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The emission of radiation from a spatially extended amplifying medium is shown to exhibit new
coherence effects when the medium is modeled by inverted atoms which possess a degeneracy allow-
ing Q(J) transitions. In particular, it is predicted that media of this type for which J=2 can emit
leading pulses which are doubly peaked or asymmetric within both the regimes of superfluorescence
and oscillating fluorescence. Dissipative processes can radically alter the character of the emission;
an output consisting of two well-separated pulses appears feasible, but the precise behavior in the
present model depends upon the magnitude of the field losses and the initiation statistics.

I. INTRODUCTION

A number of effects appearing in the phenomenon of
self-induced transparency (SIT) have been attributed to
the presence of degeneracies. A degenerate transition gen-
erally can occur when several different two-level transi-
tions interact via a common radiation field in a coopera-
tive manner. Such processes can be “accidental,” but are
more often associated with the selection rules for an atom-
ic transition (e.g., as in F =2—F'=2 hyperfine degenera-
cies) or with a vibration-rotation transition in a molecule.
The coherent effects associated with the presence of these
degeneracies in an attenuating medium have been exten-
sively investigated both theoretically and experimental-
ly;' ! however, little attention has been directed to their
presence in amplifying situations hitherto, apart from
brief treatments of their expected consequences in super-
fluorescence (SF)!? and in swept-gain amplification.!*

In this paper attention will be directed to the problem
of cooperative emission from an initially inverted and spa-
tially extended medium which will be modeled by a collec-
tion of degenerate atoms allowing only the so-called Q (J)
transitions. Transitions with this symmetry possess dipole
matrix elements whose ratios are integers, which leads to
some interesting consequences. Our model requires that
the atoms be sufficiently close for cooperative effects to
occur and also that the active medium, assumed to take
the form of a rod of length L, be less than a certain
“cooperation length” L. =c(57g7g)!"? [rg=2Lc™! is
the round-trip time, and 7 = (2mu’nwoL#%~'c ~1)~!is the
superradiance time; wq is the atomic frequency, n is the
atomic number density, and the various dipole matrix ele-
ments are whole fractions of u]. In common with previ-
ous semiclassical treatments of SIT (Refs. 1—5 and 12)
and of SF (Refs. 15—24) it will be supposed that inhomo-
geneous broadening is absent and the resonance is exact
and furthermore that both the electric field and the mac-
roscopic polarization. may be described in the slowly-
varying-envelope and rotating-wave approximations, so
that the effects of the higher harmonics can be neglected.

The semiclassical equations coupling the field and
atomic variables in the theory of the two-way emission
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process from a rodlike medium of two-level atoms have
been derived from a two-mode ansatz by Saunders et al.?°
and suffice to describe the essentials of superradiant emis-
sion. Transverse spatial effects have been neglected, and
field losses have been simulated by incorporating a linear
loss term in the field amplitude equation. It has been
shown!®172526 that once a macroscopic dipole is estab-
lished, the influence of quantum and semiclassical noise
upon the dynamics is minimal and that the subsequent
processes are well described semiclassically. The deriva-
tion of the two-way Maxwell-Bloch equations as in Ref.
20 is readily extended to take into account the J-fold set
of polarization variables for a Q (J) degeneracy, leading to
the following equations of motion:

9E*  3E* + < +
——+—4+kLE*=a Y p;MP;, (1a)
aT — X ,-§1 o

apr*

a} =1’iEiNi—-%‘fm’zpifE ) (1b)
AN,

3T =—p(E*PT+E~P7)—7gy(1+N;), (1o
where E*(X,T) are the amplitudes of the oppositely
directed field envelopes, P/(X,T) are the corresponding
components of the macroscopic polarization, and N;(X,T)
are the inversions (X =x/L and T =ct/L are suitably
scaled space and time coordinates); a parameter of crucial
importance is az%TETEI, and the dipole matrix ratios
are p;=i/J, while the fractional numbers A; are the
weightings of each species of dipole initially. The homo-
geneous lifetimes of the atoms are y5 ' and y;'. Linear
damping of the amplitudes has been allowed for, but
phase effects have been disregarded.

A systematic investigation of Egs. (1a)—(1c) was under-
taken by numerical computation. The J =2 system, being
the simplest case, was chosen for extensive study in an at-
tempt to gain understanding of the physics as well as the
roles of the various parameters. Initiation of the radiant
emission was simulated by introducing tipping angles for
the collective Bloch vectors associated with each degen-
erate component, in line with some previous practice with
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simpler systems.?!=2* This can be justified if the mecha-
nism of the initiation process is considered to be subordi-
nate to the dynamics of the subsequent emission. Thus,
the important effects accompanying the degeneracy only
show up in the regime of nonlinear behavior. Essential in-
itial conditions in a semiclassical approach are

E*(X,00=0, 1—N;(X,0)=A;>0 )

while the boundary conditions are correspondingly
E*T(0,T)=E—(1,T)=0. (3)

As in the nondegenerate case, the magnitude of the pa-
rameter o determines whether the emission is superradi-
ant (a<<1, E¥«n) or steadily oscillating
(a>>1, E¥<n'’?) or somewhere between these two ex-
tremes. With a two-way process, and ignoring atomic
losses, we find from Egs. (la)—(lc) the constants of
motion

NP+ (P2 (P )=1,i=1,2,...,J. 4)

It therefore seems permissible to define two sets of “an-
gles” 0;(X,T) and p;(X,T) by the relations

sinp;
cosp; *

(5)

+ .
N;=coso;, P; =sino; X

The various Bloch angles o;, although different, are usu-
ally related to each other in SIT in a simple way. Thus
for SIT there is effective a single collective Bloch angle.
This is not necessarily true in SF emission with the identi-
cal degeneracies. In this model we have chosen the initial
conditions in Eq. (2) such that Aj=A,= - =A;(=A)
and will assume that A is independent of X throughout
the medium. The initial polarization envelopes are rough-
ly proportional to the tipping angles o;(X,0)~(2A)"2
Since p; =tan~!Y(P;* /P;"), the initial value for all p; is
w/4. When P;t>> P we expect that p;~m/2, and for
P/t << P~ we expect p; ~0.

II. INITIAL DEVELOPMENT

It is appropriate to discuss, and to justify the selection
of, the tipping angles used to initiate the evolution of the
collective Bloch vectors. This is particularly important
when an attempt is made to simulate superradiant emis-
sion initiated by quantum fluctuations, i.e., superfluores-
cence. Even where the initial state of an inverted system
has been carefully prepared (e.g., by injecting a coherent
pulse of known area at the transition wavelength immedi-
ately following inversion), random fluctuations may still
occur and need to be accounted for. The result of these
processes is that radiant emissions from apparently identi-
cally prepared samples may fluctuate significantly in
shape from shot to shot.

In the case of SF a common physical interpretation of
the tipping angle is that it simulates the effect of fluctua-
tions upon the average (mean-squared) Bloch angle, where
the averaging refers to many repeated experiments. Some
authors?’—2° have identified the fluctuations with an ini-
tial uncertainty in the atomic polarization, while other au-
thors3®—3* have identified them as zero-point fluctuations

of the initial vacuum field. These approaches correspond
to different mathematical techniques and are physically
equivalent. There is also an apparently semiclassical in-
terpretation of the initial tipping angle in SF.!6—1°

Regardless of the interpretation, Vrehen and Schuur-
mans have directly measured®* an effective initial tipping
angle in SF. In their experiment a small-area coherent
pulse at the SF wavelength was injected into a sample of
newly inverted cesium atoms. Both the delay and shape
of the output pulse were measured as functions of the
area. When the area exceeded a certain threshold, the de-
lay time was reduced. This threshold area agrees with a
value for the effective tipping angle of order 2/V'N (N
being the number of initially inverted atoms) as predicted
by theories of SF which allow for both quantum fluctua-
tions and propagation effects.

For SF with degenerate media, it may be assumed that
indirect inversion of the transitions of interest can be car-
ried out simultaneously. The additional assumption that
the tipping angles required to initiate the evolution are
dependent only upon N implies [for Q(J) transitions with
equal A; weightings] that these angles possess the same or-
der of magnitude. Also significant are some numerical
solutions of Egs. (la)—(1c) (see Sec. III) which indicate
that a Q(J)-degenerate medium, prepared with initial an-
gles 0,(X,0) differing by several orders of magnitude, will
evolve essentially like an identical system with each initial
set equal to the largest of the above o0;(X,0). This result
may be understood by considering a simplified model of
the emission which ignores the coupling between counter-
propagating waves; the limits of its validity have been set
out previously.?!=?* Ignoring polarization losses, we can
replace Egs. (1a)—(1c) with

dE OE J

3T —+ ax —l—KLE—aiglp[}\,iPi . (63)
0P _ EN (6b)
aT =pi i

ON; EP, 6c)
oT = —p;iLr; . (6¢c

These new equations correspond to setting E=E™,
P,=P;", and P =0 in the previous equations. Further-
more, the field amplitude is now simply E =p;,”'d0; /3T,
implying the following conservation identity for any pair
of Bloch angles 0,0;:

o (X, T) o0,X,T) 0(X,0) 0,(X,0)
P1 P2 N P1 P2 '

This identity has the obvious consequence that, whenever
G'i(X, T) >>0','(X70);

0‘1=(p1/p2)02+0[0,~(X,0)] .

Hence there are “preferred ratios” between the Bloch an-
gles, which are realized in the long-time evolution of the
system.

The transition to a dynamical state in which the Bloch
angles are locked together in fixed ratios must occur be-
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fore thé nonlinear behavior appears. It is therefore per-
missible to “linearize” Eqgs. (6a) and (6b) by setting N;=1.
It is also clear that a single polarization variable

J J
P= EPiKiPi 21—’:’27\;'

i=1 i=1
may be defined, together with transformed space and time
variables p=X, 7=T — X > 0, such that Egs. (6a) and (6b)
reduce to the form
1]

B _op 2Py,
ou or
where @=a 3 p?A;.

These are the linearized equations for the corresponding
nondegenerate problem and possess exact analytic solu-
tions.?* The solutions are easily extended where field and
polarization losses are retained, by making the transfor-
mations (P,E)—(P,E)exp(kLu++7gy,7) in the equa-
tions of motion. The individual polarizations are given by

Pi(u,r)=P,~(u,0>+p,~arf0“du'P(u',0)Il(zVar(u —u N/ a@r(p—p')+p; fOTdT'E(O,T')IO(ZV au(r—1)),

where the term containing E (0,7) is intended to simulate
the effects of zero-point fluctuations in the vacuum field,
while the field amplitude is correspondingly

E(;m)zafo"dp'P(ﬂ',O)Io(zv arp—p)
1,2V au(r—7'))
Vau(lr—r') .

The condition E(/,L,O)———&f”P (u',0)du’ shows the inter-
dependence of the initial fiefd and the net initial polariza-
tion. If one of the component polarizations, say P, could
be prepared with a much larger initial amplitude than the
remaining components, then the shape and delay of the
first emitted pulse would be determined primarily by
Py (u,0). The quantum-mechanical treatment of the prob-
lem sketched in Appendix A, however, is consistent with
our assumption and adoption of equal tipping angles for
-all of the degenerate transitions throughout the remainder
of the paper.

The existence of fluctuations in the radiant output from
many repeated experiments (manifested as variations in
the delay, width, and height of the first emitted pulse)
cannot affect the presence of qualitative features, i.e.,
internal structure, within the first pulse. Any such struc-
ture is inevitably always present owing to the early lock-
ing of the Bloch angles into their preferred ratios. In oth-
er words, statistical variations can appear in the net polar-
ization owing to the initial uncertainty, but do not appear
between the component polarizations.

.
+ap fo dT'E(0,7")

III. NUMERICAL SOLUTIONS OF THE
EQUATIONS OF MOTION

As no satisfactory analytical procedures for integrating
the equations of motion (la)—(1c) are currently available,
we have resorted to numerical integration on the comput-
er, using a predictor-corrector routine. On the time scales
relevant to SF the homogeneous broadening is usually ig-
norable, and therefore the relaxation terms have been om-
itted for the numerical calculations unless otherwise indi-
cated. The profiles of the emitted field intensities have
been calculated semiclassically as I, = |E*(1,T)|? and
I_=|E~(0,T)|% Providing there is spatial symmetry
(assuming, in particular, that A is independent of X), the

intensities of the oppositely directed fields must possess
identical time dependence. As in the corresponding prob-
lem with the nondegenerate system, we can define a delay
time T as the time interval from the termination of the
pumping process to the appearance of the intensity peak
of the first emitted pulse. The field amplitudes must ex-
perience their greatest variations at each end of the rod,
and the Bloch angles o; therefore will change most rapid-
ly at the ends. The angles p; were observed in all cases to
evolve from their initial uniform value of 7/4 to the
values 7/2 and zero, respectively, at the opposite ends,
while at the midpoint of the rod p;(3,T) retained the.
value 7/4 at all times. The transition to this spatial con-
figuration was complete within, and often well before, the
delay time. Designating the time for completing this
transition process as Tg, we have found empirically that

- when T > Ts all of the Bloch angles o; maintain constant

ratios to each other. In the case J =2 this ratio is 1:2 ex-
actly, and hence we can write o0;=20, (=0) and thus

Njy=cosog, N,=cos(30), (7a)

P¥ =sinox zfjg P¥ =sin(+0) % 2?55 (7b)

Eiza—ax cosp (7c)
oT sinp

The following behavior also has been observed for
T > Ts.

(1) The population inversions at equilibrium, which
were ascertained by looking at the long-time domain and
if necessary utilizing strong field damping (kL >>1) to re-
move long-lived ringing effects, were observed to be quite
different for each species of transition. For A <<1, the
equilibrium values in the Q(2) system are N,=N,,
=—1, N;=Np=—1.

(2) It has also been found that one effect of retaining
the atomic damping terms in Egs. (1b) and (lc¢) is to dam-
pen the output field intensities exponentially, and the
equilibrium values of the inversions in these cir-
cumstances then revert to N;,=N,,=—1. This shows
that ultimately both of the populations must decay (e.g.,
by spontaneous emission) to their respective ground states.
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(3) The effective angle o possesses fwo possible equili-
brium values when J =2, independent of the spatial vari-
able X:

U(el)zzCOS_—INle=27T——COS_‘1N2825:3-647 rad ’
022)=47T—8 .

Which of the two possible values is adopted by the system
in the long-term domain depends upon the parameters a,
A, and «L. In the regime of SF (small a), or if the field
damping is sufficiently great, we find that the equilibrium
value is always 8. In the oscillatory regime (large o) with
A << 1 we find for the long-time limit of ¢ (=0,)

0.,=8 when A<5x107*
w=47r—8 when A>5x10"*

(4) Typical behavior of the emission profile is shown in
Figs. 1(a) and 1(b). Doubly peaked pulses appear in the
J =2 case when kL <1, but for a <1 this feature is only
observed when A is sufficiently small [when 0;(0)>10~*
the leading pulse can have a large trailing “wing”]. This
behavior for two well-coupled dipole species in equal ad-
mixture differs from the behavior to be found (see Fig. 2)
when a small proportion of one species is strongly driven
by the other species (this corresponds to setting A, <<A).
If, in the equally mixed case, the damping parameter
k =kL is allowed to gradually increase, then the trailing
peak within the first emitted pulse gradually declines,
eventually disappearing. Simultaneously, a second large
peak emerges and grows at some distance from the first,

TANAT
WA

] .

I(m’)r ct/L
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2.5 5.0
ct/L

FIG. 1. (a) Time development of population inversions at the
ends (i) N,, (i) N, and output intensity (iii) in the SF regime
(rg=2, T=7.5, A=1, A;=10"'°, k =0). (b) Time develop-
ment as in (a) in the OF regime (7 =0.075, other parameters
unchanged). )
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FIG. 2. Time development as in Fig. 1 for an almost nonde-
generate medium (75 =0.5, A=10", A;=10"%). Broken line
represents N,(¢). As t— o, N;—0and N;—1.

and the ringing decreases. Examples of this behavior are
shown in Figs. 3(a) and 3(b). There is an optimal value of
k, designated kg, for which the output intensity resolves
into two little-ringing pulses most clearly, and whose time
delays are in the approximate ratio 2:1 (the ratio has been

t/ca
20, 40, 60,
50 00 T150
4 ct/L (a)
[T0.2

I/x?

ct/L

(b)

j\A i

FIG. .3. (a) Output intensity in Q(2)-degenerate SF
(A;=10"% kis a, 0.0; b, 0.2; ¢, 0.5; d, 1.5; e, 5.0; other parame-
ters unchanged from Fig. 1). (b) Output intensity in Q(2)-
degenerate SF (A; = 10~% kis a, 0.0; b, 0.5; ¢, 1.0; d, 1.5).
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FIG. 4. Time development as in Fig. 1 in SF (A;=1077,
k=0.7; other parameters unchanged).

found to vary within the range 1.7—2.4). This behavior is
depicted in Fig. 4. T

(5) The cumulative area f o E*(1,T')dT’ at the end of
the rod has been accurately measured numerically. At
k =kg the net area of the first pulse (which enjoys com-
pact support) is 27 in the J =2 case, while the subsequent
net area (including ringing) is +(27—38). The total area is
always & when a <1 and can be either § or 47—& when
a>>1.

(6) The area, height, and width of the second pulse have
been found to vary considerably as a changes, even at
k =k0.

(7) The optimal loss parameter for two-pulse output,
ko, is almost independent of « if a <1, but depends upon
a to an increasing extent as a becomes larger. Both k,
and the time delays to the other two major pulses depend
on InA. This behavior can be clearly seen in Fig. 5. The
linear dependence of k, with respect to InA has been veri-
fied over the range of values 10~2—10~"° for A.

(8) Graphs of the time development of the inversions at
the ends of the rod (see Fig. 4) reveal a type of in-phase
beating, one against the other, which can still occur even
when significant emission of energy has ceased.
~ (9) In addition to the existence of the stable configura-
tions represented by the equilibrium values o'"? discussed
above, there are apparently also spatially dependent
quasistable configurations in the long-term regime provid-
ing that A is sufficiently small and that a>>1. These
“kink-like” solutions for large a have the characteristics
of the 47 —28 kinks which have been described in absorb-
ing contexts.”> They move extremely slowly on the ul-

t/z,
o 150
1007 2000
ct/L

-]

a

I (10%)
2

N\ d

FIG. 5. Output intensity in Q(2)-degenerate SF ( —logoA; is
a, 3; b,4; ¢, 5; d, 6; e, 7; k =0.5; other parameters unchanged
from Fig. 1).

(o]

trashort time scale. Their precise number and positions
depend critically upon the values of a, k, and A. No evi-
dence of their formation has been found in the super-
fluorescent regime, however.

(10) An inverted Q(2) system with A;=10"* and
A,=107° has been found to evolve in an almost identical
manner to one with A;=A,=10"* (a slight delay distin-
guishes the former from the latter case).

 IV. INTERPRETATION OF RESULTS
AND DISCUSSION

The stability of doubly peaked pulses of area 41 propa-
gating within a Q(2)-degenerate full attenuator was
predicted in 1976 (Refs. 8 and 9) and was studied experi-
mentally.!®!! These doubly humped pulses are basically a
bound pair of 27 hyperbolic secant pulses and possess the
properties of solitary waves together with, in some cases,
an additional internal “wobble.” Apart from the different
initial and boundary conditions, the equations of motion
[(1a)—(1c)] for the amplifier differ from the attenuation
equations primarily in the sign of the right-hand side of
Eq. (1a). It might be anticipated, therefore, that similar
doubly humped pulses will occur in amplifying contexts,
providing that the polarization losses are sufficiently
small. In approaching this problem, we will simplify the
dynamics by considering only propagation of a single field
mode, as in the one-way model of SF (Refs. 21—24); com-
pared with the two-way model the effective difference in
the emission lines in the magnitude of the ringing. Using
the collective Bloch angle o as the dynamical variable, set-
ting A;=1, A,=A, and also p; =0, we obtain from Egs.
(la)—(1c) and (5) a partial differential equation of the
sine-Gordon type:

orr+0oxr+kor=a[sino+3Asin(50)] . (8)
The distortionless form of Eq. (8) taking k =0 is
(1—V~Yo,,=alsino+ 3Asin(50)] , ©)

where 7=T —X/V, and V =v/c is the field envelope
velocity (scaled to the speed of light) in the dielectric. A
single-pulse solution of Eq. (9) which appears to exhibit
41r solitonlike behavior requires that the condition

Ni(X, to0)=+1 (10)

be fulfilled. The dynamical variables are then obtained
for A=1 as

E(m)=10Va(1—V~1)~1"%echf/(1+4sech?0) ,  (11a)
1—6sech?6 2
Ny=————, N;=—(2N5-1), (11b)
> 144sech?d’ 2
P, =2V'5sechftanh6/(1+4sech?d) ,
(11¢)

P1:2N2P2 >

where 0=5[5a/(1—V~")]'/%). The envelope velocities
are greater than the velocity of light in vacuo, however,
and therefore such pulses cannot be stable. These special
solutions in terms of the single variable 7 can only be
physically relevant in transient situations for which prop-
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agation effects are ignorable, such as might occur close to
the ends of the rod. We note that Figs. 1 and 2 show
similar doubly peaked leading pulses emitted from an ini-
tially inverted Q (2)-degenerate medium. Asymmetry ap-
pears, however, in the reduced amplitude of the second
lobe of the pulse (and also in the corresponding inversion
curves).

In adapting the double sine-Gordon equation (8) to the
regime of pure superfluorescence we may employ the
same argument as has been used in a nondegenerate con-
text?! which allows the term o7 to be ignored relative to
the term oyy. Undamped superfluorescence from a
Q (2)-degenerate system is thus described by

oxr=a[sino+ 5 Asin(30)] (12)

and this equation clearly admits of a similarity-variable
solution.* More generally, for a J-fold degeneracy, the
right-hand side of Eq. (12) can be suitably modified to ac-
commodate the J terms. It should also be noted that Eq.
(12) describes the propagation of a superfluorescent pulse
within a Q (2)-degenerate amplifier,> albeit with very dif-
ferent boundary conditions. The general shape and
behavior of such an amplified pulse bears resemblance to
that found for the nondegenerate amplifier, as revealed by
numerical integration of the similarity form of the sine-
Gordon equation.* The important new feature of the
ringing lobes is the closely coupled doublet structure
within each lobe. The first peak in this structure can be
interpreted in terms of cooperative emission via the
strongest dipole, while stimulated emission via the weaker
dipole accounts for the second peak. Defining the simi-
larity variable to be ¥=2(aXT)'/?, we find that Eq. (12)
becomes the ordinary differential equation

U¢¢+¢_1a¢=sina+ %7\ sin(%a) . (13)

The second term ¢_10¢ in Eq. (13) can be regarded as a
(variable) damping effect which introduces asymmetry in
the doubly humped solutions of

oyy=sino+ 3 Asin(50o) . (14)

Amplifying solutions of the latter equation admit ringing,
expressible generally in terms of Jacobi elliptic functions,
and the field amplitudes o1 propagate at speeds less than
¢ [note that unphysical periodic solutions of the distor-
tionless equation (9) also exist, in addition to the single-
pulse hyperbolic profiles; in these cases the speeds are
greater than c]. The two differential equations (9) and
(13) thus may be regarded as representing extreme limits
of behavior, and the undamped solutions of their common
parent, Eq. (8), will exhibit a wide range of behavior
within these limits.

A very useful device for interpreting many of the
dynamical features of this type of system is to construct a
diagram of the potential-energy function Ul(o)
= 2}’___1Ni(0'), where o is the collective Bloch angle. Fig-
ure 6 depicts this function for the cases J =2 and 3. Ex-
amining the J =2 case first, we see that the doubly
humped shape of E(n) corresponds with the profile of the
function U (o) over the range (2A)2 <o <47 —(2A)12
thus the two peaks are associated with the presence of two

() (b)

- 0 ' '
0 21 | o 3N 67C

FIG. 6. Potential energy of the atoms U as a function of the
Bloch angle o for the degeneracies (a) J =2, (b) J =3.

energy wells, and it can be anticipated that energy losses
will introduce asymmetries in E (7). A helpful analogy is
the dynamical problem of a particle of unit mass, suitably
damped and constrained to move from an initial position
of rest within a potential well of shape
U(y)=alcosy+Acos+y). With linear damping ky
present as well, the equation of motion is

y+ky=—0U/dy . (15)

Depending upon the value of the damping constant k, the
system may come to rest at either of the two minima or
could conceivably come to rest in the metastable position
at y =2m. The latter situation occurs when k possesses
the exact value kg given by

ko=3Aa!”? (16)

and corresponds to a fission of Eq. (15) into two
equivalent parts, with the solution

sin(+y)=sech[a/XT —Tp)] . (17)

Assuming for the initial condition y, =y (0) <<, we have
the corresponding delay time as

Tp=a'In(4/y,) . (18)

In Figs. 7(a) and 7(b) we see y and y versus time for k =0
and k~k, illustrating the above points as well as other
features of the problem.

The damped sine-Gordon equation (8) differs from the
simpler equation (15) by its particular dependence upon
both time and space variables, 7" and X. Once again,
however, there is a special solution of Eq. (8) in terms of
the variable =T —X/V which exhibits solitary-wave-
like properties. We assume that there is a special value of
k (=«kL) which allows Eq. (8) to split into equivalent
parts and which again will be designated k,. With this
assumption, we find

Aa

in(L+
2k sin(50) (19)

Opgp=(1— V-1~ lsing, op=
from which we immediately infer that the velocity V of
the field amplitude within the medium has the value

V=[1—(4koh™ 12 /a]"", (20)

In Fig. 8 the magnitude of the velocity ¥ is shown as a
function of a; V is always negative, implying that the in-
terior field profile travels in the opposite direction to the
emitted pulse, as it must. Superfluorescent behavior
occurs within the domain | V| <1 while the regime of os-
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FIG. 7. (a)  Solutions  y(z) and  y(t) of
y=10[siny +5sin(+y)]. (b) Solutions y(s) and y(z) of
¥ +ky =10[siny + 5sin(+y)] when k=0.7905 (which differs
from ko= -}Vl_d by 0.01%).

cillating fluorescence corresponds with | ¥ | >1. The an-
alytic solutions for the dynamical variables in this situa-
tion are easily found. At the end of the rod (X =1) we
obtain the time-dependent quantities

N,=—coso=1—2tanh%p , (21a)
N,=cos(+0)=—tanh¢ , (21b)
P, =sino = —2tanh¢ sech¢ , (21¢)
P, =sin(50)=sech¢ , (21d)
E= ﬁseehqﬁ ) (21e)
where
HD=22 (T _T,) . : 22)
4kq

These special solutions can generate amplitude profiles
which propagate in free space as 27 pulses, which can be
verified by evaluating the area f _oEdt. Although such
pulses are unstable in the context of propagation within an
amplifier (i.e., they distort rapidly), it can be inferred that
the solitary solution of Eq. (19) in terms of 7 is sufficient-
ly stable near the end of the medium for its motion to
control the behavior of the transmission.

A general solution of Eq. (8) for initial and boundary
conditions appropriate to SF emission has not been found
and is presumably a complicated function of X and T;

Ivi

OF

N e e

1
|
|
0 L ! !
8 2 1
/(KoL /N)2
FIG. 8. Velocity of the interior field profile, when k =k, as
a function of aA?/k3.

however, the above solution of the end of the rod
possesses all of the properties that have been obtained
with k =k, in the numerical computations. It can be in-
ferred that the assumed special value k =k, allows the
linear (small-angle) solution for o(T) to evolve from the
first form of 6=2[(1++A)a(T —1)]'/?, namely

o(T)~ao(200)~172° %0 x —1 23)

into the second form obtained as the small-angle limit of
Eq. (21c)

o(T)~4e~ ¥ x —1 (24)

within a time T'; much smaller than the delay time T'p.
Further discussion of the first linear solution, Eq. (23), is
given in Appendix B. In support of the above interpreta-
tion of the “27 behavior” which has been generated in the
numerical solutions, we note first that a reconciliation of
the two expressions (23) and (24) implies that k, varies
approximately linearly with respect to —Ino,. We also
observe that Eq. (23) implies that T is approximately
proportional to @~ !(Inoy)? in the SF regime. The latter
result depends crucially upon the validity of extrapolating
the linear solution (23) for o(T) to the delay time T (i.e.,
to o ~r). For the oscillating fluorescence regime, howev-
er, only the second linear form (24) may be validly extra-
polating (even crudely) to T'=Tp. In this case the transi-
tion time 7'y is small enough to ensure that the angle o
has increased from o, by less than an order of magnitude
at T =T,; assuming k, proportional to a'/?, we therefore
infer that the delay time in the oscillating fluorescence re-
gime is proportional to a~!/?|Ino,|. These various pre-
dictions have all been borne out by a systematic empirical
analysis of the computed field intensities. Small correc-
tions to k, and the delay time are required, however,
when these results predicted for the one-way propagating
model are compared with the corresponding computed re-
sults using counterpropagating fields. The numerical re-
sults have also revealed the following parameter depen-
dence of kg:

ko=A(a)—B(a)ln(ay/V?2), (25)
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where the parameters 4 (a) and B(a) possess the limiting
behavior (a) for SF (4 =0, B=B;) and (b) for OF
(A =+4Aa'?, B=B, <B,, in which B, and B, are dif-
ferent constants).

It is appropriate at this stage to reintroduce statistical
considerations. The characteristic field loss parameter kg
depends upon o, where o represents a statistical average
associated with uncertainty in the initial polarization.
The actual value of kg in a given experimental situation
could be determined by performing a large number of
measurements of output profiles and delays for a given
value of k, from which a probability that k =k, could be
determined by simply observing the proportion of pulse
pairs which are “well separated.” This probability could
then be determined as a function of k (e.g., k might be
varied by altering both L and »n in such a way that «
remains constant). Presumably the value of k correspond-
ing to the probability maximum is k. Such an experi-
ment could also be simulated numerically, using a fluc-
tuating polarization source. The fluctuations in the time
delay of a well-separated second pulse of area 27—§&
would be complicated by the additional statistics attached
to the unstable equilibrium phase during which N;~1
and Ny~—1. .

Other solutions of Eq. (8) have been studied'* in con-

nection with an analysis of pulse propagation within a -

Q (J)-degenerate amplifier. In this case the damping con-
stant may be sufficiently large to ensure that the term
orrtoyr rapidly approaches zero, and the resulting
steady-state pulses must then travel at light velocity.
Ringing is completely absent in this situation. The field
intensity for J =2 is

2

I(g)=0y= (1—u®)u + 117,

20
L

(26)
u =cos(+0)

revealing two solutions.

(a) A pulse solution exists
1>u > — A possessing area 5.

(b) A pulse solution also exists within domain
—4A>u>—1 and has area 27— 8 (we are here assuming
that A <4). In principle, these solutions also describe radi-
ant emission from a heavily damped rod containing in-
verted Q (2)-degenerate atoms.

within the domain

V. SUMMARY AND CONCLUSIONS

Radiative emission from both ends of an extended
medium whose atoms possess the simplest type of hyper-
fine degeneracy [Q(J) symmetric, where J is an integer]
has been investigated in terms of a simple one-
dimensional model, on the assumption that the initial
pumping process populates all upper hyperfine levels
equally. Numerical results for the temporal and spatial
evolution of an inverted J =2 system reveal qualitative
differences from the nondegenerate (J =1) case, within
both the regimes of superfluorescence and oscillating
fluorescence. Analytic results have been obtained only for
a simplified model in which the propagation of energy is

unidirectional. For J =2 the atoms possess two dipole
matrix elements in the ratio 1:2. The one-way Maxwell-
Bloch theory for the superfluorescent regime then yields,
in terms of the collective Bloch angle o(X,¢), an underly-
ing equation of motion sometimes described as the double
sine-Gordon equation. Two important features are an
amplifying state occurring at o=w (which is unstable
with respect to fluctuations) and two attenuating equilibri-
um states of lower energy at o=6 and 47 —3§, where
8=2cos!(—+). Depending upon the scale of the dissi-
pative processes (simulated in our model by the insertion
of a linear term ko into the equation of motion), the
emission will be either a doubly peaked (or asymmetric)
pulse together with substantial ringing (for k <<k, where
ko is a characteristic solution parameter) or alternatively
two well-separated simple pulses with minimal ringing
(k ~kg). The observation of the latter emission state will
be complicated by statistical processes, however. More
complicated behavior is indicated when J > 2.
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APPENDIX A

The equations derived semiclassically in Sec. II are ba-
sically the same as their quantum-mechanical counter-
parts, owing to the linearity of the early stages of the
dynamical evolution. The main differences are that the
quantum-mechanical theory treats both the polarizations
P and the field amplitude E as Bose operators in the
linear regime:**

[P} (e, 7), P,-(,u’,T)]:%S(,u—,u') , (Ala)

[E(#,T),E*(u,r')]g—‘*ﬁaw—f’) : (A1b)
These become exact identities where 7=0 in Eq. (Ala)
and u=0 in Eq. (Alb). In the semiclassical theory,
E(u,0) and E(0,7) can be given small values consistent
with fluctuations in the vacuum field and in the initial po-
larization field. The more restricted semiclassical initial
and boundary conditions (2) and (3) are strictly not com-
patible with the solutions for E(u,7) and P(u,7) given in
Sec. II, unless it can be held that P(u,0) can be finite to-
gether with foﬂP(,u’,O)dy’:O.

Since P; and P,-Jr correspond approximately with atomic
lowering and raising operators, respectively, it is possible
to calculate the atomic initial state averages:

(1 P, 0)P; (w00 | 1) = %aw . (A2)

If the degeneracy is manifested only within each atom
(that is, all A;=1), then we also find
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P2t P, 0P (w',0) | 1)
(1PT(,00P(',0) | 1) =~
R w0 | 21’:’2

4 ,
= N&(,u—y ).

(A3)
The buildup of field intensity within the linear regime is
thus
I(p,7)={vac,1 | E (u,7)E (1, 7) | 1,vac)
432 (P2 T
4a*

=T{13(9)—1%(9)}

with 0 =4aru.

APPENDIX B

The linear solution of the differential equation for
o(X,T) at X =1 has been given for the regime in which
0>>1, where 0=2[(1++A)a(T —1)]'/? [see Eq. (23)]. In
order to arrive at this result, it has been found necessary
to consider the full linear solution of the Maxwell-Bloch
equations with the inclusion of a field-loss term. This
problem has already been analyzed in detail in Ref. 24,
and we may borrow the relevant results here. With
B=(14+tA)a and the obvious assumption T >>X, we
find for the full linear result the alternative but equivalent
expressions

e
o(X,T)=0, [1+2\//3T fo Xe'k“ZII(Z\/BTXu )du] (B1)
=0, [e‘kXIO(Z\/BTX)+e”T/k[1-—J(kX,BT/k)]] , (B2)

where I (1) are the modified Bessel functions of order
zero and one, respectively, and J(u,v) are the functions
defined by

J(u,v):l—e_"foue”zIO(Z\/;z_ )z . (B3)

Some important properties of the functions (B3) have been
listed in Ref. 24, and other properties of interest are given

I

by Luke®® as well as by Goldstein.’’” Note that when
k =0 the expressions simply reduce to o =00l (2V BTX ).
An analysis of the magnitudes of the terms of Eq. (B2) for
the regime where 6 >>1 reveals that the first term is dom-
inant. Using the well-known asymptotic behavior for
large 6, I,(6)—(2m0)~ /%%, we have

o(X,T)—00(270) 20X a5 0 o . (B4)
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