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We consider the effects of external, multiplicative white noise on the relaxation time of a general
representation of a bistable system from the points of view provided by two, quite different, theoreti-
cal approaches: the classical Stratonovich decoupling of correlations and the new method due to
Jung and Risken. Experimental results, obtained from a bistable electronic circuit, are compared to
the theoretical predictions. We show that the phenomenon of critical slowing down appears as a
function of the noise parameters, thereby providing a correct characterization of a noise-induced

transition.

I. INTRODUCTION
A. General

Nonlinear systems with control parameter driven insta-
bilities, and in particular bistable systems with multiplica-
tive (or state-dependent) noise, have motivated a great deal
of study in recent years.!~® These studies have been par-
ticularly important to the understanding of optical bista-
bility'®— !4 and to bistability in other systems.>>!>1¢ An
important characteristic of macroscopic, multistable sys-
tems is the relaxation time,!” which indicates critical
slowing down near an instability.

In this paper we discuss the relaxation time of a general
bistable process represented by a stochastic differential
equation

X=f(X)+g(X)o&()=F(X,1) , (11
where

f(X)=—X*+AX*—QX +R (1.2a)
and

g(X)=Xx2. (1.2b)

The parametric noise has been introduced into the control
parameter A as A,=A+40§,;, where o, is a Gaussian,
white noise of zero mean and variance ¢?, defined by the
correlation

(EE()) =a?8(t —1") ,

and where Q and R are constants. This system exhibits
bistability only as a function of the mean value A, of the
control parameter and the noise intensity o.

Since the correlation function C(s) of the response of
such a system is not expected to be an exponential with a
well-defined correlation time, we define the relaxation
time

(1.3)
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T= ["ds C3(5)/C(0) (1.4)

following Hernandez-Machado et al.!” The correlation is
Cy(s)=(8X(t +5)8X (1)) , (1.5)

where the deviation is 8X (¢)=X (t)— (X (¢)), and station-
ary properties are achieved in the usual way as limits for
t— 0.

Three theoretical methods are used to evaluate T as a
function of o and A for a specific numerical example of
Eq. (1.2). These methods, which are reviewed in Sec. II,
are (1) a deterministic approximation, (2) the well-known
and often-used decoupling of correlations due to Stratono-
vich,'® and (3) a quite recent, exact result obtained by
Jung and Risken.!® Finally, in Sec. III we describe experi-
mental measurements of T obtained from an electronic
circuit which models Eq. (1.2), and the data are compared
to the theoretical predictions. :

B. The model

In order to obtain quantitative results, we have chosen
Q =3 and R =0.7 in Eq. (1.2). These choices result in a
bistable region located in the control parameter - range
3.2<A<3.7 for 0=0. In this range there are one unsta-
ble and two stable steady states. Outside this range only
one steady state is dynamically accessible for A>0. The
deterministic response is shown in Fig. 1 by the solid
curve with closed circles. (The circles are the measured
response for =0 of the electronic circuit described
below.) When o >0, the variable X is a continuous sto-
chastic process whose probability density P(X,) obeys the

Fokker-Planck equation
dP(X,t)/3t =L (X,t)P(X,t) , (1.6)

with evolution operator
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L(X,t)=—§(—X +AX*—QX +R +0°X°)
2 N2y4
Caskie. S (1.7)
2 9x? 3+ —
corresponding to the Stratonovich interpretation of Eq.
(1.1).132° The time-independent (d/8t=0) solution of <
Egs. (1.6) and (1.7) results in the stationary probability - |

density
P, = NY —21+1/0D)
xexp[(2/0*)(—A/X +Q/2X*—R /3X%)], (1.8)

where N is a normalizing constant. It is worth noting
that Py has been previously measured experimentally for
the present numerical model (Q =3, R =0.7) on the same
electrical circuit described below.?! For X—0, P is a
strongly decaZying function, but for X— o,
P, ~X 2141799 which means that for a finite value of
o, higher-order moments do not exist because they
diverge. Specifically, if we define

ne=2/0>+1, (1.9)

then all the moments (X") for n > n diverge, so that for
o?>2 only (X) is finite. For this reason, we expect the
Stratonovich approximation to be even less accurate in the
present application than in models for which the noise
multiplies only the linear term in Eq. (1.2) resulting in fi-
nite higher-order moments.

An important property of Py (X) is that its extrema are
shifted in relation to A when o > 0.2""22 The locations of
the extrema X, are given by the roots of

(1404)X2 —AX2 +QX,, —R =0 . (1.10)

For A >0, this cubic has three real roots (corresponding to
a bimodal density) for o <o,.=1.02, but only one real
root for o>o0, (monomodal density). Bistability can
therefore be induced or destroyed by varying the noise in-
tensity for fixed A. This is one example of the noise-
induced transitions discussed by Horsthemke and Lefev-
er.3 The locus of the roots of Eq. (1.10) for o=o, is
shown in Fig. 1 by the solid curve along with some experi-
mental measurements indicated by the triangles.

The statistical, stationary moments can be evaluated us-
ing Eq. (1.8), and the standard definition Eq. (1.6) then re-
sults in the equation of motion for the nth moment:

d(X"),/dt=nR(X"~'),—nQ(X") +nAi(X"*1),
_.n[l_(o-2/2)(n +1)]<Xn+2>t .

In the steady state this equation yields a recurrence rela-
tion for the moments, and hence we need only find the
first two in order to obtain all of them. From Eq. (1.11)
we see that the stationary n moments exist if n <ng as
shown by Eq. (1.9). From Eq. (1.6) we can also obtain the
equation of motion satisfied by the correlation function

d{X ()X (0)) /dt
=R{(X)¢—Q(X(1)X(0))+A{XH)X(0))g
—(1—=?){ X3 )X (0)) .

(1.11)

(1.12)

FIG. 1. Deterministic, steady-state values of X as obtained
from Eq. (1.2) (solid curve) with measured values obtained from
the circuit (closed circles) are shown on the left. On the right
are the maxima X,, of Py(X) as determined by Eq. (1.10) for
0~0,~1.0 (solid curve) with measured values (open triangles).

This equation will be used in the Stratonovich approach
in order to obtain T, as shown in Sec. III.

II. THEORETICAL BACKGROUND

In this section we present three very different methods
for evaluating the relaxation time 7. We have selected
these because each of them yields a particular insight into
the problem. The first one is valid for a monostable state,
and it gives the upper bounds for T!. The second one
was introduced by Stratonovich?® and makes use of a
decoupling in the equations for the correlations. This
method can be understood as the lowest order of a more
sophisticated approach.'”?#?> We review this method
here because it results in qualitatively correct predictions
with minor effort. The last method, due to Jung and
Risken, produces an exact result; however, the final for-
mula, an integral, in almost all cases must be evaluated
numerically.'

A. The deterministic approach

Let us suppose that o is small so that the system is
close to the deterministic state with only small fluctua-
tions around this state. We define a change of variable

AX=X-X;, (2.1

where X; is the deterministic value and AX is the fluctua-
tion. Substituting Eq. (2.1) in (1.1) and retaining only
linear terms, we get

AX=—(Q —2AX; +3X?)AX + X&(1) . (2.2)
Because this equation is linear, the relaxation time is just
T~'=Q —2AX; +3X} . 2.3)

This formula cannot be used in the bistable region, be-
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FIG. 2. Inverse relaxation time vs A for different theories.
The dot-dashed curve is the deterministic approximation ob-
tained from Eq. (2.3). The solid curve is the prediction of the
Stratonovich decoupling given by Eq. (2.8) with 0=0.5. The
dashed curve is the Jung-Risken result for 0 =0.5.

cause the steady state X; is not unique (but see also
below). In the monostable region it can be understood as
the lowest order in a perturbation expansion in o. So in
principle we could expect good quantitative results, but
only when both A and o are very small. This can be seen
in Fig. 2, where the best agreement (with the results of the
other two approaches) is obtained for small A. If Eq. (2.3)
is also applied in the bistable region, it yields two
branches which cross each other within the region and
finish at the boundaries determined by the limits of bista-
bility as shown by the dot-dashed curves in Fig. 2.

B. The Stratonovich decoupling

The starting point for this method is Eqgs. (1.11) and
(1.12) which essentially involve an infinite hierarchy of
equations for all the moments and correlations. Defining
higher-order correlation functions by

Cn(t)=<Xn.—1(t)X(0)>st_<Xn_1)st(X>st 2 (2'4)
and using Egs. (1.11) and (1.12), we obtain for C,(¢)
dC,(t)/dt = —QC,(2)+AC;(1) —(1—0?)C4l2) . 2.5

The Stratonovich decoupling consists of expressing
higher-order correlations in terms of the usual correlation

function:
C,(t)/C,(0)=C,(t)/C5(0), Vn,

which is exact in two limits, ¢t =0 and ¢t = «. This means
that all the correlations relax on the same time scale. The
result is a dynamical approximation in the sense that the
decoupling affects Eq. (1.12) but not Eq. (1.11). The

(2.6)
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steady-state moments are not approximated, only the

correlations.
Using Eq. (2.6) in (2.5), we obtain

dC,(1)/dt = —[Q —AC5(0)/C,(0)
+(1=0%)C4(0)/C,(0)]C,(2)

which is a linear equation of motion for C,(¢) and hence
implies that C,(¢) relaxes exponentially with a relaxation

time

(2.7

T—1'=Q —AC;(0)/C,(0)+(1—0a*)C4(0)/C,(0) . (2.8)

This expression depends on the first four steady-state mo-
ments. The first and second of these have been evaluated
from Eq. (1.8) by the usual formula, using Romberg’s nu-
merical integration algorithm. The remaining two mo-
ments were obtained using Eq. (1.11); in particular,

(X)g=(1—0)"UR —Q(X )¢ +A (X)), (2.9

and
(XM ¢=(1=302/2) " n{X )g— Q(X?) 4 +A(X3)g) .
(2.10)

Because in this approximation for our model we require
that the fourth moments be finite, the condition (1.9) re-
sults in an upper limit for o

0<V2/3~0.815.

In consequence, this method cannot be used for large
values of o.

Higher-order corrections can be defined and evaluated
following standard approaches related to continued frac-
tion methods,!”?*?5 but in some cases these corrections do
not result in any substantial improvement.” Even worse,
they can lead to nonphysical results as explained in Ref.
17. Nevertheless, the continued matrix fraction approach
of Jung and Risken works very well for models with mul-
tiplicative noise.”” In our opinion, the applicability of
such ‘nonstandard perturbative approaches depends
strongly on the particular characteristics of the model:
multiplicative or additive noise, divergences of the mo-
ments, etc.

In the present model there is no way to try to evaluate
higher orders, because that would require the existence of
higher-order moments!”?> which in turn would further re-
strict the range of allowable values of o. Thus better ac-
curacy can be achieved only at the expense of the range of
applicability. The relaxation time obtained from Eq. (2.8)
with 0=0.5 is shown by the solid curve in Fig. 2.

(2.11)

C. The Jung-Risken method

Here we present a very brief review of the exact solu-
tion for the relaxation time as has recently been ob-
tained.!® The standard definition of the correlation func-

tion is
C,(1)=(AX (1)AX (0) ),

= [dx, [ dX, AX, AX, Py(X,,t;X,,0),  (2.12)
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where AX =X —(X) and P,(X,?;X,,0) is the joint prob-
ability, which can be expressed in terms of the conditional
probability P(X;,t | X,,0),

PZ(XI:t;XZ’O)ZP(let IXZ’O)Pst(XZ)
="M (X, —X,)Py(X,) . (2.13)

Substituting Eq. (2.13) into (2.12), and integrating out X,,
we have

Cyt)= [ dX, AX, W(X,,0), (2.14)
where
wx,,0=e""""Ax, P, (X)) . 2.15)

Now we time integrate Eq. (2.14) and, according to the
definition of T, Eq. (1.4), we obtain

where
p(X))= f0°° W(X,,t)dt . 2.17)

From Eq. (2.15) we observe that W(X,,t) obeys a

Fokker-Planck—like equation of motion
OW (X,t)/0t =L(X )W (X,t), (2.18)

which is time integrated and according to the definition
Eq. (2.17) yields

—W(X,,0)=L(X,)p(X,), (2.19)

where W (X, )=0 from Egs. (2.15) and (2.18). Equa-
tion (2.19) can now be integrated over X; between 0 and X
to give

I(X)=—[f(X)+g'(X)g (X)]p(X)

+3[g%(X)p(X)]/3X , (2.20)
where f(X) and g (X) are defined by (1.2),
X
I(X)=— fo AX, Py (X,)dX, , 2.21)

and the integration constant was taken equal to zero.!”

Equation (2.20) is a linear, nonhomogeneous, ordinary dif-
ferential equation for p(X), which after integration gives
Ix') X’

X
p(X)=Py(X) [ X', (2.22)

0 gX(X')Py(X")
where we have used the boundary condition g2(0)p(0)=0.
Substituting Eq. (2.22) into (2.16) and integrating by parts,

1 w  J¥X)
T= ,
C(0) fo gAX)P4(X)

(2.23)

which is the exact expression for 7.

The dependence of T on the parameters A and o for
this model have been explored following a numerical in-
tegration algorithm to evaluate Eq. (2.23). We briefly re-
view the algorithm here. First we select an upper bound
Xmax for the integral in Eq. (2.23) and divide the domain
of integration into 100 points. I(X) is evaluated re-
currently for each point,
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Xn+1
IX, )=I1X,)— [,"" AX, Py(X))dX,, (2.24)

where this integral is done by the six-point Gauss’s formu-
1a.?® The first moment in Eq. (2.24) (AX,;=X;—(X))
was obtained by Romberg’s method with enough pre-
cision, and it was also used for the second moment in
C,(0). The integration of Eq. (2.23) was finally complet-
ed by use of the extended Simpson’s rule.?® In order to
avoid systematic numerical errors, for some values of the
parameters, T was evaluated for different values of X,
and also for various partitions of the interval. No appre-
ciable error was found.

In Fig. 2 we plot the results of this approach for 0=0.5
as shown by the dashed curve. All three methods can
now be compared. In the monostable region for small
enough A, all three approaches are in agreement; however,
there is substantial disagreement in the other monostable
region because of the large values of A. In the bistable re-
gion only the Stratonovich and Jung-Risken approaches
can be used, and we shall show in Sec. III that of these
two only the latter is in agreement with the measured re-

" sults, at least to within the estimated experimental uncer-

tainties. The Stratonovich decoupling predicts the
minimum in T~!, but the results are not quantitative.
This is not surprising, because this approach does not take
into account the dominant mechanism in the bistable re-
gion: the passage time from one well to the other and vice
versa. This tendency to underestimate 7 was also ob-
served in other, even more stable, systems.?’

The minimum in 7! is the dominant feature predicted
by theory and is a good dynamical characterization of a
noise-induced transition, since it clearly shows critical
slowing down induced by varying either A or o. For a
smaller value of o (0=0.2) not plotted in Fig. 2, the
minimum of T~! decreases an order of magnitude more.
Indeed, T— o in this model as o—0, while no such
singularity appears in the moments.?’ =%

III. THE EXPERIMENT

In order to test these theoretical predictions, we have
also carried out a detailed experimental study of the relax-
ation time, based on the electronic circuit illustrated in di-
agrammatic form in Fig. 3. Its mode of operation, similar
to that of some circuits described previously,!>!$20:2127 jg
as follows. For any given X, the various terms on the
right-hand side of (1.1) are constructed in a sequence of
arithmetic operations using standard analogue electronic
components; the bandwidth-limited Gaussian white noise,
with correlation time 7y, is supplied from an external
generator. The resultant time-varying signal, representing
F(X,t) for the cubic bistable defined by (1.2), with Q =3
and R =0.7, is integrated and then equated to X by being
returned to the input, as shown.

The actual circuit used in practice differed in certain
important respects from the idealized version shown in
Fig. 3. One of these was that the integrator time constant
7; was much less than unity. Some other variations were
also necessary in order to obtain reliable data for particu-
lar ranges of o, and we will refer to these below. The
principal reason for making 7; << 1 is to shift the range of
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frequencies v that are of interest into a region where the
power spectrum of a standard commercial noise generator
is reasonably flat (since the response of most generators
tails off rapidly for v <10 Hz). Additional motivations
were to simplify circuit design and to avoid the inordi-
nately long data-acquisition periods that would have been
entailed by a need to accommodate frequencies in the
sub-Hertz range. The choice of 7;51 has two other direct
consequences that must carefully be borne in mind. First,
when bandwidth-limited white noise of rms voltage Vy
and correlation time 7y <<7; is being applied to the cir-
cuit, the quantity o that appears in the white-noise equa-
tions above is then specified*° by

o=Qry /)N Vy . (3.1)

Provided 7y << 77, the noise is perceived by the circuit as
effectively white and (3.1) remains valid. Second, there is
an effective scaling of real time so that, to make our mea-
surements of the relaxation time consistent with the
theoretical discussion above, it is necessary to divide them
all by 7;. For most of the measurements, the time con-
stants were 7y =59 us, 77 =6.5 ms.

The deterministic (0=0) response of the circuit is
shown by the closed circles of Fig. 1, where it is also com-
pared with the ideal behavior predicted by a solution of
(1.2). The agreement obtained is not perfect, but the small
discrepancies (typically a few percent) that are evident can
readily be accounted for in terms of known nonidealities
of the analogue components. The statistical density of X
for 0 >0 has also been measured for this circuit and has
been found to be in satisfactory agreement with the pre-
dictions of both (1.8) and (1.10): A comparison of the ex-
perimental data with (1.10) is shown for 0~1.0 by the tri-
angles and associated solid curve in Fig. 1. ;

The relaxation time T of the system was determined for
different values of A and o by means of a Nicolet 1080
computer system, through the application of a standard
Fourier transform technique®! for computation of the au-
tocorrelation function that, in outline, was as follows.

F(x,)

’ %0.7

X ) X=[F(x,D

L computer

FIG. 3. Schematic diagram of the electronic circuit used for
experimental measurements of the relaxation time T defined by
(1.4). The computer acts purely as a measuring instrument and
in no way affects the operation of the circuit.
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First, a sample of X(¢) was digitized at 1024 discrete
points separated by a sample interval that was varied so as
to suit the value of T that was to be measured. Second, a
constant was added to every point in the block so as to ob-
tain a function with zero mean. Third, after the provision
of an adjacent block of 1024 zeros (to eliminate potential
ambiguities arising from circular correlation effects) a fast
Fourier transform. was performed on the combined block.
Fourth, the result was squared to give the power spec-
trum, following which, fifth, the inverse transform was
taken to yield the autocorrelation function. After removal
of the bias®' resulting from the noninfinite size of the
block, and after interchanging the left- and right-hand
halves of the result, this procedure yielded the autocorre-
lation function C,(s) as defined by (1.5), with the zero of
the offset time s referred to the center of the block. The
whole sequence was repeated typically 200 times, the re-
sults being added and averaged so as to enhance their sta-
tistical reliability. Finally, a small baseline correction,
again necessitated by the noninfinite length of the digi-
tized blocks of X (¢), was implemented to ensure that the
flat portion of C,(s) obtained for large s was centered ac-
curately on zero. ‘

Two typical results of these procedures are shown in
Fig. 4, in each case for A=3.6. In the recording of Fig.
4(a) the noise level was sufficiently low (0=0.1) that X
remained close to the upper root for the duration of the
measurement. The resultant autocorrelation function is
exponential within experimental error, as indicated by the
linearity of its logarithm plotted in Fig. 4(b). For a larger
noise level, where switching is taking place between the
two states of the bistable, a much wider autocorrelation

(a) Cz(S)

‘IIO 6 IJO
(b) A In Cyls)

-io o 0
(c) Cals)

-40 ' a0
(d) in Ca(s)

'4LO (l) 4J0

s

FIG. 4. Experimental autocorrelation functions C,(s) as de-
fined by (1.5) measured at A=3.6. In (a), C(s) is shown for
o=0.1, and in (b) its logarithm is plotted. In (c), C,(s) is shown
for 0=0.6, and its logarithm, plotted in (d), shows that the
behavior is then decidedly nonexponential in character.
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function, as in Fig. 4(c), is obtained [where the change in
the scale of s from Fig. 4(a) should be noted]. Under
these conditions, the form of C,(s) is decidedly nonex-
ponential, as shown by the nonlinear shape of its loga-
rithm plotted in Fig. 4(d).

To evaluate the relaxation times, we have integrated the
experimental correlation functions, in practice truncating
the integrals at a value of s where C,(s) has fallen to zero
and then dividing the result in each case by C,(0) thereby
computing the relevant value of T in accordance with
(1.4).

The principal obstacle to the acquisition of reliable data
arises from the relatively very large breadths of the densi-
ties represented by (1.8) and the consequent difficulty of
accommodating these within the limited dynamic range of
standard electronic components. In recognition of this
problem, we have introduced a number of modifications
to the basic circuit shown in Fig. 3. The most important
of these is a scaling down by a factor of 100 of the volt-
ages in the section of the circuit prior to the summation
amplifier and a subsequent multiplication of the integrat-
ed signal by 100 so as to ensure that the overall scale fac-
tor of the circuit remains equal to unity. A number of ad-
ditional small modifications were required when o > 0.5,
to prevent or reduce clipping of the largest voltage excur-
sions in the components that deal with X 2, and for o up
to the largest experimental value of o0=1.5 it was also
found necessary to alter the overall scale factor such that
X—X/2. After every modification the deterministic
(0=0) response of the circuit was remeasured to ensure
that the upper solid curve of Fig. 1 was still being fol-
lowed.

The form of the circuit that was developed to cope with
large values of o turned out to be quite unsuitable for
measurements with small o (as well as vice versa). This
was, in particular, because of the increased importance of
small drifts in the values of A and R and also because the
intrinsic noise of the circuit components themselves could
then become comparable with the external noise unless, of
course, o was relatively large. We have therefore used
slightly different versions of the basic circuit to cover dif-
ferent ranges of o: The data thereby obtained are con-
sistent and agree with each other in the regions of overlap.

In view of the foregoing remarks, it is hardly necessary
to emphasize that the circuit is a “real physical system”
and therefore subject to the experimental errors and
nonideal modes of behavior (as compared to the relevant
model equations) that invariably characterize such sys-
tems. It should be noted, for example, that small drifts in
A and R due, perhaps, to changes in temperature are
bound to result in large changes in 7" when the system is
near an instability. To look at it in another way, quite
small drifts of the circuit parameters can cause the exact
location of the instability to alter, again resulting in rela-
tively large changes in T.

Some of our experimental results are plotted, and com-
pared in each case with the corresponding theoretical pre-
dictions, in Figs. 5—7. The random error in the data can
best be judged by their departures from the curves drawn
through them. The error bars on some of the points
represent estimates of the uncertainty introduced by the
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FIG. 5. Inverse relaxation times T~! in the limit of very
small o, determined under conditions such that, within the bi-
stable region, no switching occurred between the upper and
lower states during the period necessary to complete the mea-
surement. The curves represent (2.3).

small baseline correction referred to above; the nonideal
responses of the analogue components contribute to addi-
tional systematic errors amounting typically to ~ +10%
and, in the worse cases, to ~ +30% in T.

The results in Fig. 5 refer to very small o where (in
practical terms, even within the bistable region) 7'~ is ef-
fectively independent of o, and the curves represent (2.3).
The agreement between experiment and theory is excel-
lent. That this should be so within the bistable region
might at first seem surprising in light of the preceding
theoretical discussion, because in principle T— o« as
0—0, and, because, in any case, (2.3) is formally inappli-

10.0

2.0 & ,°,°

05 —

0.2 P

FIG. 6. Measured inverse relaxation times vs A for 0=0.5
(open circles) and o0=1.0 (open triangles). The curves are the
prediction of the Jung-Risken theory for the same values of o.
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FIG. 7. Measured inverse relaxation times vs o for values of
A as shown. The curves are the Jung-Risken results.

cable to cases where X; is not unique. In practice, howev-
er, these experimental data were acquired under condi-
tions such that no switching occurred during the period of
time (typically 20 minutes) needed to complete a measure-
ment of T, the system having previously been set in the
chosen upper or lower state by an appropriate sequence of
changes in A. Thus, within the time scale of the measure-
ments, X; can be regarded as unique and (2.3) can proper-
ly be expected to apply, consistent with the results of Fig.
5.

For larger values of o a pronounced minimum is found
in T—}(A) within the bistable regime, as shown in Fig. 6
for two values of 0. The experimental data (points) show
a variation with A that is very closely similar to the
behavior predicted above (curves) on the basis of the
Jung-Risken theory. Figure 7 shows a comparison be-
tween the measured (points) and predicted (curves) varia-
tion of T~! with o for two values of A. Again, encourag-
ingly close agreement is found between experiment and
theory, there being pronounced minimum in T~!(o) for
both.

IV. CONCLUSIONS AND COMMENTS

We have shown, theoretically and experimentally, that
it is possible to characterize a noise-induced transition by
looking at the relaxation time of the fluctuations in the
steady state. It had previously been established that no
true phase transition would appear in a zero-dimensional
system. That is true from a rigorous, equilibrium statisti-
cal mechanics point of view. But nonequilibrium systems
need not be characterized only within the equilibrium
framework. Here we have presented a real, physical,
nonequilibrium system which exhibits a first-order transi-
tion driven by the external control parameters A or o. We
have shown that for some values of A, there is an unmis-
takable critical slowing down, whose magnitude depends
on o, in accord with theoretical predictions. From these
data, it is possible to conclude that a noise-induced transi-
tion is present. Further, this characterization of the tran-
sition in terms of T is more nearly definitive than previ-
ous characterizations which were based on the appearance
and locations of the extrema of P, (X),>?” but they have
the same meaning.

We comment that the exact approach due to Jung and
Risken offers the best method for the study of relaxation
times, because explicit results can be obtained, even
though numerically, with a high degree of accuracy and
minor computational difficulties. These are clear advan-
tages compared to the more usual perturbative methods,
which restrict one to small o, or to nonperturbative
methods related to continued fractions.

Finally, we emphasize that this noise-induced transi-
tion, with characteristic critical slowing down, has been
observed in a real, physical system, the electronic circuit,
and therefore could not be the result of either a definition
or an artifact of the theoretical model.
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