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An explanation for electroencephalogram (EEG) activity is proposed. Under suitable assumptions
concerning the active transport of Na*-K* ions through the glial tissue in brain cortex, a
Schrodinger-like equation for ion displacement waves is easily obtained. Theoretical wave-
propagator diagrams are in perfect agreement with experimental stimulus-response patterns directly
recorded on brain cortexes. Conditions for effective Schrédinger wave holography and its greater ef-
ficiency in comparison with D’Alembert wave holography, are briefly discussed. The need for
“reference-wave” recruiting device and for a receptor arrangement, for holographic information
recovery in proximity of the signal sources, lead to brain-organization models in good agreement

with diagrams reported by neurophysiologists.

I. HOLOGRAPHIC MODELS FOR ANIMAL MEMORY

Since the second half of the 1960s some authors' have
introduced the hypothesis that animal memory works ac-
cording to a holographic type process. To support this
idea several arguments can be given.

(a) Uniform diffusion of engrams throughout the cere-
bral cortex. Thirty years of research, performed by Lash-
ley? from 1920 to 1950, have convinced many neuroscien-
tists that memory engrams are not localized in any specif-
ic places in animal brains, and that memory blurring
essentially depends on the total amount of damaged or ex-
tirpated celebral cortex but in no way depends either on
the specific areas in which such manipulations are per-
formed, or on the kind of recorded information.

(b) Associative property. Observation of animal
behavior® and psychological analysis of human memory*
lead us to state that whenever any “fragment” of recorded
information is again presented to the attention of a sub-
ject, this fragment acts as a memory address for the
recovery of the complete information and of any other in-
formation associated with it during the subject’s life.

(c) Globality and simultaneity of mnemonic evocations.
Any mnemonic recall acts through a simultaneous presen-
tation of a complex set of associated data (e.g., visual im-
age memories) and more generally of time-varying com-
plex sets of data (e.g., moving-scene memories).

(d) Memory synopsis. There is no evidence that
mnemonic traces are stored in files, in tree-shaped ar-
chives, etc., as computer data are stored in tapes, pages
are in books, or books are in libraries. Access time to
memories appears to be mainly dependent upon certain
emotional strengthening factors and there is no evidence
of a scanning time related to the time ordering of life ex-
periences.

All these properties of animal memory can be easily
simulated by holographic techniques making use of pho-
tographic interference patterns, obtained by superposition
of coherent monochromatic light waves, and of informa-
tion recovery by diffraction processes.” On the contrary,
they are not so easily reproducible by digital techniques
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based on Boolean or neural network activities.

It would therefore be very interesting to relate such an-
imal memory properties to some kind of wave-
propagation phenomenon taking place inside animal
brains. It must, however, be kept in mind that a necessary
condition for effective holographic information processing
is the linear character of wave propagations; i.e., the valid-
ity of the superposition principle. If this condition is not
fairly well satisfied, then no holographic process will take
place because of the reciprocal destruction of phase infor-
mation by interfering wave trains.

It is a fact that the cerebral cortexes show wave propa-
gations; i.e., the well-known electroencephalogram (EEG)
activity which, indeed, possesses many general qualifica-
tions required for a true holographic memory process; in
particular, the following.

(i) Cortical waves are linear. The validity of the super-
position principle is irrefutably evident in all those experi-
ments which are based on time-delayed or frequency-
displaced stimulations. One can easily observe linearly su-
perposed patterns and bates that could not take place at
all if the superposition principle were not accurately satis-
fied.®

(ii) Cortical waves are not simple direct effects of the
neural activity. As demonstrated by Li, McLennan, and
Jasper in 1952,7 cortical waves persist. with substantially
invariated properties when the neural activity is strongly
depressed by the administration of anesthetics.

(iii) Cortical waves appear to be in close relation with
mnemonic activity. A proof of this is their arousal only
during “dreams” in sleeping mammalians.

The idea that cortical waves might perform a holo-
graphic function was introduced by Barret in 1969.2 Ga-
bor, however, had already declared his scepticism about it
and had proposed and credited an associative memory
model based on the simulation of holographic processes
by digital techniques.® As a consequence many research-
ers applied their efforts in the direction suggested by
him.!°

This scepticism seems at first very reasonable. Cortical
waves appear, in fact, to be defective of what experts in
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optical holography judge to be an essential requirement
for decent information processing; i.e., they lack suffi-
ciently small wavelength components. Gabor himself
gave an extensive proof'! that the maximal amount of in-
_formation I that a monochromatic light beam of wave-
length A can read out from a plate of area A4 is given in
bits by the relation I =A /A% Therefore, in order to pro-
cess large amounts of information by means of devices
having small 4 /A? ratios, one should employ a superposi-
tion of light beams covering a dense frequency spectrum.
One should also use recording techniques based on photo-
graphic emulsions containing a wide repertory of sensitive
grains which are highly frequency selective, both in expo-
sition sensitivity and in diffusion power after their blow-
ing up. Such sophisticated procedures are in principle
possible, although so far they do not seem to be practical-
ly manufacturable. On the other hand it is known, from

research on phase relations between differently localized °

cortex wave recordings, that it is not possible to speak
about definite wavelength values, and not even of small
wavelengths. The correlation lengths of the EEG seem to
have the same order of magnitude as the brain anatomic
dimensions!? and they cover a very low-frequency spec-
trum range ( ~0—100 Hz).!

However, the hypothesis that inside the brain cortex an
enormous quantity of finely tuned local resonators might
be formed, in order that efficient holographic processes
could take place, should not appear too peregrin, since it
is known that a lot of little resonators are effectively
present in the animal auditive sensorial system.!* Rather,
what is very difficult to admit is the existence of efficient
focalization devices for holographic information recovery
inside animal brains; which are indeed necessary, for in-
formation recovery in light or sound holography.

After careful consideration of these shortcomings, the .

only correct conclusion that one is enabled to draw is that
cortical waves are unlikely to be of the kind satisfying a
D’Alembert equation (i.e., similar to sound or light
waves). Rather, as we shall see, they look very much like
the waves satisfying a Schrodinger equation. This paves
the way for the search for a Schrédinger wave holography
model. The exclusion of D’Alembert waves in favor of
Schrédinger waves can also be inferred by general argu-
ments concerning the nature of biological processes.
Indeed, it would be very difficult to explain on an electro-
chemical basis how D’Alembert waves could be generated
in animal cell tissues. The characteristic feature of a
D’Alembert equation is the occurrence of a second time-
derivative term of the wave amplitude. From a general
physical standpoint the occurrence of such a term is, in all
known cases, a consequence of the inertial properties of
the matter (this holds also for electromagnetic waves be-
cause induction phenomena are related to the relativistic
inertial properties of the electromagnetic field). On the
contrary, it is not so obvious that a term like this should
be found in equations describing pure bioelectrical pro-
cesses, since the viscosity of a biological medium prevents
any long-range propagation of the possible amounts of
macroscopic kinetic energy. In local equilibrium thermo-
dynamics there is little place for “acceleration” and only
“velocities” are generally permitted. In this realm any

phenomenon that could be represented by partial differen-
tial equations should be related to a fundamental set of
equations, all of which contain only first-order time-
derivative terms.

In physics there is only one kind of first-order time-
derivative equation governing linear wave propagations:
the Schrodinger wave equations. Besides, it is well known
that these are of the same kind as those used to describe
thermodynamical diffusion (e.g., Fourier equations and
Fokker-Planck equations). The former differ from the
latter only in a “rotation” of the time axis onto the com-
plex plane. As a consequence also the Schrodinger wave
amplitudes must be represented as functions taking values
onto a complex plane. This is the same as saying that
they must be represented by a pair of real variables.

Fokker-Planck equations were still used by several au-
thors to explain collective behaviors of the neural net-
works,!> but these cannot have a meaningful role in ex-
plaining a possible cerebral holographic process.

II. ELECTROCHEMICAL SCHRODINGER WAVES

We assume the cortical waves to be represented by a
pair of local time-dependent variables, s(x,?) and p (x,?),
to be interpreted as macroscopic displacements of sodium
and potassium ion concentrations from certain equilibrium
values which shall be specified later.

The idea underlying this assumption is that the wave-
propagation medium is the glial tissue. This constitutes a
strongly connected lattice of cells (glial cells; specifically
astrocytes)  directly  intercommunicating  through
transmembrane electrotonic gap junctions!® and also in-
directly through interstitial pockets filled with the extra-
cellular fluid. Towards the latter various kinds of ion
channels and at least one kind of pump (Nat-K™*
ATPase) have access. In grey matter the number of glial
cells is estimated to be as much as 50 times the number of
neurons.

The average diameter of a glial cell body is about
18—20 pum, but a lot of randomly bifurcating filaments
and veil-like peduncles depart from it, decreasing in num-
ber according to a roughly Gaussian distribution with
~45 pm half-width, up to a distance of ~200 um.
Therefore we can calculate that every glial cell keeps in
touch with several hundreds lying in its neighborhood.

Until a few years ago the developed glial tissue was
mainly and generally thought of as a pure support and
supply medium for the neuron network. But during the
last decade several bioscientists have been led by accurate
experiments to state that peculiar ion transport processes,
affecting the bioelectrical activity of the neurons and of
the cerebral cortex as a whole, certainly take place inside
it. We refer for an account of this subject to the special-
ized literature.!”

The possibility that the sodium and potassium ion dis-
placements cooperate in order to generate an electrochem-
ical wave depends essentially on their strict active inter-
coupling. The main one is certainly due to the Na®-K*
ATPase pumps. Each of these performs the transport of
two K™ ions from the extracellular fluid into the intracel-
lular fluid and the inverse transport of three Nat ions for
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one ATP (adenosine triphosphate) molecule hydrolized,
and their activity increases with decreasing membrane po-
tential.!®  Another kind of intercoupling is due to the
feedback control role exerted by the Ca’* ions through
the (Na*-antiports-Ca?*)— (Ca’*-activates-K*) channel
system.!® (A proof that such a double intercoupling can
effectively account for wave propagations in living animal
tissues has been found by the author. A paper of this sub-
ject is in preparation.)

In order to support the idea that self-sustaining linear
electrochemical waves may propagate throughout the glial
tissue, let us briefly state and discuss the following as-
sumptions.

(i) Existence of an electrochemical fundamental station-
ary state. That is, a local equilibrium thermodynamical
state for glial tissue, characterized by invariable and stable
local values for ion concentrations. In these conditions
the macroscopic electroneutrality must be satisfied and
the macroscopic electrical field must be zero valued. We
assume by definition the (s,p) local displacements to be
zero valued in this state.

This does not mean that the absolute values of the con-
centrations are microscopically uniform, as would be the
case with dead tissue, since the ion concentration ratios,
between intracellular and extracellular fluids, remain very
different from 1, as a consequence of the pump activity.
The (s,p) displacements are understood as “macroscopic
values,” in the sense that they are average values taken
over many-cell-volume units.

(ii) Continuity equations for (s,p) displacements. Be-
cause of the number conservation of ions (irrespective of
the dissociation-recombination processes to which they
are subjected in cells and in extracellular fluid), we assume
for s(x,t) and p(x,t) the exact validity of the continuity
equations:

ds(x,t) . N
—at +V-Ji(x,2)=0,

2.1)
QI%’”—FV-JZ(x,t):O ,

where J,(a,t) and J,(x,t) stand, respectively, for the sodi-
um and potassium macroscopic current densities. (V and
V- are, respectively, the gradient and divergence opera-
tors.) According to the laws of electrochemical cinetics
we assume J;,J, not to depend directly upon quantities
other than combinations of ion concentration gradients,
macroscopic electrical field, and activity of the pumps,
with coefficients at most dependent on the local absolute
values of the ion concentrations, temperature, and time in-
variant local properties of the medium. These functional
dependences undergo a great simplification when the in-
terdependence among such quantities is taken into ac-
count.

(iii) Maximum efficiency principle for biological phe-
nomena. That is, natural selection provided for no useless
energy dissipation occurring when no useful work has to
be done. This means that pump activity reaches its
minimum during the fundamental state and that current
densities are in a good approximation irrotational both in
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Sundamental and in excited states. If it were not so, then
useless ATP energy dissipation would take place produc-
ing currents that would be ineffective for (s,p) displace-
ments. )

(iv) Homogeneous and isotropic electrochemical macro-
scopic properties of glial tissue. When observed under the
microscope, the cerebral cortex appears as a six-layered
wafer, of ~2 mm thickness, constituted by ascending and
descending neurons embedded in glial tissue. Its extension
amounts to ~ 1.4 m? for a human brain (when completely
displayed) and its composition appears to be quite homo-

geneous throughout its entire extension.?’

(v) The sodium and potassium macroscopic currents pro-
moted by the interstitial pockets are linear combinations of
(s,p) gradients. This assumption seems reasonable but
awaits experimental confirmation. Theoretically it is a
consequence of the following assumptions: macroscopic
electroneutrality, absence of external charge sources, mac-
roscopic irrotationality of electrical currents, and depen-
dence of other kinds of ion concentration on the (s,p) dis-
placements or electrochemical passivity of other kinds of
ions.

(vi) Permanent variations of glial tissue properties, neces-
sary for hologram formation, only slightly affect the local
impedence of the membranes to the (s,p) ion currents. In
order for slow wave holographic processes to take place
efficiently, the existence of a great number of small local
resonators, densely distributed all over the medium, seems
to be providential. At first such an assumption might not
appear plausible.

We should notice, however, that recent experiments on
the voltage response of cultured glial cell membranes to
imposed step currents show the typical transitory behavior
of damped low-frequency oscillations; conversely the
current responses to imposed step voltages show the typi-
cal behavior of a damped low-frequency LC circuit.?!
[This all happens as though the voltage-dependent potas-
sium channels, which suddenly open when the membrane
potential goes over a threshold value (=~ —40 mV), had an
exceptionally high inductive impedance. An explanation
for this phenomenon, based on a “turbine” model for this
kind of channel, is in preparation by the author.]

We assume that the holograms are formed by slight
variations of the internal viscosity of such resonators.
Maximum efficiency is assured provided the viscosity
variations are inversely proportional to the cumulative lo-
cal energy dissipations.

Since these effects are supposed to be purely
perturbative—i.e., they can be regarded as infinitesimal
local modifications of the medium—we will take them
into account later, when the hologram formation and
reading out are treated mathematically.

Putting all these assumption together, we may state the
expressions of the J;,J, currents in the form

Ji(x,t)=a(x)Vs (x,6)+B(x)Vp (x,t) ,
(2.2)
Jo(x,8) =ay(x)Vs (x,1) 4+ Bo(x)Vp (x,1) ,

where a;,a,,1,B,, are coefficients only slightly depending
on the time-invariant local properties of the medium.
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Substitution of (2.2) into (1.2) gives the system of equa-
tions:

as

3;+V'(a1Vs +B,Vp)=0, (2.3a)
%It’~+v-(a2\7s +B,Vp)=0, (2.3b)

which certainly admits oscillatory solutions provided the
matrix

a(x) Bix)

ay(x) Bylx) (2.4)

has complex conjugate eigenvalues. We shall assume this
to be the case and that the oscillatory solutions are very
slightly damped.

Assuming in first approximation «,f to be exactly uni-
form throughout the medium, we can easily find two
complex-conjugate linear combinations of s and p, say
¥(x,t) and ¢¥*(x,t), satisfying the generalized Schrodinger
equations:

*
—%“‘ﬁi=(€—|—i0)V2¢, %tL=(e—ia)V2¢*, O<e<<o

2.5)
(i=v'—1, V?’=V-V is the Laplace operator). These

equations must be corrected by the addition of small per-
|

V(x,t)= %(277)‘1/2[ei"’1//(x,t)+e ~ioy* (x,1)]

turbative terms proportional to v¥,¥* gradients when a,f
inhomogeneities are taken into account. We shall consid-
er them later when the problem of hologram formation is
discussed.

Any solution of Egs. (2.5) can be put in the form??

P(x,t)= fVMK(x,t;x’,t')t//O(x')dV(x') (t>1t") (2.6)

with 1*(x,?) the complex-conjugate expression of ¥(x,t),
and ¥o(x’) and 15(x) the initial wave amplitudes at time
t'; the integration being extended over the entire volume
of the medium. K and K* are the propagation functions
(propagators) for ¥ and ¥*, respectively. These can be
thought of as representing the amplitude responses at
point x and time #, consequent to the application of a &-
like impulsive stimulus at a point x’ and at a time ¢’. The
explicit expression for K is

K =[2m(e+io)t —t')]~ %2

X exp[ —(x —x')*/4(e+io)(t —t')] (2.7)

where (x —x')? is the squared distance between points x
and x’ and K* is the complex conjugate of K (d is the di-
mension of the medium). Assuming that at time ¢'=0 the
medium is perturbed by a short-duration stimulus, distri-
buted around point x’'=0 in a Gaussian-like fashion with
half-width a [this should simulate the effect of a sudden
(s,p) displacement generated by an assonic arborization at
a single spike run-end] we find for any real linear com-
bination V(x,t) of 4 and ¥* the expression

=C[(a®/2+€t)*+(0t)?]1~% %exp | —

x2ot d
— —-arctan

X cos 4[(a?/2+€t)*+(01)?] 2

J\/“ﬂ\/\/\

%/ =55, ¢=37/4 *x/a =130, $=g/2 x/a=4.0,$=0

/\/x/a:\50,® =m/4

%/ =5.0, $=0 x/a=10.5, ¢.=37/4
\
.

T -4
%/ = 6.5, ¢ =m/2 x/a=3.5, ¢=m/2

x/a=3.5, b= 3m/4

FIG. 1. Theoretical voltage responses to an impulsive
stimulus. Common d=3 and e=0 are assumed; x is the dis-
tance of the detector from the signal source, a the half-
magnitude of the Gaussian-shaped source size. Because of the
scale covariance, variations of a only affect ¥ and ¢ scales when
x /a is held fixed.

a?/2+€t

xAa?/2+€t)
4[(a?/2+€t)?+(ot)?]

+@

b

where C and ¢ are real constants. We suppose V to
represent the electrical potential response recorded at time
t by a micropipette electrode placed at point x.

In Fig. 1 various patterns of V are plotted for fixed x
and varying t according to different values of a,@ param-

-
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FIG. 2. Experimental potential responses directly detected on
mammalian brain cortexes. References for the curves are as fol-
lows: A4, Ref. 12, Pt. A, p. 305; B, Ref. 12, Pt. A, 291; C, Ref.
12, Pt. A, p. 190; D, Vanderwolf and Ossenkopp, in Neuronal
Plasticity and Memory Formation, Ref. 26, p. 605; E, Clare and
Bishop [EEG Clin. Neurophysiol. 8, 583 (1956)].
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eters. In Fig. 2 we report some characteristic stimulus-
evoked responses usually recorded by the direct applica-
tion of electrodes on mammalian brain cortexes.

III. SCHRODINGER WAVE HOLOGRAPHY

Schrodinger wave holograms (SWH’s) are superior to
D’Alembert wave holograms (DAWH’s) at least for the
following reasons.

(a) Differently from DAWH’s, for which only plate
recordings are permitted, SWH’s require, as a recording
support, the entire medium through which the wave prop-
agation takes place.. This property is essentially due to the
different ways in which the two kinds of waves depend on
their respective initial conditions. This allows for much
more information to be stored by SWH’s than by
DAWH’s. ’

(b) Schrodinger waves (SW’s) generated by periodic sig-
nals propagate with velocities proportional to the square
roots of their respective frequencies, whereas D’Alembert
waves all propagate with the same speed (obviously not in
dispersing media). Then SW Fourier time-transforms can
easily be obtained by exploiting the time spreading effect.
This allows also for practically immediate recovery of
holographic information.

(c) The maximum amount of information a SW can
propagate is given in bits by the ratio between the entire
volume of the medium and the volume of the minimum
size in which a signal emission takes place. Assuming
this emission size to be of the order of magnitude of a
minimal axonic arborization in human cortex ( ~2X 10~2
mm?), we can estimate as much as 10°—108 bits of infor-
mation for one impulsive local stimulus. This quantity
spreads throughout the medium and decreases in time at a
rate depending on the damping constant values [represent-
ed by € in Eqgs. (2.5)] and by other absorption phenomena
that probably take place at the boundaries of the glial tis-
sue. This should be compared with the ratio 4 /A? quoted
in Sec. L.

(d) Diffraction of SW’s through a single fixed hologram
can evoke time-varying information, i.e., moving-scene
memories; these can effectively be recorded in fixed SW
holograms. On the contrary, only time invariant informa-
tion can be recorded by DAWH’s.

(e) Any item of time-varying information that is inject-
ed into the medium through a system of independent
pointlike sources inserted in it, can easily be recovered
from SWH’s in proximity of the same sources. On the
contrary, information recovery from DAWH’s is only
possible by focalization devices for the diffracted waves.

Let us now see how SW holography should run. Equa-
tion (2.7) characterizes the propagation of SW’s through a
perfectly homogeneous and isotropic medium with ad-
sorbing boundaries. If such an ideal medium were infin-
itely extended then Egs. (2.5) could be solved for plane-
wave solutions of the form

Yr(x,1)=A (k) exp[i (k*x) —(e+i0)k>7] (3.1)

[with ¥%(x,?) the complex conjugate of this expression],
where k is an arbitrary real vector linked to the wave-
number unimodular vector n and to the wavelength A by
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the relation k=27n/A. Equation (3.1) describes a wave
with definite frequency v=0k?/27=2m0/A? and with a
maximum amplitude |y | exponentially decreasing in
time with a time decay constant r7=1/ek?=0/2mev
=A2/4m%. Notice how the wave damping increases with
increasing frequency and decreasing wavelength.

At any time >0 functions (3.1) constitutes an infinite
and complete set of mutually orthogonal complex func-
tions satisfying the relations

Jy_ i, 0w (x,0dv (x)

=27) | A(k,) | %exp(—1/27)8(k;—k,), (3.2)

where 8(k; —kj,) is the & Dirac distribution defined in k
space.

Such ideal conditions certainly cannot be realized in a
true cell medium; if this were so, then infinite amounts of
information could be holographically processed by them.
In practice one must consider quite different behaviors for
a similar set of true wave functions, mainly because of the
following reasons.

(i) The true medium is finite and irregularity bounded.

(i1) Its macroscopic properties and features cannot be
extrapolated below the scale of a few average cell diame-
ters. At this scale the (s,p) displacement equations would
be better described by discrete sets of first-order total
time-derivative equations than by partial differential
equations. We can take this into account assuming that
the spectrum of permitted frequencies is cut off beyond a
certain value v, =270 /A%, where A, is on the order of
magnitude of a few average cell diameters.

(iii) At an intermediate scale local random inhomo-
geneities of the medium must be taken into consideration.
As could be demonstrated by Wentzel-Kramers-Brillouin
approximation methods,?® to the extent to which the local
variations of a,B in Egs. (2.3) are small compared with
their mean values, such inhomogeneities, while appreci-
ably affecting the local phases of the wave amplitudes,
have only small effects on their local moduli. Because of
this, in place of functions (3.1), a maximal finite set of
mutually orthogonal periodic functions, with almost uni-
form moduli and random variable phases, can be assumed:

Yi(x,0)=[4; +€(x)lexplig;(x)— (77 +iw;)t],
(3.3)

where €; are real functions of negligible magnitude with
respect to A; and ¥} (x,t) is the complex conjugate of
¥;(x,2); index i runs over a set S of values having a power
nearly equal to ¥V, /A} (=~10° for human brain cortéx)
and @;(x) are random phase functions having mean-
square gradierits {([Ve;]?) nearly equal to w;/c. One
should notice that in a frequency interval Ao a number of
nearly equal w; values increasing with ©>/2 should fall
into place. ) :

Because of their nice random oscillatory properties,
functions (3.3) satisfy, for any generic smooth function
F(x), the equations
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Sy, FOOWE e, 00,0V (x)
=8y | 4; | %exp(—2t/7) [, F(x)dV(x)+e[F],
| (3.4)

where §;; is the Kronecker symbol and the €;[F] are
negligible terms functionally depending on F. One must
consider Egs. (3.4) to be well satisfied also when F(x) is a
generic wave function or a product of a finite number of
such.

As we shall see, Egs. (3.4) play an essential role in SW
holography. We shall name functions (3.3) random nor-
mal functions, and the oscillatory perturbations of the
medium described by them random normal modes.**

IV. HOLOGRAPHIC INFORMATION PROCESSING
BY RECRUITING OF RANDOM NORMAL MODES

Although SWH information could be simply stored by
slight variations of the local permeabilities of the medium,
we are inclined to believe that the recording process tak-
ing place inside the animal brains is based on the existence
of a lot of small resonators dispersed throughout the cor-
tex, so that the holograms could be formed by slight vari-
ations of their damping constants. We imagine that this
expedient was favored by natural selection because of its
greater efficiency.

Indeed it is possible to prove that the latter kind of
hologram formation has, with respect to the former, the
following advantages.

(i) Great improvement of signal-to-noise ratios in holo-
gram evocation. .

(ii) Larger capability of storing information by superpo-
sition of holograms.

(iii) Highest selectivity in evoking the best impressed
holograms. Indeed, in the case of resonators, the
strengthening of a hologram increases exponentially with
the number of times the hologram recordings are repeat-
ed, whereas in the former such strengthening only in-
creases linearly.

Obviously, it is not necessary to specify that such a hy-
pothesis is purely speculative. In our opinion this seems
to be a sufficient reason for freeing our imagination in or-
der to guarantee that everything works as in the best pos-
sible world. Therefore let us state the following assump-
tions.

(a) The wave propagation medium contains a statistical-
ly uniform distribution of small oscillators densely cover-
ing the entire wave frequency spectrum.

Wave propagations are supposed to be locally affected
very slightly by oscillators. Despite this, large cumulative
effects can result in the diffused waves when the perturba-
tive contributions coming from the oscillators lying all
over the medium sum up coherently (i.e., “constructively”
according to the superposition principle).

One should notice that the ratio between the local inten-
sity of a monochromatic wave component coherently dif-
fused by a set of N equal oscillators and the intensity of
one incoherently diffused by them (i.e., coming from them
with random phase relations) is equal to N.

If only M =aN (0 <a < 1) among the N oscillators give

rise to coherent diffusion, then such a ratio amounts to
a®?N. We can see that, provided N is large enough (say
10'%), a negligible fraction of slightly, but coherently,
diffusing oscillators can produce intense effects.

We suppose the holograms to be formed by variation of
the internal viscosities of the local oscillators: i.e., by
variation of their damping constants. This allows them to
store, cumulatively, the maximum amount of information.
In order for the holographic evocations to take place effi-
ciently, we assume that the values of the damping con-
stants are subjected to slight modifications which are in
each place inversely proportional to the amount of the en-
ergy cumulatively dissipated by the oscillators themselves
during the wave propagations. We could characterize this
memory formation as a sort of “running in” effect.

It would be easy to prove that such holographic record-
ings are very sharply selective for the time-Fourier com-
ponents of the wave propagations; much more than the
oscillator bandwidths might suggest.

In order to express mathematically the effect produced
by a small resonator subjected to the action of a wave,
several models might equally well be hypothesized. We
propose tentatively the following one: a resonator is con-
stituted by the two parts of cell membrane which enclose
an interstitial pocket; for the sake of simplicity we assume
the latter to be spherically shaped. This assumption is
comforted by the experimental fact, anticipated in as-
sumption (vi) of Sec. II, that the glial cell membranes
show effectively damped oscillatory behavior, precisely in
the range of EEG frequencies, under the action of
potassium-ion step currents.

From a macroscopical standpoint one should imagine
several hundred resonators lying in a volume unit. We
can also assume that the “force” acting on each of them is
proportional to the potassium-ion flux leaking through its
surface. By applying the theory of linear filters®> we
deduce that the source of the disturbance to the wave
propagation due to a set of resonators placed in the neigh-
borhood of a point x is correctly represented by adding to
the left-hand side of Eq. (2.3b) the following term:

n(x,t)= f_+: G(x;t —t’)gg(%,iudt’ , (4.1)

where G (x,t —t') is a suitable transfer Green function
vanishing at any ¢ <t'.

The appropriate expression of G, obtained by Fourier-
transform methods, is

+ oo —_T '
teapl —ioli 1],
T Bj—w"+iy(x,o;)

Gix;t—t)= 3

JEI(x)
4.2)

[1(x) is set of oscillators lying in the volume unit centered
at x], where g, ¥(x,®;), and &; are, respectively, the cou-
pling constant, the damping constants, and the proper fre-
quencies of ‘the oscillators lying in the volume unit cen-
tered at x. For the sake of simplicity we have assumed g
to be the same for all oscillators.

Supposing the spectrum of the proper frequencies @; to
be randomly distributed in such a way that a number



3624 RENATO NOBILI 32

N;=N,@; Aw, where N is a convenient integer, falls into

the frequency interval (&;,®; +A&), we find that only the

imaginary part of the integral on the right-hand side (rhs)
|

+o gNo@; AD exp(—iwt)y(x,d;)p(x,w)

of (4.2) gives an appreciable contribution to G. Therefore,
after insertion of (4 2) into (4.1), we obtain for 7 the ex-
pression

n(x,t)s——je%x) . @1— P+ [oy(5,)] do , (4.3)
where p(x,w) is the Fourier transform of p (x,?):
Px,0)= fj:p(x,t’)exp(—icot’)dt’ . (4.4)
Assuming the frequency spectrum of p to be discrete; that is,
Fx)w+o;)], 4.5)

Plx,0)= 3 [pi(x)8(0—w;)+P
i

where 8(w+w;) are Dirac 8 distributions; and substituting this expression into the rhs of Eq. (4.3), we obtain

8No@; Ad exp(

—iw;t)wly(x,;)p;(x)

2 2

JEI(x) i

n(x,)=— @

—@; )2-{-[(0,’)/()6 w] )]

If the damping constants y remain small enough, then
the overwhelming part of the rhs of (4.6) is given by

gNow; A exp(—iw;t)p;(x)

nx,)=—

JEI(x)

+-c.c.

’

y(x,0;)
(4.6

where the convention of taking i=j when w;=®; is
made.

The conditions for holography are fulfilled when damp-
ing constants ¢ are such as to satisfy the following rela-
tionships:

)=C |IZH(x7w])I2 ) (4.7)

where C is a suitable positive real constant and ¢y (x,0;)
is the time-Fourier transform of the wave function which
is used for the hologram recording.

Inserting Eq. (4.7) into the rhs of Eq. (4.6) and perform-
ing a few formal changes, we obtain

3 ~
Bt 2 |¢H(x,wj)|2

JEI(x)

i (x,0;

n(x,t)=C

X [pj(x)exp( —iw;t)—c.c.] . (4.8)

Since pj(x) is a real linear combination of the time
Fourier transforms of the wave functions ¥,%*, descnblng
the propagation in act, we can also state Eq. (4.8) in the
following form:

n(x,t)=—ing 2 a’j|l7;1-1(x’mj)|2

JEI(x)

X {J(x,w,-)exp[——i(wﬂ +6)]+c.c.},

4.9)

where 7 and 0 are convenient real numbers.

(b) The waves propagating during the formation of a
hologram are the superposition of a certain reference wave
Yr(x,t), having sufficiently high amplitudes and other

+c.c. (4.6)

I
suitable properties to be dealt with later, with the infor-
mation wave ¥y(xt) directly generated by a system of in-
formation carrying local sources embedded in the medi-
um.

This means that the wave function ¥y(x,t), whose
time-Fourier transform appears in Eq. (4.8), is assumed to
have the expression

Y (x,t)=1vg(x,8)+Y;(x,1) .

(c) Information recovery is obtained by diffractive
scattering of a reference wave on a hologram previously
formed by association of an identical reference wave with
an information wave.

(d) Any reference wave is a superposition of normal
modes whose frequency spectra are statistically distribut-
ed all over the frequency spectrum range of the signal to
be reproduced.

In (iii) of Sec. III we have estimated that a set S of
~ 10° mutually orthogonal oscillation modes could be ex-
cited inside the entire human brain cortex; we also sup-
posed that the frequency spectrum is completely degen-
erate. In principle this assumption is legitimated by the
small random irregularities of the wave-propagation
medium. However, since the EEG frequency spectrum
range is poorly extended, we can estimate that an enor-
mous amount of nearly equal frequency values fall into
the bandwidth of each resonator; therefore, we can assume
the total wave frequency spectrum to be partitioned in a
collection of mutually disjointed subsets J; ES of frequen-
cy values nearly equal to ;. According to this, the nor-
mal modes are conveniently classified by double labeling.
Then we can give mathematical form to the initial state-
ment by assuming that any reference wave ¥g(x,t) will
take the general form

¢R(x,‘t)=zAR(a’i) > exp{i[¢ij(x)+0§_wit]},

JEJ{ (R)

(4.10)

(4.11)

where j summations extend to small subsets J; (R)CJ; of
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equal frequency modes and 95 are real numbers account-
ing for the initial phases; Ax are real amplitudes only
dependent on w; in a manner that will be established later.
We have eliminated from Eq. (4.10) the 7; '-dependent
damping factors appearing in Egs. (3.3) since we suppose
the reference waves to be sustained by suitable sets of
periodic signal sources over a long time. It is easy to veri-
fy that an enormous quantity of mutually orthogonal
reference waves covering quite densely the frequency spec-
trum range can still be produced.

For any two time-Fourier transforms of such reference
wave functions—say vYg(x,0;) and g(x,w;)—strong
orthogonality equations similar to (3.4) still hold:

[ v F)P % (x,0; Wr(x,0;)dV (x)
= Ng(@)[4r(@)PSrr [, F)dV(x), (4.12)

where F(x) is any generic smooth function, Ny (w;) is the
number of modes falling into J/ (R), and 8g - is the
Kronecker delta. In the following we shall assume

Ag(w;)=Cr[w;Ng(w;)]~ 1%, (4.13)

J

where Cjy is a real constant. This ensures that the coeffi-
cient appearing in front of the rhs of (4.12) is simply in-
versely proportional to ;. We need this condition in or-
der that the holographically stored items of information
may be faithfully reproduced by reference-wave diffrac-
tion.

Now we have almost all we need in order to show how
the “ghosts” of holographically recorded information can
be evoked. All is accomplished when we consider that
any solution of the oscillator-perturbed wave equations
can be exactly put in the form

PY(x,t)=o(x,)+ fVM f:w Ko(x,t;x',t")

Xn(x',t")dt'dV(x), (4.14)
where 15 and K| are, respectively, the wave function and
the propagator kernel relative to a medium deprived of all
oscillators and 7(x’,¢') is the source contribution of the
oscillators given by Eq. (4.1) or, more specifically, by Eq.
(4.9). Then, provided we assume ¥ to be a reference wave
g’ and the wave function ¥y appearing in Eq. (4.9) satis-
fies Eq. (4.10), we obtain for ¥(x,?) the integral equation

Y(x,t) =PgrAx,)—ing fVM f:wKo(x,t;x’,t')E | Pr (x,0;)+;(x,0;) | 20; {P(x,0;)exp[ —i (w;t +0)]+c.c.}dt’dV (x) .

This equation can be solved in series of 7, powers by
iterative methods. The first-order approximation (i.e., the
Born approximation) is obtained by simple substitution of
Yr(x,w;) in place of Y¥(x,w;) into the integral expression
at rhs of Eq. (4.15). Then taking account of Egs. (4.12)
and (4.13) and of the propagator properties, we can easily
verify the following statements.

1. If ¢ is orthogonal to i; then ¥(x,t)=1yr(x,1); i.e.,

no appreciable disturbance is performed by the local oscil- -

lators.
2. If ¢ is proportional to ¢z then we find

Wx,t) =g (x,8)+ B (x,1)+ B* Y3 (x,1)

where a,f are non-negligible complex constants, and ¢3¢
is the “advanced” wave function relative to ¥;. The latter
is the function describing a wave propagation similar to
the one described by 1;, but constituted by anticausal or
convergent-to-source waves. Both ¥; and 93¢ do simul-
taneously contribute to the recovery of recorded informa-
tion.

3. If two or more information waves participate with
their respective recruited reference waves in the formation
of a hologram, then the recruiting of one of such reference
waves, possibly exerted by the representation of a frag-
ment of information, gives rise to a self-strengthening
evocation of all other associated information. This works
equally well for time-invariant and time-varying items of
information.

We can prove this by solving Eq. (4.15) beyond the
Born approximation. <

To perform all these operations a set of randomly local-

(4.16)

(4.15)

[
ized sources for the emission of reference waves and a
noiselike signal-recruiting device, like that pictured in Fig.
3, appears to be unavoidable. Since the waves diffracted
by holograms reproduce in shape the original information
waves, and these reach their maximum amplitudes in ex-
actly the neighborhoods of the signal sources, then the
recovery of information is possible through a set of
threshold receptors applied in close relationship with the
set of the signal sources. It is interesting to compare this
scheme with certain organization diagrams reported by
neurophysiologists.?®

——@ signal source
——=—) receplor

LRATTY projection area
R

association area

II = input information
OI =output information
RD = recruiting device

FIG. 3. Recruiting device RD is supposed to sustain the
reference-wave emission through a system of sources dispersed
all over the cortex (AA + PA) and regulated by feedback control
lines. Switching on and modulation of the reference waves de-
pend upon the items of input information. Recovery of infor-
mation is performed by receptors placed in the vicinity of the
information-wave sources embedded in projection area PA.
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