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Electric field dependence of transient electron transport properties in rare-gas moderators

B. Shizgal and D. R. A. McMahon*
Department of Chemistry, University ofBritish Columbia, Vancouver, British Columbia, Canada V6T1F6

(Received 29 May 1985)

A discrete-ordinate method of solution of the time-dependent Boltzmann-Fokker-Planck equation
for electron swarms in rare-gas moderators is employed in the study of the time dependence of the
average electron energy, mobility, and transverse diffusion coefficient versus the strength of an
externally applied electric field. The solution of the Fokker-Planck equation is based on the expan-
sion of the solution in the eigenfunctions of the Lorentz-Fokker-Planck operator. With the transfor-
mation to an equivalent Schrodinger eigenvalue problem, the eigenvalue spectrum is shown to be en-

tirely discrete, thereby validating the eigenfunction-expansion approach. The effects studied include
the effect of an electric field on the thermalization times, a comparison of the effects of moderators
with and without Ramsauer minima in the momentum-transfer cross sections, and the effect of an
external electric field on the transient negative-mobility phenomena predicted in an earlier paper. A
comparison with experimental results for Xe shows good agreement with the calculations.

I. INTRODUCTION

The study of the transient behavior of a nonequilibrium
ensemble of electrons in different moderators has impor-
tant applications in many different fields, and the theoret-
ical description of the approach to equilibrium is an im-
portant endeavor. Examples of important applications in-
clude the interpretation of electron-swarm experi-
ments, ' delayed luminescence in gases, radiation chem-
istry and biology, laser physics, ' discharge devices, and
many other applications.

The present paper is a continuation of the authors' re-
cent works ' on the thermalization of low-energy elec-
trons in rare-gas moderators. The earlier work was con-
cerned with the transient behavior of the transport proper-
ties of the electron population in the limit of zero external
electric field. The present paper extends the earlier work
to include a study of the effect of finite external electric
field on the transient behavior of the distribution func-
tion, the average electron energy, the mobility, the trans-
verse diffusion coefficient, and the corresponding
thermalization times. The determination of the electron-
distribution function and the transient behavior involves
the solution of the appropriate Boltzmann or Fokker-
Planck (FP) equation.

This electron-therm alization problem has been con-
sidered by several authors with different methods of
analysis. Olaussen and Hemmer" have carried out an
analytical study of the asymptotic short-time transient
mobility of a hard-sphere cross section. Mozumder' and
Tembe and Mozumder' have assumed that the electron-
distribution function is a pseudo-Maxwellian character-
ized by a time-dependent temperature. A discussion and
critique of this approach has been presented in the earlier
papers. ' Knierem et a/. ' have employed traditional
moment methods of solution of the FP equation. This ap-
proach is based on the expansion of the distribution func-
tion about a Maxwellian characterized with the time-
dependent electron temperature. %'ith this expansion, dif-

ferential equations for the lower-order moments are de-
rived from the FP equation. Although the FP equation is
linear, the resulting moment equations are characterized
by 'nonconstant coefficients, due to the collision operator
being parameterized with a time-dependent temperature.
Consequently, a numerical integration of the moment
equations is required. Monte Carlo simulations of the
thermalization of electrons have also been carried out by
Koura. ' Pitchford and Green' have studied the zero-
field thermalization and the effect of an electric field for
model systems characterized by constant cross sections
and constant collision frequency.

The present paper employs the discrete-ordinate (DO)
method introduced in earlier papers by Shizgal, ' and
Shizgal and Blackmore, ' and employed in the earlier
study of electron therrnalization. ' The solution of the
FP equation appropriate to the present problem is solved
with a standard eigenfunction expansion of the distribu-
tion function. This is a useful approach, since the re-
ciprocals of the eigenvalues are the characteristic relaxa-
tion times of the system. The DO method provides an ex-
tremely efficient numerical procedure for the evaluation
of the eigenvalues and the corresponding eigenfunctions,
as well as the transport coefficients. The transport coeffi-
cients are given as integrals over the distribution function.
Their evaluation is facilitated due to the fact that the dis-
tribution function is determined at the set of quadrature
points for which rapid convergence of the integrations in-
volved is obtained.

The connection is made between the eigenvalue problem
associated with the FP equation that occurs for the
electron-thermalization problem, and an equivalent eigen-
value problem based on a Schrodinger equation as
described by Garrett, ' Braglia et al. , and in a recent
paper on FP equations for bistable systems by Blackmore
and Shizgal. ' The equivalence with a Schrodinger prob-
lem is important, as it provides useful information with
regard to the nature of the eigenvalue spectrum and, in
particular, whether it has a continuum portion. We
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demonstrate. that there is no continuum to the eigenvalue
spectrum for the rare-gas rnoderators by demonstrating
that the potential in the Schrodinger equation equivalent
to the FP equation is bounded. Consequently, the expan-
sion of the distribution function in the discrete eigenfunc-
tions is appropriate. We also show that the description
based on a Schrodinger equation with some effective po-
tential function provides a useful interpretation of the re-
sults presented later in the paper.

The effects examined in the present work are the effects
of the electric field on the transient behavior of the aver-
age energy, mobility, and diffusion coefficient. In partic-
ular, we are interested in a comparison of the thermaliza-
tion behavior in He and Ne as compared with the
behavior in the heavier gases, Ar, Kr, and Xe, whose cross
sections are characterized by deep Ramsauer-Townsend
minima. Section II of the paper outlines the theoretical
formulation for the time development of the electron-
velocity distribution function. The DO method of solu-
tion is discussed in Sec. III. The transformation of the FP
eigenvalue equation to the equivalent Schrodinger prob-
lem is presented in Sec. IV, together with results of the
nature of the eigenvalue spectrum. The results for the
transient behavior are presented and discussed in Sec. V.
A summary of the results and conclusions appears in Sec.
VI.

II. TIME EVOLUTION
OF THE ELECTRON DISTRIBUTION

The basic methodology of the present paper follows
closely the formalism in earlier papers ' ' and overlaps
the discussion in standard references on electron-transport
theory. The point of departure is the connection
with the general FP equation and the equivalent
Schrodinger equation within the context of the DO
method of solution. The time evolution of the anisotro-
pic, spatially homogeneous, electron velocity distribution
function (VDF) is based on the expansion in I.egendre po-
lynornials, ' ' ' that is,

f(v, t ) = g ft(U, t)Pt(cos8),
1=0

I

where 8 is the angle between v and the polar axis chosen
in the direction of the electric field. For the rare-gas
moderators at low electron energies, for which only elastic
collisions need be included, only the terms in I =0 and
l =1 need be retained. The coupled equations for the first
two terms fp and f, are given by

dfo eE 8 2
dt 3m BU U

+ +
l

density of the moderator. Owing to the small electron to
moderator mass ratio, initial anisotropies of the distribu-
tion function (ft, l & 0) decay very quickly before appreci-
able energy relaxation. ' The energy relaxation occurs
on a much longer timescale and the present work is con-
cerned with this time domain. This was referred to as
time domain (ii) in the earlier paper. With a nonzero
electric field there will be an initial anisotropy at the be-
ginning of this time domain and the distribution function
will be somewhat different than the value at t =0. We ig-
nore these effects and set Bf~

/dt=0 and substitute the re-
sult for f~ from Eq. (2b) in Eq. (2a). In addition, reduced
units x = (m /2k~ T ) ' U and t'= t /r, where

1/2
2k~Thnm

2M ' (3)

~fo s a, x' ~fo
2x ofp+ B(x)dt' xz Bx s Bx

(4)

where

B(x)=xo+ (a/s )
(5)

The quantity a is a field-strength parameter given by
2

2 M eE
6m n0pkg Tb

With Eq. (4), the steady solution attained at t = co is easi-
ly shown to be given by

"(x') o.
fp(x, ao ) =D(x) =C exp —2s, dx'

B(x') (7)

where C is a normalization constant. The function D(x)
is the well-known Davydov distribution for electrons in an
applied electric field. ' In the absence of an electric
field (a=0), D(x) is the Maxwellian at Tb.

Equation (4) can be written in the form of a general FP
equation by setting

fp =exp[ —d (x )]gp

where d(x) is the argument of the exponential in the
Davydov distribution in Eq. (7), that is,

are employed, with o(x)=o.(x)/op, and o.
p is some con-

venient hard-sphere cross section. In Eq. (3), Tb is the
temperature of the moderator which can differ from the

- temperature T used to define the reduced speed x. The
quantity s =T/Tb is the parameter used to scale the
points in the DO method as discussed in the previous pa-
per' and in Sec. III of this paper. With these definitions,
and f &

from Eq. (2b), the equation for fp is given by

3 f+ (2a)

~fi eE ~fo
Bt m BU

+ &fi— (2b)

where M is the mass of the moderator atoms, E is the
electric field strength, and v(U)=nuo, where cr is the
momentum-transfer cross section and n is the number

With Eq. (8) in Eq. (4), one finds that

g0 l ~go ~ g—2 (x) +B(x) = Ig p (10)—
Bt s Bx Bx

where B(x) is given by Eq. (5) and
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A(x)=2s x cr2 2 2B(x)

go(x, t') = g akPk(x)exp( Ak—t'),
k=0

where

(13)

LA=~kdk

The eigenfunctions pk are orthogonal with the steady dis-
tribution x D(x) as a weight function. The expansion
coefficients in Eq. (13) are determined by the initial distri-
bution function, that is,

ak = J x D(x)gk(x)go(x, O)dx .

With the distribution given by Eq. (13), the transient
behavior of the average energy E(t'), mobility p(t'), and
the transverse diffusion coefficient Dz(t') can be shown
to be given by summations of the form

Equation (10) is the desired form for the differential
equation for go. This form is particularly useful as there
has been considerable discussion of the solution of this
type of FP equation. In particular, Blackmore and
Shizgal ' have recently provided a general DO method of
solution of this general form for arbitrary coefficients
A (x) and B(x). A discussion of this method of solution
is presented in Sec. III.

The method of solution employed in the present paper
is based on the eigenfunction expansion of the solution
and parallels the work in earlier papers. ' The formal
solution of Eq. (10) is

go(x, t') =e 'go(x, O), (12)

where go(x, O) is the initial value. If go is expanded in the
eigenfunctions pk of the Lorentz-FP operator L, then

This is essentially a Rayleigh-Ritz variational calculation
of the eigenfunctions. As discussed in a previous paper,
an optimum choice of basis set for the solution of Eq. (10)
might be the one based on functions orthonormal with the
steady solution x D(x) as the weight function. However,
the generation of such a basis set is difficult due to the
well-known numerical instability inherent in this problem.
Alternate basis sets can be chosen that are based on a
weight function that approximate the steady solution.

The present work employs the DO method introduced
in previous papers. ' ' ' The explicit expansion of the
eigenfunctions in the basis set is not employed. Rather,
the eigenfunctions are determined at a discrete set of
points which coincide with the points of a quadrature pro-
cedure based on a set of polynomials. This representation
of the eigenfunctions is entirely equivalent to the represen-
tation in terms of the coefficients in the polynomial ex-
pansion, as there exists a unitary transformation between
the two representations. In the present work, the quadra-
ture procedure based on speed polynomials B„(x)orthog
onal with respect to the weight function w (x)
=x exp ( —x ) is employed, that is,

00 N

J w(x)G(x)dx = g w;G(x;), (18)
i=1

where m; and x; are the weights and points, respective-
ly. ' ' However, the operator 1. is self-adjoint with
respect to the steady solution x D (x) and not with respect
to weight function w(x). As discussed at length in the
paper by Blackmore and Shizgal, ' the symmetric
representative of L can be constructed by evaluating the
matrix representative in the basis set of functions ortho-
normal with respect to x D(x), and transforming to the
DO representation with the appropriate unitary transfor-
mations. The result is that the eigenvalues A,k and corre-
sponding eigenfunctions

E(t') = g ekexP( A,kt'), —
k=o

p(t ) y pkexp( ~kt )
k=0

nDz. (t') = g dk exp( —Ik t') .
k=0

(15)

(17)

itjk=[x D(x)lw(x)]'~ Pk(x)

are determined by diagonalizing the (symmetric) matrix
I.,J in the DO basis set, given by

N

LJ = —y B(xk)[Dk;+h«k» k][Dkj+h(xk»jk]s k=1

The explicit form of the coefficients in Eqs. (15)—(17) is
presented in Sec. III, where the application of the DO
method is discussed. In this way the problem is reduced
to one of determining the eigenvalues A,k and eigenfunc-
tions pk of the FP operator L. A comparison of the tran-
sient behavior of the longitudinal and transverse diffusion
coefficients is presented in a separate paper. The expres-
sion for the longitudinal diffusion coefficient differs
somewhat from the formalism presented here.

III. DISCRETE-ORDINATE METHOD OF SOLUTION
OF THE EIGENVALUE PROBLEM

The eigenfunctions and eigenvalues of the FP equation
can be determined by expanding the eigenfunctions in a
suitable basis set and diagonalizing the (approximate) ma-
trix representative of the FP operator in this basis set.

(19)

where

w'(x) [x D(x)]'
2w(x) 2x D(x)
d'(x)

2

(20a)

(20b)

and Dki is the derivative operator. ' In the absence of an
electric field (a=O), Eq. (20b) reduces to h(x) =x(s —1)
and Eq. (19) coincides with Eq. (33) of the previous pa-
per. ' As discussed there, the parameter s is chosen so as
to be able to scale the quadrature points appropriately.
This scale factor (and the temperature T used to define
the reduced speed) increases with increasing electric field.
This is analogous to the use of an effective temperature in
the moment method. [In Ref. 10, Eq. (25b) should have
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read t =t/sr, which differs from the dimensionless time
in the present paper by the factor 1/s. ]

An important advantage of the DO method of solution
is that the eigenfunctions are determined at the set of
quadrature points appropriate for the integral evaluation
of the coefficients in Eqs. (15)—(17) for the transient
transport coefficients. It is important to note that the
eigenfunctions determined with the diagonalization of Eq.
(19) are proportional to the zeroth eigenfunction

$0(x)= [x D(x)/w(x)]'~2

with eigenvalue A,o
——0. The steady solution is thus deter-

mined without explicit evaluation of the integral in Eq.
(7).

The calculation of the time dependence of the average
energy and the transverse diffussion coefficient involve in-
tegrals of the 'form

' 1/2
2ka Tb sx

3 I cr(x)

' 1/2r

x D(x)
pk ——aks w(x)

w(x)

x;D(x; )
=aks g w; gk(x;)p(x;) .

w(x;)

fk(x)p(x)dx

for the average energy E(t') and the diffusion coefficient
DT(t'), respectively. With the expansion of go(x, t') given
by Eq. (13), we find that the coefficients in Eqs. (15) and
(17) are of the form

pk ——aks Dx kxpxx x.
In terms of the eigenfunctions gk(x), this integral can be
written in a form appropriate for the Gaussian quadrature
of Eq. (18), that is,

P(t')= f f(u, t')p(u)u du

=s D(x)gu(x, t')p(x)x dx,
0

where p(x) equals k~Tbs x and

(21)

The calculation of the time-dependent mobility
p(t')=W(t')/E, where W(t') is the drift velocity, in-
volves f~( ut') of Eq. (2b). With the neglect of the time
derivative of f&, we calculate f~ in terms of fo and its
velocity derivative as discussed in the previous paper.
The result for the mobility after an integration by parts is

IJ,(t') =- e 2
6ns mk& Tb

' 1/2
x D(x)

w(x)
0 w x I x

1
go(x, t')dx .

The coefficients in Eq. (16) are given by

eakPk=-
6ns mkz Tb

1/2

gw;
i=1

1/2
x iD(x; )

w(x; )

do 1

dx ~=~. 0'(x )

IV. EIGENVALUE SPECTRUM OF FP OPERATOR:
EQUIVALENT SCHRODINGER

EIGENVALUE PROBLEM

The transient behavior of the electron swarm is deter-
mined with the expansion of the distribution function in
the eigenfunctions of the FP operator. The nature of the
eigenvalue spectrum of the collision operator determines
the details of the time evolution of the distribution func-
tion and there have been many general discussions of this
in the literature, particularly with regard to neutron-
transport theory, hot-atom chemistry, and kinetic-
theory problems for which the test-particle moderator
mass ratio is closer to unity. ' Much of the interest is
with respect to the presence or absence of a continuous
portion to the eigenvalue spectrum. It has generally been
thought that the eigenfunction method of solution will not
be valid or converge slowly if the continuous portion of
the spectrum is not included. However, it has been
demonstrated recently that expansions with finite basis
sets which do not include the continuum eigenfunctions in

d'fk
, —[&(y)—~k]Wk

where
2

(22)

&(y) =
dy

d C
dy

C(y(x))=f, dx'+ —,
' lnB(x) .

a rigorous fashion can yield converged solutions. In the
present case, we show that the potential in the
Schrodinger equation corresponding to the eigenvalue
problem tends to infinity as x~D and x~oo, and the
eigenvalue spectrum of the FP operator is entirely
discrete.

If the change of variable

y =f [8(x')] '~ dx'

and the definition pk(x)=e ' 'fk(x) are made, then it
can be shown that'
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TABLE I. Convergence of eigenvalues A,„(in units of ~ '); TI,——290.1 K.

A3 ~20

10
20
30
40
50
60

0.0041
2x10 s

1x10-'

298.35
298.24
298.24

He, E/n=1. 0 Td'
1129.5 3362.8
1090.6 1998.1
1090.6 1998.0

5938.1

4475.4
4475.3

51 306
7599.6
7022.7
7022.7

24487
9956.9
9499.7
9499.7

10
20
30
40
50
60
70
80

0.0042
1x 10-4
1x10-'
5x10 6

3x 10-'
6x 10-"

94.032
91.210
91.157
91.156

Ar, E/n=0. 05 Td
442.22 1548.0
360.03 715.43
358.06 693.71
358.01 692.64

692.59
692.58

2604.6
1940.3
1847.1
1835.3
1833.5
1833.4

9164.0
4026.3
3245.5
3103.9
3068.5
3062.2
3061.0

9599.0
6344.9
4922.0
4253.8
4462.0
AAA7 3

'1Td=10 '7 Vcm2

V. RESULTS AND DISCUSSION
F

The eigenvalues and eigenfunctions were determined by
diagonalizing the DO-matrix representative of the FP
operator, that is, the matrix I.;J given by Eq. (19). Table I
illustrates the rate of convergence of the lowest eigen-
values for two typical cases. Similar results were obtained
for other gases for different field strengths and tempera-
tures. The lowest eigenvalue A,o should be zero as a conse-
quence of particle conservation. The corresponding eigen-
function is related to the steady Davydov distribution as
mentioned previously. The approach of A,o to zero with
an increase in the number of quadrature points is an indi-
cation of the efficiency of the speed polynomials in ap-

proximating the steady solution. The rate of convergence
is more than adequate for the present work and for the
comparison with available experimental data that is made.
The rate of convergence is rapid for a moderator with a
momentum-transfer cross section which varies slowly
with energy such as helium. The cross sections employed
are those reported by Nesbet for He, by O' Malley and
Crompton for Ne, by Mozumder' for Ar, Kr, and Xe,
and by Haddad and O' Malley for Ar when explicitly
mentioned.

In Fig. 1, we show, for krypton as moderator, the sta-
tionary (normalized) Davydov distribution determined
with a Simpson s-rule integration of the integral in Eq. (7)
(solid curve), as well as the same distribution calculated

TABLE II. Dependence of eigenvalues and steady transport parameters with scaling parameter s;
Tg ——290.1 K, Ã=50.

1.064
1.333
1.869
2.392
2.721
3.447
4.552

328.4
515.2

1013
1660
2149
3447
5932

317.3
90.73
3.0754
0.0763

—0.122(—3)
—0.685(—7)
—0.109(—6)

A3

He, E/n=5. 0 Tdb

2413 6202
1210 3175
580.7 1376
502.7 971.0
495.8 906.6
495.8 906.0
495.8 906.2

1.304
1.965
2.786
2.884
2.889
2.889
2.889

15.45
12.88
11.57
11.52
11.52
11.52
11.52

nDT

3.123
3.856
4.730
4.842
4.847
4.847
4.847

1.064
1.333
1.869
2.392
2.893
4.049
5.307

328.4
515.2

1013
1660
2427
4756
8170

9.246
0.110(—2)
0 2A.A.A.( 3)
0.517(—3)
0.379(—3)
0.301(—2)
0.2226

Kr, E/n=0. 5 Td
1217 3304
1085 2588
1085 2588
1085 2588
1085 2588
1086 2592
1087 2586

1.620
1.659
1.659
1.659
1.659
1.659
1.658

1.677
1.584
1.584
1.584
1.584
1.584
1.587

i1.73
11.52
11.52
11.52
11.52
11.52

.11.53

'(E), W, and nDr in units of eV, 10~ cmsec ' and 10 ~ cm 'sec ', respectively.
b1 Td 10-17 y cm2
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E/n =Q. t Td

x
C3
x

10

FIG. 1. Davydov distribution x D{x) for several electric
field strengths E/n:, Simpson's-rule integration, Eq. (7);
+ + +, discrete-ordinate result determined from eigenfunc-

tions x q D(x; )=go(xI )/[w (x; ) w; ]; krypton gas is the moderator,
Tb =290.1 K, N=20.

from the eigenfunction 1(c(x;) determined with the D&
method, that is, by diagonalization of LIJ given by Eq.
(19). The points (+) in Fig. 1 are the values of the
Davydov distribution determined with the DO method
with N=20. The efficiency of the DQ method should be
clear, particularly when the points are scaled appropriate-
ly as is done in Fig. I so as to place as many points as
possible in the energy region where the distribution func-
tion is largest. Consequently, the scaling becomes impor-
tant with an increase in E/n. For a particular cross sec-
tion and E/n, the optimum value of s can be determined
by trial and error in an effort to set A,c as close to zero as
possible as shown in Table II. The results in Table II
show the way in which the lowest eigenvalues and the
average energy, drift velocity, and transverse diffusion
coefficient vary with a change in the scaling parameter s.
The effective temperature T corresponding to this op-
timum scaling parameter is considerably less than (E ) /k.
It is useful to note that the other quantities are for the

most part independent of s near this optimum value. %'e
also show in Table III the convergence versus ihe number
of quadrature points N of the average energy, drift veloci-
ty, and transverse diffusion coefficient.

The nature of the convergence of the smallest eigen-
values shown in Table I suggests that the eigenvalue spec-
trum is discrete. In this regard, it is useful to illustrate
the potential functions V[y (x)] that occur in the
Schrodinger equation, Eq. (22). Figure 2 compares the
(dimensionless) potential functions for helium and xenon
for several electric field strengths. We have chosen to
show these potentials versus the reduced velocity variable
u/u, h

——x[T/(435. 15 K)]' . For low E/n, the potentials
vary approximately as 1/yz as y~0 and a deep narrow
well occurs near the origin u lu, h =0. The point y =0 cor-
responds to a node for all the eigenfunctions. For He and
Ne, for which the cross sections are monotonic functions
of the relative energy (see Fig. 3 of Ref. 9), the potential

,
has a single broad minimum at larger u/u, h, as shown in
Fig. 2(a) for helium. For the smallest eigenvalues and low
E/n, it is possible to approximate the potential well by an
harmonic potential and to obtain approximate analytic
eigenvalues which qualitatively agree with the exact nu-
merical results. For the heavier moderators (Ar, Kr, and
Xe), which are characterized by momentum-transfer cross

80

'10-
0

ZO-

I I I I

2 2. S 3

TABLE III. Convergence of the steady average energy, drift
velocity, and transverse diffusion coefficient ( Tb ——290.1 K).

N E (eV) W (10~ cmsec ') nDr (10 2 cm 'sec ')
/n=OTd—

10
20
30
40
50

FEM'

0.3161
0.4861
0.5590
0.5592
0.5592
0.5582

He, Eon=1.0 Td
6.566
5.179
4.841
4.841
4.841
4.829

1.650
1.988
2.109
2.110
2.110
2.108

100—

S0-

—50-

-100,—

0.005

01

10
15
20
30
40

FEM

0.3579
0.6428
0.6025
0.6552
0.6552
0.6552

Ar, E/n=0. 05 Td
4.745
1.524
1.714
1.480
1.480
1.480

40.15
31.74
32.83
31.44
31.44
31.43

'Results with a Simpson's-rule finite-element method.

-200
0

Y/Y ~h

FIG. 2. Potential functions in the Schrodinger equation
equivalent to the Fokker-Planck equation. (a) Helium and (b)
xenon.
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sections with Ramsauer minima, the potentials possess
two minima, the second occurring close to the energy of
the Ramsauer minima, as seen in Fig. 2(b) for xenon. We
later show that this feature can be employed to appreciate
some details in the transient behavior of the distribution
function. In particular, V—+ ao as u /u, h ~0 and
ulu, h~co, and no continuum exists in the eigenvalue
spectrum.

An interesting result is obtained for the cross section
xo(x) =a, where a is constant independent of energy, that
is, cr(x) is the Maxwell cross section. It is easily shown
with Eqs. (5), (11), and (22) that the potential correspond-
ing to this cross section is given by V(y) =any —3a and
is independent of the electric field strength. This property
is a useful check of the DO method since the eigenvalues
are the well-known harmonic-oscillator eigenvalues given
by A,k

——4ak. In addition, the dependence of the eigen-
values on Ejn for realistic cross sections can be under-
stood in relation to this particular model for which there
is no field dependence.

The dependence of the smallest eigenvalues on E/n is
shown in Fig. 3 for He and Xe, which illustrate the
behavior typical of moderators whose cross sections do
and do not exhibit a Ramsauer minimum. As can be seen,
the lowest eigenvalues for Xe exhibit a minimum in their

variation versus Ejn. For cross sections decreasing faster
than 1/x, the eigenvalues can decrease with increasing
E/n, whereas for cross sections decreasing slower than
1/x or increasing with energy the eigenvalues will in-
crease with increasing Ejn T. he result for He gives in-
creasing eigenvalues with increasing Ejn T.he smaller
eigenvalues are determined by the lower energy, decreas-
ing portion of the cross sections (for Ar, Kr, and Xe),
whereas the larger eigenvalues are determined by the
higher-energy portion of the cross sections. Since the re-
laxation times are related to the reciprocal of these eigen-
values, the Ejn dependence of the thermalization times is
given qualitatively by the reciprocal of the eigenvalues.

The transient behavior of the average energy, diffusion
coefficient, and mobility is shown in Figs. 4—6, respec-
tively. The initial distribution function is a delta function
with an initial energy given by the value of uo ——uju, h,
where v,h is the rms speed at Tb ——290.1 K. ' Although
the choice of an initial delta-function distribution may be
considered as unrealistic, previous calculations have
shown that the relaxation times are not very sensitive to

200

150

100

10

I I I

0. 0 , 0. 6j'
I

0. 8

(aj

0,
0

I I

E/n (Td)

I

G. GB

200

15

10
I—

I

0.2 0. 0
, (b)

G. B 1

I I I

0.00 0.08
E/n (Td)

FICr. 3. Variation of eigenvalues with Ejn; A,„ in units of
'. (a) Helium and (b) xenon.

FI&, 4. Variation of T(t')/Tb vs E/n. Initial delta-function
distribution with uo ——4.8 or initial energy is 0.864 eV.
T~ ——290.1 K, E/n i.n Td, and ~ in 10" sec cm for (a) helium
are equal to a, 0, 28.51; b, 0.5, 3.54; c, 1.0, 2.44; d, 2.0, 1.75.
For (b) argon, they are equal to a, 0, 1304; b, 0.01, 603.2; c,
0.02, 171.4; d, 0.05, 79.79.



323676 B SHIZGAL AND D. R. A. McMAHON

1.6 1.2

8
~~1.2

O 1

0.8
8

0. 8
0 0. 2 0. 3

t

I

0. 6

I

0. 2 0. 6 ( 0. 6
t

I

0. 8

208
I-

C3

10
C)

8

0
0

I

0. 2 0. 0 & 0.6
t

I

0.8 0. 0 ) 0. 6
t

'
n of Dz(t')/DT(oo) vs E/n. Initial delta-l--".0864eVc i

' ' '
ith u =4.8 or initia ene-f (}and ~ in ].0 seccm/

q
For (b) argon, they are equal to a, 0,
0.002, 2756; d, 0.005, 2139.

t' / (oo ) vs E/n. Initial delta-FIG. 6. Variation of p(t')/p oo vs
with uo ——4.0 or initial energy is

I1 —3T =290.1 K, E/n in Td, andd ~ in 10 seccm
' d 2.0, 1.75.

For (b) argon, they are equal to a,
0.002, 2756; d, 0.005, 2139.

itial distribution function. T. This is rob-
h i

'
io fid broadening of t e is ri

th lt fose we compare etions. In each case,
te the articular e ecff t of the Ram-p

a in the cross sections. Figuresauer minima in
d illustrates the heatingpn tern erature an i u

h """ '"d
with increasing n;

lt ho i th
)/T is greater than uni y

in E/n. The resu ts are
t knd it is important to aduced timescale an i

' '
p

each curve as given in et a s of or
an increase in t e e ec

hh' hion function out to muc
to the zero-field situation ang

d t ' '
th

b the higher-energy po
the heavier moderators, an

'

f h ff~ t [
b'1' '

] t 'b bl to
isa earance o t e e

oo) and negative mo i i iesin DT(t')/DT( oo, an
inima in the cross sec

'
sections for thesem

() M
~

shown in Figs. 5(b) an
ldlt f to dt-

bution and is independent of E/n. owev

b'lit transient, when it occoccurs, is re-of the negative mo i i y r

the relaxation times s ow
increase in E/n owing odecrease w t a

es reflecting the near y cg
ross sections for t ese m

y
'c field speeds up e e

b enhancing t e co ' '

e and shortening t e re axa
'

p
rm through the mo era

th 111 0 at sMaxwell cross seection xo(x) =const, e c
he field so t at eth intrinsic energy-

d fl di i 1issipa 10
which are independent of E/

'h 11 i

'
r moderators, Ar, r, an

IV Th 1 ation timesE/n is clearly evident in b
attain a maximum

ith further increase inand then decrease wit u
onsistent with the re-
Thi f ld d dence

This behavior is con
'

r the ei envalues. issuits in Fig. 3 or
inima that occurs in theis attributable to the Ramsauer minima



32 ELECTRIC FIELD DEPENDENCE OF TRANSIENT ELECTRON. . . 3677

TABLE IV. Relaxation times versus electric field strength E/n in units of 10 ' Vcm . Tq ——290.1

K; the initial distribution is a delta function at uo ——4.0 in units of uth
——1.148& 10 cm sec . ~(1.01) is

the time, in units of 10" sec cm, required for each quantity {energy', mobility, and/or diffusion coeffi-
cient relative to the stationary value) to decay to within 1.01 of the stationary value. Asterisks denote
values of ~ for relaxation to 1/1.01 or 1/1.1 of the stationary value. Cross sections are those reported
by Mozumder (Ref. 12).

E/n

0.0
0.1

0.2
0.3

Energy

32.34
4.816 .

7.247
5.363

w(1.01)
Mobility

31.99*
10.87
6.786*
5.003*

Diffusion

28.45
10.09
6.245
4.570

He

Energy

18.54
3.189
4.294
3.039

~{1.1)
Mobility

18.24
6.464*
3.895*
2.734*

Diffusion

24.64
5.554
3.262
2.225

0.0
0.01
0.05
0.10

1986
242.2
63.56
7.538

2387
249.9
65.15*
15.61

1403
149.9
34.62
2.588

Ne
985.4
144.1

30.17
1.064

1356
154.6*
33.09
6.8S4*

392.3
38.25

1.099*
1.016*

0.0
0.003
0.005
0.01
0.025
0.05
0.10

2505
3889
2085
4S3.0

74.32
54.35
34.62

2487
3231
519.4
475.4
108.8
70.08
45.30

2814
4116

'2120
421.4
23.67
43.54
31.75

Ar
1853
2352
1034

172.9
14.08
14.06
13.89

1832
1694
298.8
219.1

56.02
29.91
23.76

2170
2578
1068

88.67
1.144*
7.144

10.36

0.0
0.01
0.05
0.06
0.10
0.20
1.00

636.8
1371
1159
705.6
126.1
21.80*
7.159

663.1
1395
919.7
460.5
107.8
31.60
9.892

748.0
1793
1188
717.9
122.6
20.01
7.323

496.5
959.7
589.9
303.9

1.402
7.044*
3.027*

524.5
984.7
3S0.8
72.72
20.68
15.90
5.590

611.8
1382
619.5
316.2
20.24
6.660
3.068

0.0
0.001
0.005
0.01
0.02
0.03
0.04
0.10

764.7
780.3

1170
2040
2316
1004
397.4
44.99

751.9
768.4

1148
1884
1972
664.3
127.7
61.16

847.4
869.6

1407
2472
2432
1021
395.2
29.59

Kr
599.5
609.3
848.4

1398
1378
443.2
108.3
15.21*

588.3
598.6
826.3

1242
1034

120.6
38.79
29.42

689.2
704.9

1086
1830
1494
460.4
109.0

8.726

cross sections for these moderators. For Kr and Xe, the
electric field effect is very pronounced accounting for in-
creases by more than a factor of 2. This effect appears to
be associated with the speed distribution function attain-
ing a bimodal form during the thermalization as illustrat-
ed in Fig. 7 for krypton. The higher-energy peak of the
bimodal distribution function is always close to the energy
where the cross section is at a minimum. This same
phenomenon also occurs for Ar and Xe. Owing to the
small cross section near the Ramsauer minimum, some
electrons are temporarily "trapped" in this energy range
and the eventual relaxation rate to the stationary distribu-

tion is prolonged. This phenomenon may also be under-
stood in terms of a "tunneling" in the potential function
in the equivalent Schrodinger equation, see Fig. 2(b). A
comparison of the field dependence of the thermalization
times for two cross sections for argon is shown in Table
V. Although the cross sections are rather similar (see Fig.
3 of Ref. 9), there is some difference in the thermalization
times obtained with these cross sections.

Figure 8 compares theoretical calculations of the tran-
sient mobility with the recent experimental results by
Warman et al. for several E/n values. The theoretical
curves assume an initial delta-function distribution with
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FIG. 9. Field-induced transient mobility in krypton with the
electron swarm initially at equilibrium with the moderator.
Tb ——290.1 K and E/n in Td equal to a, 0.01; b, 0.05; c, 0.1; d,
0.2.

sensitive probe of electron moderator momentum-transfer
cross sections.

duced to a Fokker-Planck equation with a field-dependent
linear operator which is self-adjoint with a weight func-
tion w(x)=x exp( —x ). This enables the calculation of
transient swarm parameters in terms of the eigenvalues
and eigenfunctions of the Fokker-Planck operator. The
transient behavior of electrons for moderators (Ar, Kr,
and Xe) with a Ramsauer minimum in the momentum-
transfer cross section was contrasted with the transient
behavior for moderators (He and Ne) without a minimum.
The transient behavior was considered for initial none-
quilibrium distributions as well as for field-induced ef-
fects in which case the initial electron swarm is in equili-
brium with the moderator and the departure from equili-
brium ensues by turning on the field. It was shown that
the transient effects can be used as a sensitive method of
distinguishing between different momentum-transfer cross
sections. Also, the transient negative mobilities reported
earlier for relaxation from an initial nonequilibrium distri-
bution function were shown to be diminished with in-
creasing electric field. A comparison with such experi-
ments for xenon provided good agreement.
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