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The scanning method proposed by us [J. Phys. A 15, L735 (1982); Macromolecules 18, 563 {1985)]
for simulation of polymer chains is further developed and applied, for the first time, to a model with
finite interactions. In addition to "importance sampling, " we remove the bias introduced by the
scanning method with a procedure suggested recently by Schmidt [Phys. Rev. Lett. 51, 2175
(1983)]; this procedure has the advantage of enabling one to estimate the statistical error. We find
these two procedures to be equally efficient. The model studied is an N-step random walk on a lat-

tice, in which a random walk i has a statistical weight p, where p & 1 is an attractive energy pa-
rameter and M; is the number of distinct sites visited by walk i. This model, which corresponds to a
model of random walks moving in a medium with randomly distributed static traps, has been solved
analytically for N~ oo for any dimension d by Donsker and Varadhan {DV) and by others. (M )
and 1nt)), where P is the survival probability in the trapping problem, diverge like X with
o'. =d/(0+2). Most numerical studies, however, have failed to reach the DV regime in which
d/(0+2) becomes a good approximation for o.. Qn the other hand, our results for o,'(obtained for
N & 150) are close to the DV values for p &0.7 and p &0.6 for d =2 and 3, respectively. This sug-
gests that the scanning method is more efficient than both the commonly used direct Monte Carlo
technique, and the Rosenbluth and Rosenbluth method [J.Chem. Phys. 23, 356 (1954)]. Our results
support the conclusion of Havlin et al. [Phys. Rev. Lett. 53, 407 (1984)] that the DV regime exists
already for P &10 ' for both d=2 and 3. We also find that at the percolation threshold p, the ex-
ponents for the end-to-end distance are small, but larger than zero, and that the probability of a
walk returning to the origin behaves approximately as N ' for both d =2 and 3.

I. INTRODUCTION

The scanning method is a computer simulation tech-
nique for polymer chains suggested recently by the au-
thor. ' So far the method has been applied only to
models with hard-core interaction, such as self-avoiding
walks (SAW's) on square and simple cubic lattices' and
many-chain systems. In this work the method is further
extended to simulate chain models with finite interac-
tions; we apply it to a model of self-attracting random
walks on a lattice, which will be described later on. With
the scanning method a SAW is constructed with a step-
by-step procedure, based on scanning at each step all the
possible continuations of the partial SAW in b "future"
steps (in practice, b & 10 for the square lattice' ). Obvi-
ously, for walks with finite interactions, as those studied
here, one should also take into account the Boltzmann
factor of each future continuation. In this way the local
environment of a step is taken into account exactly. Very
recently the method has been significantly improved by
taking into account approximately the remote environ-
ment of a step with the help of a mean fie1d parameter. It
should be pointed out that the scanning method generates
walks with a certain bias, which in principle can be re-
moved by employing "importance sampling"s' for very
large samples. However, no criterion has been provided
which enables one to determine the extent of convergence
for a practical sample size. In order to overcome this dif-

ficulty we employ here, in addition to importance sam-
pling, an alternative procedure, which enables one to ex-
tract from an originally biased sample of walks an effec-
tively smaller sample of unbiased ones, Thus, the aver-
ages, as well as their statistical errors, can be obtained
directly from the unbiased sample.

The model of interacting random walks studied here
has been recently investigated by Stanley et al. In this
model a random walk of X steps that has visited M dis-
tinct lattice sites has a statistical weight of
p =exp( —KM), where p is a parameter. For p =1
(K =0) the model corresponds to the purely random
walk. If p & 1 (K &0) walks that visit a new site at each
step are weighted most heavily and the walk is self-
repelling, becoming self-avoiding as p ~ oo. In the regime
p &1 (K &0) the walker prefers to return to previously
visited sites. This case, of self-attracting walks (p & 1), is
studied here.

The partition function Z (p & 1) has been solved
analytically for any dimension d, by Donsker and
-Varadhan (DV) in the limit of N~ co,

lim ln[(2d) Z] = —A [ln(p ')]z~'"+ 'N

a=d/(8+2) (1)

where A is a constant which depends on the lattice. It
should be pointed out that this model (p & 1) corresponds
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to a model of random walks, moving on a lattice with ran-
domly distributed static traps; for trap concentration 1 —p
the survival probability P (i.e., the average fraction of
walks which survive after N steps) equals (2d) Z(p) [Eq.
(1)] (see also Refs. 10—12). However, most numerical
studies of this model for d) 2 have failed to obtain the
DV asymptotic values of a, which has raised the question
of how large N must be for Eq. (1) to be a useful approxi-
mation' ' (the DV regime). Stanley et al. have em-
ployed series expansion techniques for the study of self-
attracting walks at the percolation thresholds p, of the
hypercubical lattices, 1(d (10. Their values for u, how-
ever, deviate significantly from the DV values, d/(d +2),
which is probably a consequence of using too-short series.
Fixman' and Klafter et al. ' (see also Ref. 16) investigat-
ed the trapping problem by computer simulation and con-
cluded that the DV regime is obtained for /&10 and
10 ', respectively. On the other hand, Havlin et al. , '
using their numerical techniques, have found a signifi-
cantly higher estimate, P & 10

These discrepancies have motivated us to apply the
scanning method to the model of self-attracting random
walks. In order to compare our results to those of Ref. 8,
we simulate walks on square and simple cubic lattices at
p, . We also study the model at p&p„which enables one
to compare the efficiency of the scanning method to that
of the other methods mentioned above. At p, we investi-
gate the behavior of quantities, which have not been stud-
ied analytically by DV, such as the end-to-end distance,
the radius of gyration, and the probability of a walk to re-
turn to the origin.

F =AK ' +"'N" ' + ' N ln(2—d) . (10)

This means that the entropy [the second term in Eq. (10)]
is extensive, whereas (M) (the first term), which plays
the role of energy, diverges with an exponent a
= d/(d +2) & 1. It should be pointed out that (M') [Eq.
(7)] can be obtained by taking l derivatives of F with
respect to the parameter —K =lnp; therefore /3=aI
=d/(d +2) for all l.

The second and fourth average moments of the end-to-
end distance R are

(R') =QP;R;, l =2,4 .

(R') is expected to scale with an exponent vI+, i.e.,

(Rl) N IR

Another quantity of interest is G;, the radius of gyration
of walk i, where

(M ) and (b, M) are expected to scale, with exponents
at and p, respectively,

(M') (7)

(a'M ) -Nt'.
The free energy (F) (in units of ksT, where T is the ab-
solute temperature) is given by

F = —1~=K(M& —&S) .

For N —+ oo, F can be obtained from Eq. (1) [using
p =exp( K)],—

II. THEORY N d
G; =(N+1) ' g g (rk r)—(13)

A. Thermodynamic and geometrical properties
of self-attracting walks

Assume a lattice of dimensionality d with coordination
number q (q =2d) and a random walk i of N steps, which
starts from the origin and visits M; distinct lattice sites.
If the interaction parameter for a distinct site visited is
p =exp( —K) the ensemble probability P; is

k =0m =1

In Eq. (13) rk and r are the coordinates of step k and of
the center of mass, respectively, where

N
r =(N+1) ' g rk (14)

k=0

We shall estimate (G') for l =2 and 4, where

P; =p '/Z =exp( KM;)IZ, —
where Z, the partition function, is

Z =+exp( —KMI) .

(2)

(3)

& G') =+P,G,'.
The (G') 's are expected to scale with exponents vIG,

( Gl) N IG

(15)

(16)

The entropy (S ) (in units of ks, where kz is the
Boltzmann constant) is

(S)= —+P, im, .
We shall also estimate P, the probability of a walk to re-
turn to the origin,

We shall be interested in (M ), the ensemble average of
M; and its l moments,

P =gP;l;, (17)

(M') =QP;M;, 1&l &4

and the fluctuation (b, M), where

&a'M) =(M') —&M&'.

where I; equals 1 or 0 according to whether walk i returns
or does not return to the origin, respectively. P is ex-
pected to scale with exponent y',

Po
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B. The scanning procedure

b —1

Zk(v, b)= g exp( —Kmj)
j=l

(19)

Let us construct a walk of N steps, which starts from
the origin of the coordinate system. The first step is
determined in one of the q directions with equal probabili-
ty 1/q. In the next steps of the process ( k & 1) the proba-
bility to select a direction v (v=1,2, . . . , q) becomes a
function of step k in the following way. Assume that we
are at the kth step of the process, i.e., k —1 directions of
the walk, v1, v2, . . . , vk 1, have already been determined
and we want to specify vk. For that let us first introduce
the notion of a future walk of b steps. This is a continua-
tion of the partial walk in the future, consisting of b steps
(i.e., k, k + 1, . . . , k +b —1) [more strictly, the number of
steps of a future walk is min(b, X —k + 1)]. It should be
pointed out that each direction v (v= l,q) at step k con-
stitutes an origin of q

' different future walks j, that
visit (together with v) mj new distinct sites. One can
therefore define a future partition function Zk(v, b),
where

outer (inner) part of the walk will generally lead to v x & 0
(&0), which means that for m &1 pk(v, b, m) will be
smaller (larger) than pk(v, b) [Eq. (20)]. Therefore, the
preference given by P;(b) to the open walks (mentioned in
Sec. IIB) weakens in P;(b, m) for m & 1, where

P;(b, )=q ' g pk( k, b, m) .
k=2

(23)

(M)b —QP, (b, m)M, , (25)

In other words, with the mean-field parameter the effect
of the remote steps from site k (in space) is taken into ac-
count approximately, in addition to the effect of the local
environment of step k, which is taken into account exact
ly by the scanning procedure. The effect of m & 1 is to
close the walk, i.e., to decrease its end-to-end distance and
the radius of gyration. We shall now describe criteria for
determining m', the optimal value of m. For that let us
define the free-energy functional (F)b

(F)b, =K(M)b,. (s),—. (24)

where (M)b, the average number of distinct sites visit-
ed, and the entropy functional (S)b are

and thereby define a transition probability pk(v, b) for
selecting a direction v, (S)b = —g P;(b, m)lnP;(b, m) . (26)

q

pk(v, b)=Zk(v, b) g Zk(v, b) .
v=1

(20)

Obviously Zk(v, b), as well as pk(v, b), depends on
v1, v2, . . .vk 1 and on the interaction parameter

p =exp( K). vk is —selected by a lottery according to the
pk's and the process continues. Once a walk i of X steps
has been constructed, one knows its construction probabil-
ity P;(b),

P (b) =q ' n pk( k»» (21)
k=2

which is the product of the X sequential transition proba-
bilities with which the directions v1,v2, . . . , vz have been
chosen. It should be pointed out that for practical values
of b ( b «X) P; (b) [Eq. (21)] always approximates the ex-
act probability P; [Eq. (2)] and one can show that it gives
preference (as compared to P;) to the noncompact (open)
walks. This bias however, can systematically be reduced
by increasing b and in fact for b =X —k+1 (which
means that the whole future is taken into account at each
step k), P;(b) becomes equal to P; (see Ref. 3). However,
increasing b is not practical and therefore we shall intro-
duce now a "mean-field" parameter, which improves
P;(b) almost without further expenditure of computer
time.

C. The mean-field parameter

One can incorporate a mean-field parameter m in the
transition probability [Eq. (20)] in the following way:

pk(v, b, m) =Zk(v, b)m g Zk(v, b)m "'" . (22)

In this equation v is a unit vector in direction v and x
[=x(k)] is a unit vector, which points from the center of
mass of the partial walk (of k —1 steps) towards step
k —1. Clearly, a direction v, which points towards the

Obviously, (F)b ~ is never smaller than the true free en-

ergy (F) [Eq. (9)] but can be minimized with respect to
m, at m =m*, to give the best approximation for (F).
m ' can also be defined by the criterion of minimum fluc-
tuation b,F(b, m ),' where

1/2
bF(b, m)= gP;(b, m)[(F)t, (KM;+lnP—;(b,m)]

(27)
This fluctuation, which vanishes for the true free energy
[Eq. (9)], is expected to decrease with improving
P, (b, m)."

It should be emphasized that, since for a practical value
of b P;(b, m) is always approximate, any statistical aver-
age ( V)q

( V)b ~ ——gP;(b, m)V;, (28)
l

of a random variable V~ will always be biased. ( V)b
can be estimated by V(b, m) from a sample of n walks,
generated with P;(b, m)

V(b, m)=n ' g V;~,~, (29)
s=1

where i (t) is walk i obtained at time t of the process. We
shall describe now two methods for removing this bias,
importance sampling ' and a generalized Metropolis
Monte Carlo procedure, ' suggested by Schmidt, which
enables one to extract an unbiased sample from a biased
one.

D. Importance sampling

The exact statistical average (V) of V; can be ex-
pressed as a ratio of two statistical averages with the prob-
ability P;(b, m) [Eq. (23)],
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( V) =g P; V; =g exp( K—M; ) V; g exp( —KM, )

=gP;(b, m)[exp( K—M;)V P; '{b,m)] gP;(b, m)[exp{ K—M;)P; '(b, m)] .

The expressions in the brackets can be considered as ran-
dom variables and therefore an estimation V&s of V
[where walks are selected with P;(b, m), see Eq. (28)] is

Vts = g exp( —KM~(, )) V~(, )

&(P;(,) (b, m) g exp( —KM;(,))P;(,) (b, m),

(31)

where IS denotes importance sampling.
In particular, the free energy and the entropy are es-

timated by FIs and SIs, respectively, where

Fts ———ln n ' g exp( —KM;(, ))P;(,) (b, m)
&=1

(32)

Sis ———Fis +%Mrs (33)

Let us now discuss the efficiency of the importance
sampling procedure. It should first be stressed that for an
infinite sample, V&s [Eq. (31)] will be equal to ( V) even
for b =1 and m =1 (in contrast to V(b, m) [Eq. (29)],
which is always biased). However, for a finite sample size
n the extent of convergence of V&s to ( V) is determined
by the standard deviations of the two averages defining
(V) [Eq. (30)], which are functions of X, b, and m via
P; (b, m ). As b /X increases, P; (b, m *

)~P; and hence
these standard deviations become smaller. In other words,
in order to become a good estimation of ( V), the sample
generated with P; (b, m ") should contain a sufficiently
large number of the typical equilibrium walks (i.e., those
which are most probable with the exact probability P;
[Eq. (2)]). These walks, which are relatively improbable
with P;(b, m ), will dominate the summations defining
Vts by their large factors 1/P;(b, m *) (see Ref. 21 and a
discussion in Ref. 20).

It should be pointed out that the present procedure,
with b =1 only and without employing a mean-field pa-
rameter, was suggested long ago by Rosenbluth and
Rosenbluth [for self-avoiding walks (SAW's)]. ' Their
method (with b = 1) has been extended to self-interacting
SAW's (Refs. 22—24) and to adsorption problems by
Mazur, McCrackin, and Guttman. These authors have
also employed parameters (different from our mean-field
parameter), however, they have not provided a criterion
for optimizing their parameters.

To summarize, importance sampling, even though it
guarantees convergence for infinite samples, does not pro-
vide a criterion for estimating the extent of convergence
for a finite sample size n. This difficulty can partially be
solved by the generalized Monte Carlo procedure suggest-
ed by Schmidt that enables one to determine the number
of walks. in a biased sample which effectively contribute
to- the correct averages.

A,z
——min(1, TJ, PJ /T, zP; ), (34)

where P; is the ensemble probability [Eq. (2)]. Obviously,
this definition of A;J satisfies the detailed balance condi-
tion

TJI 3Jg PJ T7J A$JPI ~ (35)

If Tj'Pj then all the trial walks j become independent
of i and are always accepted. Similarity, one can sample
trial walks independently with an aproximate probability
such as P; ( b, m *). In this case, however, the acceptance
rate A is smaller than 1, where

n accepted /n total (36)

where n„p$ p is the numer of trial walks accepted and
n„„l is the total number of trial walks. Therefore, A is
expected to constitute a measure of the extent of approxi-
mation of P;(b, m*). As P;(b,m*)~P;, A is expected to
increase. The sample of accepted walks (AW's) obtained
by n iterations of the generalized MC process is unbiased
and therefore one can estimate ( V) [see Eq. (30)] from
this sample (denoted A) by VA [see Eq. (29)],

vA n
—' g—' v, (,),

t=1
(37)

where i (t) is walk i defined for iteration t and the prime
denotes summation over the unbiased sample. VA, in
contrast to V(b, m) [Eq. (29)], is unbiased. It should be
pointed out that, in contrast to importance sampling, with
the generalized Monte Carlo procedure the entropy can be
obtained only approximately, by estimating (S)A, where

(S)A ———gP;lnP;(b, m*) . (38)

This is because the value of the exact probability P; [Eq.
(2)] is unknown. The free energy (F)A is

E. Schmidt's generalized Monte Carlo procedure

Schmidt has recently suggested an approximate simu-
lation technique, based on renormalization-group ideas, in
which he interprets the configurations produced as trial
configurations in a generalized Metropolis Monte Carlo
procedure. ' This enables one to select from an original-
ly biased sample a partial equivalent sample of unbiased
configurations. Let us describe this procedure, as applied
to the present model of self-attracting walks. Assume
that 'walk i has been'obtained in the nth iteration of a
Monte Carlo procedure. To determine a walk for the
( n + 1)st iteration a trial walk j is first selected with prob-
ability TJ. j is accepted as the ( n + 1)st walk with proba-
bility 2;j; otherwise the current (nth) walk is kept for the
(n +1)st walk. In the usual Monte Carlo procedure T~/ is
taken to be a symmetric matrix. For a general stochastic
matrix T1 Schmidt .defines
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(F)„=re(M) —(S), . (39)

In order to compare our results to the series expansion
results of Ref. 8, we study the model of self-attracting
walks on square and simple cubic lattices at the percola-
tion threshold values p, =0.59277 (Ref. 27) and 0.3117
(Ref. 28), respectively. We also present results for (M)
and for the entropy (S) obtained at p&p, and p &1.
These results enable us to compare the efficiency of the
scanning method to that of the simulation technique em-
ployed by Zumofen, Blumen, and Klafter' '6 and by Fix-
man. ' Biased samples of walks have been generated with
the scanning method, using several values of the scanning
parameter b. The bias has been removed in two ways, by
importance sampling (see Sec. IID) and by defining un-
biased samples of AW's using Schmidt's procedure (see
Sec. IIE). In order to obtain the critical exponents with
sufficient accuracy it has been found necessary to generate
samples which consist, at least, of -20000 AW's. Such a
relatively large sample size has restricted us to study
walks of %&400 steps on the square lattice at p, . For
d =3, however, the interactions are significantly stronger
[since p, (d =3) &p, (d =2)] and hence the bias is stronger
too; for that reason the walks studied at p, are relatively
short, N(150. In order to determine m*, the optimal
value of the mean-field parameter, we have first generated
relatively small samples of walks for different values of m
and minimized (F)b ~ [Eq. (24)—(26)] with respect to m.
We have found that the minimal values of (F ) b ~ are ob-
tained if for the first 17 steps k, m is taken to be 1 and
m =m' only for k & 17. (This stems from the fact that
the global shape of a very short walk is not well defined. )

It should be pointed out that the introduction of the
mean-field parameter increases computer time by a factor
of —1.8 for b = 1. However, this factor decreases sharply
as b increases, since most of the computer time is then
spent on calculating the future walks.

In Table I results are presented for the free energy, its
fluctuation, the entropy, and the acceptance rate obtained
at p, . We also provide the number of AW's in the sample
and the average computer time t required to generate 1000
AW's. Each result in the table is an average of results ob-
tained for two samples, based on different random num-
ber sequences. For d =2 we employ b =1, 2, and 4
whereas for d =3 we utilize b =1, 2, and 3. The table re-
veals that m * & 1 always, which means that the effect of
m is to decrease the values of (M)b &, i.e., to form

The entropy (S)A is estimated by the S~,

S~———g'lnP;(, )(b, m*) . (40)
t=]

(S)~ always overestimates the true entropy (S ) [Eq. (4)];
this is proved rigorously in the theory section and in Refs.
24 and 25 of the following paper.

Finally, it should be pointed out that we use the number
of AW's, rather than the total number of walks in the
biased sample, as an effective sample size for the impor-
tance sampling averages. This number enables one to esti-
mate the statistical accuracy of the importance sampling
results.

III. RESULTS AND DISCUSSION

more-compact walks. The optimal mean-field parameter
m* turns out to be more effective (i.e., larger) as the ap-
proximation worsens (i.e., b /X decreases). For that
reason the values of m* are also significantly larger for
d =3 than for d =2 (see previous discussion in this sec-
tion). For each X the three results for the free energy
(F)&s [Eq. (32)] (for the different values of b), obtained
by importance sampling, are equal, in most cases, within
the statistical error. The same occurs with the results for
the entropy (S ) ts [Eq. (33)]. This indicates that the es-
timation of (F) t, and (S) ~s is statistically reliable. As
expected, the results for

~
(F),

~
[Eq. (24)] are always

smaller than those for
~
(F)ts (which we consider as the

exact values) and they improve (i.e., increase) with in-
creasing b. It should be pointed out that the deviation of
the results for (F)b, from the (correct) values of (F) &s

is not larger than 1.6% for d =2 but 1.5—4.5% for
d =3. This again reflects the fact that, for the values of b
studied, the results for d =2 are less biased then those for
d =3. Another measure of this bias is the fluctuation
EF(b, m*) [Eq. (27)], which, as expected, decreases as b
increases and has significantly larger values for d =3 than
for d =2. As is also expected (see Sec. IIE), the results
for (S )A are always larger than the correct values of
(S )&s, and they decrease with increasing b. For that
reason the results for

~
(F)~

~

always overestimate the
correct values of

~

(F ) ts
~

. The results for the acceptance
rate % [Eq. (36)] increase as the approximation improves.
The table reveals that, for d =2, A decreases from 0.636
for N =50 and b =4, to 0.008 for N =400 and b =1; as
expected, for d =3 the corresponding values of A are
smaller, decreasing from 0.345 (for % =50 and b =3) to
0.005 (for %=150 and b =1). The efficiency of the
simulation can be measured by the average computer time
t required to generate 1000 AW's. The table shows that
for d =2 and X =50, t(b =2)-t(b =1); these simula-
tions are significantly more efficient than those using
b =4, where t (b =4)/t(b = 1)-5. As % increases to 200
and 400, the ratio t(b =1)/t(b =2) increases to 1.11 and
2 whereas t(b =4)/t(b =1) decreases to 2.7 and 1.2,
respectively. A similar behavior is observed for d =3.
This means that to each value of N there corresponds an
optimal value b* which leads to the highest efficiency,
i.e., to the shortest time t; b* increases as N increases. It
should be pointed out that a similar conclusion has also
been drawn for the generation of self-avoiding walks, with
the scanning method. ' In order to compare between the
scanning method and the Rosenbluth and Rosenbluth
(RR) technique ' we have simulated on the simple cubic
lattice walks of N =100 steps using b =1 and m =1.
The table reveals that the value for

~
(F)»

~

is signifi-
cantly lower than that obtained for b = 1 and m =m"
(1.169 versus 1.226, respectively) and the fluctuation
bF(1, 1) is 2 times larger than that obtained for b = 1 and
m =m *. The acceptance rate for the RR simulation is 10
times lower than that obtained for b =1 and m =m',
and t(m =1)/t(m =m*)-8. The RR technique is
therefore significantly less efficient than the scanning
method.

Let us discuss now the results for F&s and S&s in more
detail. The table reveals that the results for Sts (which
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are in units of k&N) almost do not increase as N increases;
for d =2 and N =400 the value for (S)&s is —1.348 (ln
3.85), whereas for d =3 and N =150, (S)&s-1.600 (ln
4.95). These results, however, are smaller (by 3% and
1 l%%uo) than the corresponding DV asymptotic values [Eq.
(10)], ln(2d) —1.386 (ln4) and 1.792 (ln6), a fact that can
be accounted for on the basis of geometrical considera-
tions. The entropy can crudely be calculated from the to-
tal number of X-step random walks, which are limited to
(M) distinct sites; thus, each of the "surface" sites (in
contrast to the "inner" ones) contributes less degrees of
freedom to a random walk than the maximum value 2d,
yielding thereby lower results for the entropy. Obviously,
as N, and hence (M ), increases, the "surface to volume"
ratio decreases and (S )&s is therefore expected to ap-
proach the DV asymptotic value. For that reason (S),s
is also expected to increase as (M) increases as a result of
increasing the interaction parameter p. , The fact that
(M) is not an extensive variable requires that F~S as
X—+oc, which means that asymptotically F is only a
function of d. Stanley et al. , however, have found a
superuniversal behavior for F, i.e, that A, (p, )

=lim& ( —(F)/N)-ln3. 4 for all d (Ref. 8 mistakenly
gives the value of exp'). We argue that this discrepancy
stems from the fact that they have been extrapolated
series expansion data of too-short walks (N & 16), which
behave significantly different than the longer ones. To
show this we have simulated walks of X = 13 steps, which
have also been studied in Ref. 8 by series expansion. Our
results for N(F)qs are approximately equal to those ap-
pearing in Fig. 2(a) of Ref. 8; in particular, we obtain (as
in Ref. 8) that

~

(F(d =3)) &
~

(F(d =2)) ~, in con-
trast to the result

~

(F(d =3)) &
~

(F(d =2))
~

ob-
tained for the longer walks in Table I. The results for the
entropy per step are 1.35 and 1.63 for d =2 and 3, respec-
tively, which are very close to the corresponding values
obtained for the longer walks in Table I. However, the re-
sult for (M ) /N (which vanishes for N —+ oo) is relatively
large for N =13, (M)/N-0. 60 for both d =2 and 3.
This relatively large value of (M)/N for the shorter
walks leads to the family of lines (F(N) ) with the same
slope [Fig. 2(a) of Ref. 8]. In fact, for N =13 the slopes
can approximately be calculated from the expression
0.6K —(S ) /N which yields =1 and 0.93 for d =2 and 3,
respectively. Obviously, for larger N, (M)/N decreases
and (F(N) ) changes its behavior.

In Table II results obtained at p, are presented for (M )
[l = 1 and 2 only, see Eq. (5)]; the fluctuation (b, M ) [Eq.
(6)]; the radius of gyration (G') [l =2 and 4, Eqs.
(13)—(15)]; the end-to-end distance (RI) [l =2 and 4, see
Eq. (11)];and P, the probability of a walk to return to
the origin [Eq. (17)]. The results are weighted averages of
results obtained for six different samples: two samples,
based on different random number sequences, for each of
the three values of b. The weights have been determined
according to the number of AW's obtained in each sam-
ple. Each quantity has been estimated by importance
sampling and from the unbiased samples of AW's defined
with the generalized Monte Carlo procedure (Sec. IIE).
However, these last results are presented in the table only
for (M ), ( b, M ), and P . From this table, and other
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data not presented, it turns out that the results obtained
by the two methods are equal within the statistical error
and the errors themselves are approximately the same.
The results of Table II (and results for (M') using I =3
and 4, which do not appear in the table) are used to calcu-
late the various critical exponents, summarized in Table
III. It should first be pointed out that log-log plots of the
results of (M ) (Table II) versus N have always yielded
straight lines. For d =2 the results for aq —a4 [Eq. (7)]
are equal, within the statistical error, to a& ——0.533(6),
which is 6.6% above the DV result a=0.5 (the statistical
error is defined in the caption of Table I). For d =3
at ——0.584(5), which is 2.7% below the DV value a=0.6.
However, in this case only a2 is equal to ai whereas a3
and a4 are smaller. These results are significantly better
than those found in Ref. 8, i.e., that (M') -N ' where
a=0.6 for all d. Stanley et al. have also pointed out
that the data for (M) at P, lie on essentially the same
locus of points for all d. This is indeed satisfied approxi-
mately by our results for small values of N; however, for
larger N (M(d =3) ) ) (M (d =2) ) as one would expect.
The statistical error for the values of p [Eq. (8)] is signifi-
cantly larger than that observed for a. For a=2 the
value P=0.66(4) is significantly larger than the DV value
0.5. However, for d =3 the result p=0.61(6) is close to
the DV value 0.6.

At p, we have also obtained results for several critical
exponents, which have not been solved analytically. The
exponents vz [Eq. (12)] and vG [Eq. (16)], for the end-to-
end distance and the radius of gyration, respectively, are
very close to zero, which means that the shape of the walk
expands very slightly with increasing N. These results do
not agree with the preliminary results of Ref. 8, which re-
ports that the values of R appear to saturate at a finite
value. In this context it should be emphasized that in
some cases the results for the longest walks have deviated
from a straight log-log line (see Table III). These devia-
tions, however, have always been found to be in the direc-
tion which would increase the values of v~ and vG. It
should also be pointed out that for self-avoiding walks
(p = Oc ), as well as for a pure random walk (p =1), the
values of v for each d have been found to satisfy
v2~ ——v4~ ——v2G

——v4G. Our results, however, do not satis-
fy this relation; in particular, for d =2 the values of vG
are significantly larger than those for vz. We have also
estimated the exponent y [Eq. (18)] for P, the probability
of a walk to return to the origin. We obtain
y(d =2)=(d =3)=——,, within a relatively large statisti-
cal error.

Simulations have been also performed at P~p, for rela-
tively short walks (N(150), and results for (S)&s [Eq.
(33)], (M ) ts [Eqs. (5) and (31)], and the exponent u
( =ai) are presented in Table IV. However, these results,
in contrast to those of Tables I and II, are based on a sin-
gle sample and therefore the calculated statistical errors
are expected to underestimate the correct ones. The re-
sults for the entropy have been calculated for N =150 and
100 for d =2 and 3, respectively. These results monotoni-
cally approach (from below) the corresponding DV values
[ln(2d)], —1.386 and 1.792, as p increases. For p =0.8,
for example, the deviation is relatively small, only 2.2%
and 0.3% for d =2 and 3, respectively. Obviously, this
behavior is a consequence of the monotonic increase of
(M) as the attraction between steps weakens for P~l
(see preceding discussion). An opposite trend is observed
for the results of u, which approach the DV values as p is
decreased. For d =2 the deviation of our results from
a=0.5 increases from 2.8% for P =0.4 to 48% for
p =0.9. For d =3 and p =0.2—0.4 the results for a are
slightly smaller than 0.6 (by 2.2% for p =0.4), becoming
significantly greater than 0.6 for p =0.8 (deviation of
43%). This behavior is in accord with numerical studies
of random walks on lattices with randomly distributed
static traps, which have found that as the density of traps
(1—p) decreases, longer walks are required in order to
reach the DV regime. ' ' It should be pointed out, how-
ever, that this need to generate longer walks is compensat-
ed, to some extent, by the fact that the bias vanishes for
p~l, which means that smaller samples would be re-
quired with the scanning method. Indeed we have found
that larger values of p have always led to larger values of
the acceptance rate A [Eq. (36)]. For example, for d =3,
N =100 and b =2 we have obtained %=0.048 at
p, =0.31, as compared to W =0.71 at p =0.8.

Let us compare'now our results to results obtained for
the trapping problem with other numerical tech-
niques. "' ' Zumofen, Blumen, and Klafter' ' have
studied this problem using a direct (MC) technique in
which a sample of ¹tep random walks is initially gen-
erated on a lattice without traps; the effect of traps is tak-
en into account in the calculation of the averages by mul-
tiplying each term by P

' (1 —p is the trap concentration).
This method is expected to become inefficient for large X
since the typical size (M ) of a random walk on a lattice
without traps grows as —N/lnN and N for d =2. and 3,
respectively, whereas self-interacting walks are signifi-
cantly more compact since (M ) -N '"+ '. Therefore,
in the case of long walks one should simulate with the

TABLE III. Results for critical exponents of self-attracting walks at the percolation threshold p, . aI, / =1,4 are the exponents of
(M') [Eq. (7)]. p is the exponent of (5 M ) [Eq. (8)]; via and vIG, for / =2 and 4, are the exponents of the 1 moments of the end-to-
end distance [Eq. (12)] and the radius of gyration [Eq. (16)], respectively. y is the exponent of P, the probability for a walk to return
to the origin [Eq. (18)]. d and the statistical error are defined in the caption of Table I. The asterisk means that the result for the
longest walk in Table II is not taken into account in the calculation of the exponent.

0.533{6)
0.584(5)

0.530(8)
0.58(1)

0.527{8)
0.570(7)

0.523(8)
0.565(8)

0.66(4)
0.61{6)

0.145(5)*
0.08(1)

0.11(1)*

0.040(3)*
0.080(5)
0.035(15)

0.058(5)*
0.00(8)

—0.32(3)
—0.32(8)
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TABLE IV. Results for (M)qs [Eq. (5)] and its exponent a [Eq. (7)], and the entropy ($)qs [Eq.
(33)] obtained for several values of the interaction parameter p. Values of p, are taken from Refs, 27
and 28. N, d, and the statistical error are defined in the caption of Table I.

50
100
150

(s)„

p =0.4
14.03(1}
20.03(1}
24.7(2)
0.514(4)
1.305

p =0.5
15.79(1)
22.81(1)
28.31(3)
0.531(2)
1.324

d =2
p, =0.59277

0.533(6)
1.340

p =0.7
20.041(5)
30.143(6)
37.74(1)
0.579(1)
1.355

p =0.8

22.S87(S)
35.584(7)
45.55(2)
0.642(1)
1.367

p =0.9
25.248(1)
42.37(1)
56.753(1)
0.739(1)
1.382

50
70

100

&»rs

p =0.2
14.34(3)
17.33(8)
20.9(5)
0.54(4)
1.514

p, =0.3117

0.584(5)
1.586

p =0.4
20.250(3)
24.75(1)
30.40(2)
0.587(1)
1.640

p =0.6
27.153(1)
34.313(3)-
43.001(8)
0.665(1)
1.735

p =0.8
33.439(2)
44.754(4)
60.92(2)
0.860(1)
1.788

direct MC technique extremely large samples, otherwise
the values of a are expected to overestimate the correct
ones. Obviously, this technique differs from the scanning
method which, by taking into account the attraction be-
tween steps, gives a strong preference for generating the
most probable compact walks. Also, with the scanning
method the statistical accuracy can be estimated from the
acceptance rate (see Sec. II) whereas no similar criterion is
known to exist for the direct MC technique. For d =2
Klafter et al. ' have studied walks of up to X =10 steps
on the square lattice for several values of the trap concen-
tration (1—p) from 0.005 to 0.3. However, in spite of
this relatively large N, the corresponding results for u
(0.69—0.86) are significantly larger than the DV value 0.5;
this has led them to the conclusion that the regime in
which the DV value [Eq. (1)] becomes a good approxima-
tion is obtained for survival probability P & 10 ', a value
which is too small to be detected experimentally. Howev-
er, our results show that this value is probably an underes-
timation: at p =0.7 Klafter et al. ' have obtained
a=0.69, whereas we have obtained, already from very
short walks (N & 150), a significantly lower estimate,
a=0.573. This suggests that the relatively large values of
a obtained in Ref. 15 are, at least partially, a consequence
of employing two-small samples and not only a result of
studying insufficiently long walks. Indeed, Havlin
et a/. ,

' who have employed their own numerical tech-
niques, have estimated, for both d =2 and 3, that the DV
regime exists already for /&10 ' . It should be pointed
out, however, that this conclusion is based on calculations
carried out only in the extreme regions of very low and
very high trap concentration. They have also shown'
that for both d =2 and 3, P scales nicely as a function of
p=[ln(p ')] ' +"'K" '"+ ' for p) 10, which is in accord
with the conclusion (see Refs. 15 and 16) that as p in-
creases longer walks are required in order to reach the DV
regime. The direct MC technique' ' turns out. to be rel-
atively inefficient for d =3, where calculations of Zu-
mofen and Blumen' did not show a significant deviation
from exponential decay and those carried out by Fixman

have led to the conclusion that the DV regime is obtained
only for P & 10 . On the other hand, our results for a
in .the range p =0.2—0.6 (Table IV) are already close to
the DV value 0.60 for X & 100. This agrees with the scal-
ing result of Havlin et al. ,

' which for p&10 and p =0.4
yields N) 115. A similar agreement between our results
and those of Ref. 17 is also found for d =2. This sup-
ports the conjecture of Havlin et al. that the condition

p & 10 defines the DV regime for all values of p.

IV. SUMMARY

In this work the scanning method has been applied, for
the first time, to a chain model with finite interactions.
We study self-attracting random walks on a square and
simple cubic lattices, which correspond to a model of ran-
'dom walks moving on a lattice, with randomly distributed
static traps. The free energy of the self-attracting walks
(which is related to the survival probability in the trap-
ping problem) has been solved analytically for large X by
Donsker and Varadhan and by others. ' ' However, the
question has been raised as to how long the walks should
be (or how small P should be) in order that the DV results
become a good approximation (the DV regime). We study
this problem by the scanning method.

The scanning method generates chains with a certain
bias, which so far has been removed by importance sam-
pling; in this paper we have also tested an alternative pro-
cedure, suggested by Schmidt, which enables one to select
from a biased sample an equivalent partial sample of un
biased walks. The acceptance rate A of the unbiased
A%'s is expected to constitute a measure of the bias and
indeed it has been always found to increase (towards 1) as
the bias has been decreased by increasing the scanning pa-
rameter b. Also, the averages obtained from the unbiased
samples have been found to be equal, within the statistical
error, to those obtained with importance sampling. How-
ever, with importance sampling, the entropy and hence
the free energy can, in principle, be obtained exactly
whereas from the unbiased samples they can be estimated
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only with a certain approximation. We have found that
to each value of chain length X there corresponds an op-
timal value b* which leads to the highest efficiency; b*
increases with increasing X. The Rosenbluth and Rosen-.
bluth simulation procedure ' (i.e, b =1 and m =1) turns
out to be significantly less efficient than the scanning
method.

At the percolation threshold p, our results for o, deviate
by -6% from the DV asymptotic values. The probabili-
ty for a walk to return to the origin leads to the exponent
y= ——,

' for d =2 and 3 and the exponents for the end-

to-end distance and the radius of gyration are very small,
but still larger than zero for both d =2 and 3; these three
quantities have not been studied by other techniques.

Calculations at p&p, for relatively short walks show

that the entropy approaches the DV value ln(2d) (from
below) as the interaction parameter p increases. The
values of o;, on the other hand, increase monotonically to
1 as p~1, which means that longer walks should be stud-
ied in order to reach the DV regime. Our results are
closer to the DV values than results obtained by Klafter
et al. ,

' which suggests that the scanning method is more
efficient than their direct Monte Carlo technique. Our
calculations support the conclusion of Havlin et al. ' that
the DV regime is reached for survival probability
P & 10 ', for both d =2 and 3.
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