dissipa-
tivity condition is equivalent to the condition of the ex-
istence of the homoclinic point in nonlinear systems with
two degrees of freedom which are coupled with a linear
system such as the examples in Sec. IV. In this sense,
Prigogine's dissipativity condition is equivalent to the
nonintegrability condition.

In the nonlinear system coupled with a linear system,
the criterion of the existence of the homoclinic point in
the Poincare surface of the section in (xl,yl) space is
given by the Melnikov function' ' 6(t, tp) defined by

where (, J,„stands for the Poisson bracket which is
evaluated along the unperturbed solution on the separa-
trix. Note that the right-hand side of Eq. (6.5) does not
depend on the representation, so we can calculate it in the
new representation (ql,pl) that makes the unperturbed
Hamiltonian cyclic. Then we obtain by the integration in
time with suitable boundary conditions that

~(t to)—-~01[Pl+(t to) —Pl —(t to)]

2~igcolhk g k—l Vl, 5(k to)e
k

(6.6)

~g g .k&k
~

Vl,
~

5(k to)k. b,k
0, 2

Bp

where qo~ = —~to, and we have used the perturbed solu-
tions with the summation sign which are given in Eq.
(3.9) and following. Note that the right-hand side of Eq.
(6.6) is independent of t in this approximation, so that it is
equal to b, (tp, tp). To see clearly the relation of the result
Eq. (6.6) to the collision operator, we change the variable
p in Eq. (3.16) such that rl ——pl and r2 ——Ho(pl, p2).
Then, we obtain for the collision operator that

6( t, tp) =bl (t, tp) —bl (t, tp)

where

(6 1)
=~g b,k g ~

k, Vl,
~

5(k tp) b,k . (6.7)
Br&
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Comparing this result with Eq. (6.6), it is clear that if and
only if the coefficient of Ak in the collision operator is
not identically zero, then the Melnikov function is not
identically zero. In this sense, the dissipativity condition
is equivalent to the condition of the existence of the
homoclinic point, i.e., the condition of the nonintegrabili-
ty.
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