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Linear degeneracy in the semiclassical atom
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If the angular and radial quantum numbers of states with the same binding energy satisfy a linear
relation, as is the situation in the Coulomb potential, the spectrum is said to be linearly degenerate.
We present a detailed study of the consequences of such linear degeneracy in atomic potentials. One
of the results is a new, and more general, derivation of Scott s correction to the Thomas-Fermi ener-

INTRODUCTION

This paper continues the discussions given in the
preceding one, ' referred to as I. The notation defined
there will be used here without further explanation.

Whereas we developed the general formalism of the
semiclassical atom in I, we are now addressing the special
situation of linear degeneracy. The main example of a
physical system displaying linear degeneracy throughout
is a highly ionized atom. There, dynamics is dominated
by the nucleus-electron interaction, the interelectronic
forces being comparatively small. The average potential
is therefore very similar to the Coulomb potential of the
nucleus, and the degeneracy is the corresponding one.

For the same reason, Coulombic degeneracy is always
present in the part of the spectrum that refers to very
large binding energies. We show that this causes the ap-
pearance of a term in the single-particle energy, known as
Scott's correction.

Exact linear degeneracy can also occur at v=0. In such
situations the degeneracy for v&0 is almost linear. A
linear approximation for this part of the spectrum can be
a useful device. We shall study an example.

COULOMBIC DEGENERACY
The only atomic potential (i.e., one with V- —Z/r as

r~0) with exact linear degeneracy for all binding ener-
gies c. &0 is, essentially, the Coulomb potential. To see
this we first note that the slope of the lines of degeneracy
must be —1 because of Eq. (49) of I. If we insert this
slope into Eq. (43) of I, we immediately conclude V' V =0
for r & r, p Conseque. ntly,

Z ZV(r)= ——+Ep for r & —=2rp,
r E.p

m

X= g 2(m') +@2(m+1)

= —,'(m + —,
' )' ——,'(m + —,

' )+2p(m +1)' . (2)

These electrons have a combined single-particle energy
given by

E)p ——g 2(m')
Z2

2( I )2

+p,2(m +1) —
2 +ep

Z'
2(m +1)

= —Z (m+p)+EON .

Consequently, if y solves

then m is the integer part of y ——,'. (For K & 0, there is

just one solution larger than —,'.) We use the standard

Gaussian notation,

m =[y ——,'] . (6)

If we understand Eq. (2) as defining m and p as functions
of X, then Eq. (3) displays E&~(X). Towards the objective
of making this functional dependence explicit we proceed
from noting that

(m + —,
'

) ——„(m + —,
'

) & —,
' X & (m + —', ) ——,

'
(m + —,

'
) .

while V(r) for r &2rp can be any non-negative function
that approaches zero at infinity. Obviously, the region
r & 2I"p is always classically forbidden, and the shape of
the potential there does not matter for semiclassical
quantization. This is different in wave mechanics. There-
fore, the spectrum obtained from Schrodinger s equation
for such a potential will not be exactly linearly degenerate.
The main deviation can be expected close to v =0.

Consider now the situation of m full Coulombic shells
and the (m+1)th shell filled by a fraction p, 0&p & 1.
The total number of electrons then is

For the sequel, the introduction of (y ), defined by

&y&=y —b+ 2)

1.e.,

y —(y ) =integer,

——,
' «y& & —,',

will prove useful. We employ it in writing

m =y —1 —(y —1)=y —1 —(y ) . (9)
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formula even for small N. For example, for N =1, the
second term in (13) is less than seven percent of the first,
while the third is no more than two-tenths of a percent of
the second. We shall therefore be content with the first
two terms in Eq. (13).

Another way of demonstrating the high quality of this
approximation is to look at the values predicted for N, at
which closed shells occur. For y = —,, —,, —„.. . , we ob-
tain N = 1.999 87, 9.999974, 27.999991, etc.; even for the
first shell the agreement is better than one-hundredth of a
percent.

Since the two-term approximation for y (N) is exact up
to order N, we can, in principle, derive EI~(N) up to
this order. But there is little point in writing out all this
detail, and we shall stop at terms of order N ~ . The
calculation employs the expansion

-0, I

@+3 (y)k
k=O

(14)
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0

1/3

2

I I

4

FIG. 1. Oscillation h(N) as a function of ( 2N)' . Thick
curve is exact h (N). Thinner curves are successive approxima-
tions of Eq. (17): (a) leading term only, (b) terms up to order
N ', (c) terms up to order N, (d) terms up to order
N —3/3

The latter equality is based upon the obvious periodicity
«(y),

(y+1& = &y & . (10)

Now we insert both Eqs. (S) and (9) into Eq. (2) and solve
for p. The result is

p = —,
' + &y &+(&y &' ——,

'
) (11)

(y —&y &)'

Please note that as a consequence of y & —,', the denomina-
tor here is nonzero. Also, one easily checks that, as y in-
creases from m+ —,

' to m+ —', , p grows monotonically
from zero to one.

The combination of Eqs. (3), (9), and (11) now produces
T

E,,=eoN —Z' y ——,'+(&y &' ——,
'

)
(y —(y))' .

(12)

with y(N) from Eq. (5). Obviously, E,~ is a continuous
function of y—and therefore of N—although (y) oc-
casionally jumps from + —,

' to ——,'. We shall now turn
this exact relation between N and E]„ into a useful ap-
proximate one. Equation (5) is solved by

(13)

Tins expansion is expected to be good for large N. How-
ever, just the first two terms form a practically perfect

and results in

E~, =EP' —Z'[(-,'N)'" ——,'+(-,'N)-'"((y)' ——,')
+(-,'N)-'"-', (y&(&y&' —-„')+ " ],

with

(15)

y =(-,'N)'"+ —,', (-,'N)-'" . (16)

In Eq. (15) the terms of order N '~ and beyond are os-
cillatory functions of N. Observe that in (y) we do not
neglect the second term of Eq. (16), in order to avoid a
wrong phase of the oscillation at smaller values of N. We
isolate the oscillations by means of

—pe

=(&y &' ——,
' )+(—', N) ' ' —', &y &(&y &' ——,

' )+. . .

—:h(N) . (17)

NUMBER OF STATES

The number of states with binding energy less than s is
given by [Eq. (32) of I]

Figure 1 compares the exact h(N) to the successive ap-
proximations of Eq. (17), with y from Eq. (16). During
the filling of the first shell [i.e., ( —,'N)' &3'~ =1.44] the
exact h (N) naturally does not yet show the shape of the
large-X oscillations. Note, in particular, how good al-
ready is the leading term of Eq. (17). Three terms are suf-
ficient to make the difference between the two curves in-
discernible for N ) 1 [i.e., ( —,N)' ) 1.14].

We end the discussion of Coulombic degeneracy here
and turn to arbitrary linear degeneracy. The concept of a
principal quantum number that labels shells cannot be
employed there. Instead, we shall stick to angular and ra-
dial quantum numbers and use the tools that have been
prepared in I.
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1)k+j dg ge2n'ikk
0

k,j=—oo

exp [2m ijv, (A, ) ]—1
X

2&lJ
(18)

I

Linear degeneracy means, of course,

v, (A, ) =v,'(A, ,—A, ), (19)

where the slope v,
' does not depend on A, . For such v, (A, )

the A, integration of Eq. (18) produces

( 1)k+1 2~k', (jv,' k)—+i (jv,' —2k)
X(E)=4 g v,

' .
(2') k (k —jv,')2

exp(2mikA, )+, exp(2~ij g,v, ) — ~ . (20)
1 l

jv', (k —jv,') k jv,'

This sum contains both oscillatory and nonoscillatory terms. The nonoscillatory ones are (a) the k =j =0 contribution;
(b) the k =0, j&0 contribution of the first and the last terms in curly brackets; and (c) the k&0, j=0 contribution of
the second and the last terms in curly brackets. Together they are

4
3

v',
6 (2vrk, ,) +4 g v,

' [I+2mij i(,v,
' —,, (2'�—l,v', ) ],(2')', (~0) (2m)' (j v,')'

k

+4 g 3
v', (2+2~ikA, ) = ,—, A,,v', ——,

' + 6 A,,v', . (21)
k (~o) (2~) k 3

V~

The oscillatory terms in (20) are (a) X oscillations, k&0 contribution of the first term in curly brackets; and (b) v oscilla-
tions, j&0 contribution of the second term in curly brackets. The A, oscillations are exhibited in

( 1)k 1
4 g —exp(2m ik 1,)v', g ( —1)

k (~o) (2n) J = —oo

2mkk, +i
k (k —jv,')

l

(k —jv', )

( 1 )k cos(21rkk ) E~ ( 1 )k sin(27Pkk E) 1
'xt

( 1) cos(&k /v~ )= —2A,, + + g sin(2m k A,,), (22)
sin(m'k lv', ) k ) (hark) sin(~k /v,'

) v,
'

sin (mk/v, ')

while the v oscillations consist in

4 g exp(2vriji, ,v', )v', g ( —1)( —1)'

J (~o) (21r) JVE (jv,' —k)

In arriving at, Eqs. (22) and (23) we have made use of the identities

( —1 1

z —&J s111z

( —1)J cosz

(z —mj) sin z

We now add up the various contributions to X(E) and obtain

( 1)J cos(~J v,
'

)
sin(2m jA,,v,')

&J sin (mjv', )
(23)

(24)

2 3, 1 ~c 1, ( 1)" cos(2mkA, , ) ~
( 1)k sin(2mkk. ,)

X(E)= —A,,v', ——,+—k,v', —2A.,6 v,
' 6 '

k ) ~k sin(mk/v, ')
k ) (hark) sin(~k/v', )

( 1)k cos(mk/v', ) ~
( 1)J cos(~jv', )

+ sin(2~k A,, ) — sin(2m jA.,v', )
hark sin (m.k/v', ) ) ~J sin (vrjv,')

(25)

Of course, the terms with vanishing denominator, which
occur whenever either klv,' or jv,' is an integer, need spe-
cial consideration. We postpone that for a moment in or-
der to first make contact with some results of I.

In I we learned that for the Thomas-Fermi (TF) poten-
tial [Eqs. (53)—(55) of I] v, (A.)/Z' is a universal (i.e., Z
independent) function of A, /Z'~ and E/Z ~ . Conse-
quently, if we keep the ratio E/Z ~ fixed, A,, and v, (A, =O)
are proportional to Z'~, v,'= —(()v, /()A, )

~ k k is Z in-

dependent, etc. However, these particular Z dependences

are in no way confined to the TF potential. In fact, only
one property of the TF potential is used in arriving at
these conclusions. This property is the circumstance that
(rlZ)VTF(r) is a function of the product Z' r and does
not depend on Z and r separately. Accordingly, all such
potentials will lead to the Z dependences of A,„v,(0), etc. ,
stated above. To this class of potentials belong, e.g., the
TF potentials of ions with variable Z but fixed degree of
ionization, 1 —N/Z. Another example is the Coulombic
potential of Eq. (1) if Eo is proportional to Z r .
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From now on we shall consider only potentials with
this TF-type dependence on Z. Then, with the ratio
e/Z ~ kept fixed, of the three nonoscillatory terms in Eq.
(25), the first is proportional to Z, and the other two are
proportional to Z'~ . For the A, oscillations the period of
Z'~ is the constant Z'~ /A. „while the v oscillations have
the period Z'~ /A. ,v,'. In other words, the periodicity of
the A, and the v oscillations is determined by the maximal
values of A, and v, respectively, for the given c,/Z ~ .
These oscillations have amplitudes that are either Z in-
dependent or proportional to Z' —at least this is what
Eq. (25) tells us on first sight. However, a closer look at
the terms with vanishing denominators will show that the
leading oscillatory term is of order Z ~, in general.

Consider the situation when v', is the ratio of two rela-
I

, v 1 1 1 1 1=(—1) "—,—,+ ———+O(~)
(emu) e n.mu e 6

and
(26)

tively prime integers, v', =u/u (we suppress the subscript
e on u and v). Then the denominators in Eq. (25) are zero
whenever k =mu or j = mv, with m =1,2, 3, . . . . The
sum of all these terms is, of course, finite because we pro-
ceeded from the well-defined expression in Eq. (18). The
various infinities are exhibited by writing v', = (u /U)(1+ @)

and examining the limit e~O. For example,

cos(mk /v,' )

v', sin (mk/v', )

cos(m jv', ) sin(2mmk, ,u) 1 cos(2mmi, ,u)
sin(2m jk,,v', ) 2

——( —1) +2Xg ——( —,
' +2k., )sin(2m. m A,,u)+0 (e)

sin (m jv,') (emu)2 e2 ~rr)u e
(27)

All these individually divergent terms combine to

2
1

ao
( 1)m(u+u)

2A, ', + ———
6 6 u2 v

&
mm

sin(2m. m A,,u )

ao
( 1)m(u+v)

cos(2am A,,u )u, ( )

1)m(u+o)
sin(2mmk, ,u) .

u'U ( (mm)'
(28)

Such sums can be evaluated in terms of the periodic func-
tion (y) of Eq. (7):

ao
( 1)m

sin(27rmy) = —(y ),
m.m

cos(2m.my) = (y ) ——,', ,
(n.m)

(29)

, sin(2m. my)= —', (y)((y)' ——,') .
) (mm)

They are obviously related to each other through integra-
tion with respect to y. In order to use them in (28), we de-
fine w by ( —1) '"+"'cos/sin(2+my) =( —1) cos/sin
&&[2mm(y+w)], i e., u) =(u+v+I)/2, or in view of the
periodicity of the circular functions,

0 for u+v odd
W= ' (30)

for u +u even .

I

The ellipsis in Eq. (31) represents the sums of Eq. (25)
with k&mu and j&mu. The leading terms of N(E) are

N(e)-=—', A,,'v,' —2A, ,'v', (A, ,u+w)/u . (32)

Indeed, the oscillations are dominated by a term with am-
plitude of order Z ~ .

In the case of Coulombic degeneracy (i.e., v,
' = 1,

u =v = 1, (() = —,
'

) Eq. (31) is the whole answer. It is

N(e)= —', (A,,—(A,,+ —,
' ))'——,'(k, —(X,+ —,

' ))
= —', ([A,,]+—,')' ——,'([A,,]+—,') .

The comparison with Eq. (2) indicates that [A,,] equals the
number of full shells m, whereas it may seem that partly
filled shells are not described by Eq. (33). Now, as A., in-
creases from m —0 to m +0, the whole mth shell is add-
ed. Equation (33) tells us that it contains 2m electrons.
The gradual filling of the mth shell is therefore contained
in Eq. (33) if we assign the whole range of values between
m —1 and m to [A,,], when A,,=m. Then Eqs. (33) and
(2) are equivalent. The specific values of E for which A., is
an integer are the single-particle energies of the respective
shells. Therefore, Eq. (33) not only implies Eq. (2) but
also Eq. (3). Incidentally, in solving [cf. Eq. (3)]

z'
~m = — +&O (34)

2m

for m =A, , we find, after dropping the subscript m,

Then the combination of the resulting form of (28) with
the nonoscillatory terms of Eq. (25) is

z
[2(E()—e)]'

(35)

k,u —(A,,u +(() )
N(e) = —,

' v',
u A,,=max[ [2r (E+Z/r —Eo)]' (36)

This is, of course, identical with [Eq. (31) of I for the V of
Eq. (1)]

6v,'
1

6 6uv

A,,u —(k,u +(() ) + ~ ~ ~

(31)

To sum up, we state that Eqs. (33) and (35) together con-
tain as much information as do Eqs. (2) and (3). It was
easier, though, to start with Eqs. (2) and (3) right away,
but this was possible only because of the simple Coulom-
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bic degeneracy, which allows the use of a single principal
quantum number. For arbitrary v,', one must sum over
the angular and radial quantum numbers individually [or
over j and k, as in Eq. (18)].

Another example of some particular interest (see below)
is the circumstance v,'=2. Here we have u =2, U =1,
and w =0, and to Eq. (31) one must add the terms of Eq.
(25) that have odd k. Thus

N(E)= —,(2A, ,—(2X,)) +—„(2A,,—(2A, , ))
1)2~+~ cos[2m(2m+1)k, ]—2A. r +

=p ~(2m +1) sin[m(m + —,
' )]

1)2~+ & sin[27r(2m + 1)A,,]
=p [~(2m +1)] sin[~(m + —,

'
)]

=
6 [2&,+ —,] ++[2&,+ —,]+ A,, —1 g sin[2m(2m +1)A,,] .

m=p [m(2m+1)l
(37)

Upon using

co '

( 1 )Itl
sin[a. (2m + 1)y]=+—,

'
(y )

p [~(2m+1)]

even
for [y+ —,

' ]= '

y —1 ( —1) +' ' (y) =(—1) +' '
(y —(y))

we arrive at

I )b + ~ ~21[y + '
]

(note that this is a continuous function of y), as well as

(38)

(39)

generacy,

NTF(E)=4 J deal, ,(A, )

=4 I dA, A,v', (A,,—A, )= —, A, ,v,
' . (42)

Since both k, /Z' and v,
' are functions of c/Z"

NTF(e)/Z is also one. This is a consequence of the TF-
type Z dependence of the potential [(r/Z) V being a func-
tion of Z' r] and has nothing to do with the linear de-
generacy. Accordingly, for potentials with a finite num-
ber of bound states (i.e., for short-range potentials),
NTF(e=O) is a numerical multiple of Z. In other words,
in the TF limit the maximum number of electrons that
can be bound by the potential is proportional to Z. One
can make it equal to Z by choosing the parameters of the
potential appropriately. For example, this "normaliza-
tion, "

N(s) = —,
'

[2A,,+ —,
' ]'+ , '&&[2k,,+ —,'] NTF(e=O)=Z= I (dr) ( —2V) ~

3772
(43)

even
for [2A,,+ —,']= '

(40)

This N (E) has discontinuities whenever
m =1,2, . . . , where the jump of N(E) is

1 1re ——
~E 2 4 P

2m for m even
1 2

=2[m/2]' .
—,(m —1) for m odd

(41)

Equation (41) is easily interpreted: for m =1, &,= —,, no
3

states become available, AN =0; for m =2, k, = 4, the 1s
state is added, AX=2; for m =3, A,,= 4, the 2s state is
added, again 6%=2; for m =4, A,,= —„,the 3s and the 2p
states are added, 6%=2+6=8; etc. Please observe that,
unlike Coulombic degeneracy, there are pairs of subse-
quent shells that contain the same nu~ber of electrons.
Also note that N(s) has a part with periodicity
A,,—+A,,+ —,', i.e., Z' ~Z' +Z' /2k„and a second
one with periodicity A,,—+A,,+ 1, i.e., Z' —+Z'
+Z'~ /A, These are, of course, the v and A, oscillations,
respectively.

Let us now return to Eq. (32) for some additional com-
ments. The first term is the j= k =0 contribution of Eq.
(18), so its significance is the TF limit, here for linear de-

Z —1 NTF(0) =0 .
a

(44)

The integral of (43) obeys this equation if the integrand
resulting from this operation is a divergence. For dimen-
sional reasons, the only possibility is

Z ——1 ( —2V) =cV [r( —2V) ],BZ
(45)

where the numerical constant c is determined by inserting
the Coulomb potential —Z/r, which represents the r =0
behavior of any atomic potential V. This gives c = 3,
and then

3Z V =(4+ r V) V,a
(46)

which is, indeed, equivalent to stating that (r/Z) V is a
function of Z' r.

Now to the second term of Eq. (32), the leading oscilla-
tory term. Since a small change of v,

' can cause an enor-

applied to the Coulombic potential of Eq. (1), requires
E,=z'"/(18) '".

This reasoning can be reversed. The statement
NT„(0)=const XZ is differentially expressed by
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mous difference in u and u, slightly different slopes v,
'

may have very different leading oscillations. How can
that be'? Certainly, N(e) does not change a lot if, e.g.,
v,

' =1 is replaced by v,
' =1.000001. True, but the point is

that the leading oscillation is only visible for very large
values of A,, (i.e., large Z'~ ) when it actually dominates
all but the TF term. And at those large A,„ the small
change in v', does cause a big difference in N (e). As long
as we stay with modest values of A,„N(E) is not sensitive
to tiny changes in v', . For example, consider A.,= —,'. All
v,

' in the range ~ &v', & —,
' are such that the first two

Coulomb shells are filled, thus N(E) = 10 for all these v', .
But for a A,, five times larger, v,

' has to be within
—,'~ & v,' & —,'~ iri order to not change N(E) =1300. The les-
son learned here is twofold. First, as long as we do not
consider an enormous number of occupied states, small er-
rors in v', do not matter. Second, the leading oscillatory
term may be utterly unimportant in the physically
relevant domain of rather modest values of Z'~, unless
v,

' is the ratio of two small integers.

ENERGY

=Z'dE=3dAE (48)

According to Eq. (29) of I (with g= —E, etc.), the
single-particle energy E~~ is obtained from N(E) by in-
tegration,

E, (E)=E„(e)—eN(E) = —f de'N(e') . (47)

Again, we first consider the Coulombic potential of (1) for
illustration. There, N(e) is given by Eq. (33), and because
[an implication of Eq. (35)]

Z2
EI(s)= —Z [A.,]+ N(e)

2A,
2

= —Z [A,,]+(Eo—e)N(E), (51)

E~(F)=El(E, )+[E&(E)—EI(E, )]

= —f dE'N(E') —f de'N(e') .
S

(52)

The first integral, which is the contribution of the strong-
ly bound electrons, results in an expression analogous to
Eq. (50). The constant Eo, hidden in A,, via Eq. (35), has
the physical significance of the (electrostatic) potential
produced by the electronic cloud at the location of the nu-
cleus. The leading term of EI(E, ) is, as always, the TF
contribution,

2 ~ 2 Z'——Z A' = ——
3 [2(so—E, )]'

5/2

= f(dr)
15~

Z
2 c, +——co

the last step employing Eq. (35). Thus,

EI~(E) = —Z [1,,]+eoN (e),
which is, of course, identical with Eq. (12) when

y =f?,l+ —'.
Coulombic degeneracy is of practical interest because it

is realized in all atomic potentials at large binding ener-
gies. We isolate these strongly bound electrons by intro-
ducing an E, that selects the part of the spectrum with
Coulombic degeneracy,

we write (A,, =A, ) =[Ei(E.)]TF (53)

E((E)=—Z f dX ———&A, + —)
3

+, («+-,' &' ——,', )

(49)

The multipliers of the various powers of I/A, are func-
tions of the forms displayed in (29), with y =P+ —,

' so
that their integration is straightforward. We obtain

+,&~,+ —,
'

)(&?(,,+ —,
' )'——,

'
) (50)

Observe that for A., & 1, i.e., &A,,+ —, ) =A,,——,', E~(F.) is
zero, so that E~(E~—oo) =0, as it should be. Equation
(50) can be rewritten as

when we insert Eq. (1) into Eq. (12) of I with g= —s, .
Together with the TF part of the second integral in Eq.
(52) this just produces [EI(E)]TF. More interesting is the
next-to-leading term of EI(E, ). It equals [cf. Eq. (50)]
—,Z and does not depend on c, Actually, being the only
part of E~(e, ) independent of e„ this term is the only ex-
plicitly visible contribution of the strongly bound elec-
trons to E&(E). All the other terms in Eq. (50) cannot
themselves be present in E~(e) since EI(E) does not de-
pend on Es

We have thus identified the two leading contributions
to E],

Ei(E)=[Ei(e)]TF+ z
Z'+ ' (54)

The term supplementing the TF energy was first surmised
by Scott. It has been derived repeatedly —with increasing
clarity —most recently by us in the context of a general
discussion of the handling of strongly bound electrons in
TF theory. While these previous derivations did not em-
ploy semiclassical quantization they did make use of the
Coulombic degeneracy associated with very large binding
energies. The most remarkable feature of Scott's term is
that it is the same for all atomic potentials arid all num-
bers of electrons, a circumstance that has remained impli-
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cit in earlier derivations.
For the majority of potentials, including the TF poten-

tial, linear degeneracy occurs only for large binding ener-
gies, where the degeneracy is of Coulomb type. There is,
however, the possibility of linear degeneracy at E.=O.
How potentials with this property can be constructed sys-
tematically is discussed in the Appendix. A particular ex-
ample is provided by the Tietz potential

Z 1V= ——
«(1+r/R)' (55)

which represents a rough approximation to the TF poten-
tial in the range 1 (Z' r & 5. For that purpose, normali-
zation in the sense of Eq. (43) is required, yielding

1/3
9

2Z
= &.6SZ-'" . (56)

Bvp(A, ) = —2.
BA g p

(57)

Please note that then (r/Z)V is, indeed, a function of
Z'~'r

At large distances, the Tietz potential is proportional to
1/r, so that Eq. (49) of I implies

1 r+V «i«af

ear
r +(r r—~)(rz r)—

r

G
dr arcsin

Qr

+arcsin

(r —r~) —(r~ —r)

r2 —r]

r, (r r—, ) —r, (r, —r)
r (r~ r) )—

=2m .
I

Therefore, for the Tietz potential, we have

vo(A ) =vo(Ao —A ) vo =2,

(62)

(63)

Bv, (A, )

BA,
(64)

i.e., exact linear degeneracy at a=0, indeed. Consequent-
ly, the total number of states in the Tietz potential is
given by N(E=O) of Eq. (40) with Ap from (58).

For values of E close to zero, the lines of degeneracy for
the Tietz potential are not straight lines. However, the
main deviation from a straight line occurs for small
values of A, [recall the rapid change of v, (A, =O) for E (0;
Eq. (52) of I]. If we use a linear approximation, as in Eq.
(19), with

On the other hand, insertion of

4=( —,'ZR)'

r0 ——R,
cgp ———,

' (Z/R)'i

into Eq. (42) of I gives

(58)

an error will be made mainly for A, )0. Thus the states
affected by such a linearization have small angular
momentum and therefore little multiplicity. This is visi-
ble, e.g. , in Eq. (18) where the factor A, gives little weight
to these states. In short, Eqs. (19) and (64) represent a
very reliable approximation to v, (A, ) if E (0. We are now
going to use it for finding the leading oscillatory term of
E~ (8 =0)=E~z(a =0) for the Tietz potential.

For this purpose, we write

Bvp(A, )

ai,
= —2. (59) v,

' =2(1—o, ), op ——0, (65)

which is inserted into Eq. (25). Obviously, o, will play
the role of —E that appeared in Eqs. (26) and (27). For
example, the v oscillations in N(E) have the structure

Of course, identical slopes at both ends of the line of de-
generacy vp(A, ) do not necessarily imply that vp(A, ) is a
straight line. Also, the vanishing of 8 vp(A, )/BA, at
A, =A,p, as told by Eq. (90) of I (c3 ——2, c4 ——3 here), is
strong, yet insufficient, evidence for linear degeneracy. So
we make use of Eq. (45) of I and find, after inserting the
Tietz potential and slightly rearranging the expression,

[N„,(e)],=Re g exp(4mijA, ,) g cj~~ A,, o, (66)

where the numerical coefficients cj~ ~ do not depend on
c.. Equation (66) is directly obtained from Eq. (27) after
making O(e) explicit. Individual terms of the triple sum
in (66) are integrated through repeated partial integration,
as in Eq. (77) of I, whereby the leading contribution to the
energy oscillations stems from the terms with m'=m —2.
It is given by

(60)
»p(~) 1 "~ 1 «+ V'r ~«~

rr "i r Q(r r&)(rz r)——

wherein the limits of integration obey

r]r2 ——R 2

(61)

/0 co2

[Ei(E=O)]„= .
~ m(m —1)

A,po'p

0

m —2

r ~ +rq 2R —1 =2R [2(A,p—/—A, ) —1])2R .
A,

2

The value of the integral in Eq. (60) happens to be in-
dependent of r~ and rz,

( —1)'
X g z cos(4mji, p)+ ~ . ~

(~j)

(67)
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which has an amplitude of order Z / . The dots symbol-
ize differentiation with respect to s, as is illustrated by

dc
(68)

Since it turns out that the leading A, oscillation is of lower
order in Z'/, the leading v oscillation of Eq. (67) is al-
ready the leading energy oscillation.

The sum over m in (67) is elementary,

Further, we need oo——(d/de)(l ——,
' v', ) ~, 0

————,
' vo. We

proceed from [Eq. (64), and Eq. (42) of I]

-) d ) d ~c
v,'= v,'= v 2

dE, dE, rECO~

y =—+ ln(1 —y),1 ~ 2 1 1—
z m(m —1) y y~

(69)

2 2
2 ~c

(75)

while the sum over j is given by the second equation
of (29), so that Eqs. (54) and (67) together produce the
following result for the single-particle energy of the filled
Tietz potential (y =Zoo'0/Ao):

E)(s=o)= [E)(e=o)]TF+—,Z

the last step used Eqs. (37) and (40) of I. We now dif-
ferentiate Eq. (39) of I to produce m„

1 d 2 1 «c d

2'~ dc 26)~ d E, dr~

+ . —+ ~
ln(1 —y)

Ap 1 1 y

y

4 d - d
r~ ~ +2r~

co dr & dr
d 1+ [r.«r. )] . (76)

dr, r,

&((2~ )'——,', )+ (70)

Applied to the Tietz potential, this gives
1/2

The ellipsis indicates the oscillatory terms of order Z /

and smaller and also nonoscillatory terms which can even
be of order Z . For, on this level, all we identified are
the oscillatory terms; our calculations cannot indicate if
there is a nonoscillatory term of order Z / . [Incidental-
ly, for this reason the additive term —» in the last pair
of parentheses of (70) is insignificant. We write it,
though, because it makes the average of the oscillation,
over one period, vanish. ]

The leading term in Eq. (70) is

cop = —16
Z

leading to

R . Rv' =36—o. = —18—Z' ' Z'
kpO py= . = —9,

Ap

—+ ln(1 —y) =0.1732 .1 1 —y
y

(77)

(78)

[z,(E=O)]T„=f («) 1

15~'

(2Z)5/2g 1/2
96

2Z 1

(1+r/R)'

Consequently, the single-particle energy of the filled Tietz
potential is

Ei(c,=o)= —0.5300Z / + —,Z

+0.0476Z'/'((1. 817Z'/')' ——')+ ~ . .

(79)

= ——,
'

( —,
' )'"z'"= —o.53ooz'", (71) The comparison with the filled Coulombic potential (1)

[normalized in the sense of (43), so that A.o=(3Z/2)' ],
for which, according to Eq. (50),

where Eq. (56) has been inserted. According to Eq. (37) of
I, we have

(72)

Ei(E=O)= —0.7631Z / + —,'Z

+0.8736Z / ((1.145Z'/~+ —,
' ) —+, )+

= —0.7631Z + —,
' Z +Eos (80)

so that for the Tietz potential
1/2

2R
p Z

and then

0 ~0
2

Ao &p

' 1/2

SR
= —,( —,)'/ Z / =0.2752Z /

(73)

(74)

shows that the Tietz potential leads to a much smaller
amplitude of the leading oscillation. This is mainly
caused by the factor of Eq. (69) which reduces the ampli-
tude to almost one-sixth. The origin of this factor is the
deviation of v', from vo ——2 for c, &0.

In order to avoid a possible misunderstanding, we stress
that Eq. (80) should not be confused with Eq. (15) for
X =Z. These two equations represent answers to two dif-
ferent questions. Equation (80) is the result for a Coulom-
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O. f 1

1+~oy dt
1 2+&

1 —t
(83)

C/l ~
LLI N

-0.&—

-0.2
0

where a is some as yet unspecified odd function of t; it is
not totally arbitrary, but subject to restrictions which
represent the physical boundary conditions on the under-
lying potential that we are looking for. In particular,
V(r) must obey

(~/ Z)1/3

FIG. 2. Energy oscillation of Eq. (80), in units of Z' ', as a
function of ( 2

Z)' '. Stars mark the Z values of closed Bohr

shells.

( —r'V)
Bp' r=0

—Z (84)

rV—(r)
~

„„=c=ZR (85)

bic potential filled to the brim with electrons, the total
number of which equals Z in the TF limit. As this limit
is approached, N(E=O) oscillates around Z with an am-
plitude proportional to Z /, as expressed by Eq. (73) of I.
In contrast, Eq. (15) describes the situation in which the
number of electrons is prescribed. For N =Z, it means
electrically neutral atoms containing noninteracting elec-
trons. [Incidentally, the additive constant ED in (1) must
be less than Z / /(18)'/, the value used in (80), in order
to guarantee the existence of at least Z bound states. ] The
comparison of Eqs. (15) and (80) shows in particular that
the leading oscillatory terms differ in sign and phase. On
the curve of h (N =Z) in Fig. 1, which refers to Eq. (15),
the closed-shell values of Z [(—,'Z)'/ =1.44, 2.47, 3.48,
4.48, and 5.48] mark the sharp maxima, whereas they sit
close to the tops of broad maxima on the analogous plot
for Eq. (80), presented in Fig. 2.

where c is the constant that appeared, e.g. , in (51) of I,
while m & 2 is related to v0 by Eq. (49) of I:

1
vo ——1+

m —2
(86)

t

=1+vay =(1+t) 'g(t ),
~0

(87)

with g(t ) waiting to be specified. Since r =r0 means
y =0 and t =0, a first restriction on g is

Note that this definition of R is consistent with its mean-
ing in the case of the Tietz potential of Eq. (55).

It is easier to incorporate these conditions after solving
(83) for y. This is done by writing M as the logarithmic
derivative of an arbitrary function of t . Then (83) is im-
mediately converted into

g(0)=1 . (88)
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—r V(r)= —,'/(, 0(1 t ), — (89)

which implies

To make use of (84), we note that, according to Eq. (80) of
I,

APPENDIX

Here we address the (more mathematical) problem of
finding potentials which lead to exact linear degeneracy
for a=0.

We start with Eq. (89) of I. In order to result in a A, -

independent Bva/BA, , the terms within the curly brackets
must be equal to

Z = [ rV(r)]-
d7'

2 dt= —A,pt
r=0 r=p

2 dy dt
dJI

(90)

Now, since r =0 corresponds to t = —1 and since
dp/d/' = 1/v@7"p, this means that

Ap =[1—(1—A, /A, )] dy 1 ~o

dt i Z 'pp Tp
(91)

1

2

( —1)'(1—A, /AD)', (8 1 )
Tllllsy

which tells us the required values of the coefficients in
(89) of I. Since

I

dt
[(I+t) 'g (t')] ~0

Zro
(92)

1

2 m/2= f d8 —(sin8)—m'/2 0=
1

=(1+t) 'g (t ')

If we combine this with

this implies that all coefficients of even powers of t in (88)
of I are unity. Consequently, we learn that
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2
AQ

g(t )-
Zro 1 —t

I
vo —1

as t —+1. (94)

I

V(r)= —— (1—t )=——Z R 2 Z 1 —t
r 4r r 2

(103)

Similarly, the observation that r~ oo corresponds to t~1
translates (85) into This implies that f(r/R)= (—r—/Z)V(r) obeys the alge-

braic equation

g(t )—R
2rp

ZR /A. p
as t ~12

1 —t2
(95)

[f(r/R)] ' [f(r—/R)]
R

(104)

The coexistence of (94) and (95) requires the relation

ZR =2kp

to hold. Thus,

(96)

R 2

2rp 1

vo —1

ast ~1.

g(t )&0. (98)

Further, since r is an intrinsically positive quantity, Eq.
(87) implies

which is easily checked to be consistent with both (84) and
(85). Consequently, if f satisfies this equation, then the
corresponding potential leads to linear degeneracy, for
e=O, with slope vp, and Eqs. (96) and (101) hold. For
special values of vp Eq. (104) can be solved in an elemen-
tary way. For example, vp ——1 produces the Coulombic
potential of Eq. (1) with R =2rp, as it should be. Also,
vp ——2 gives the Tietz potential (55) for which R =rp.
Thus the class of potentials belonging to the simplest real-
ization of g (t ), as given in Eq. (100), or equivalently by
(104), contains both the Coulombic and the Tietz poten-
tials. Further, we find

Finally, for an atomic potential V, —r V(r)
[=A,p(l —t )/2] increases monotonically from zero to its
global maximum at rp and then decreases monotonically
to zero again. Therefore, r must monotonically increase
with growing t. Consequently, g(t ) must be such that
dr/dt & 0, or [Eq. (87)]

rV(r)= —— + 1+
r 2R 2R

and

'2 1/2 —3

for vo ———,',
(105)

d 2 vo

dt
ln[g(t )]&—

1+t (99)
Z 1 1 r

V(r) = ——
r 2 4 R

' 1/2 —3

fol vp=3 (106)

All g(t ) that obey Eqs. (88) and (97)—(99) are accept-
able and lead to an atomic potential which possesses linear
degeneracy with slope vp for E=O. The simplest way of
satisfying all these conditions is exhibited by The maximum property of —r V(r) at r =rp can be

used in (104) in the form

g(t )=
1 —t2

I
vo —1

(100) d
d( /R) f =fp

f (rp/R)
ro/R

(107)

which means that R and rp are related to each other
through in order to evaluate f (rp/R). The outcome

t

Rlrp ——2 (101)
If (rp/R) =2 (108)

If the potential is supposed to be normalized in the sense
of Eq. (43) (that is, Z = —', vpA, p), then we have the Z
dependences of A,p and R expressed by

is, of course, consistent with (101) when inserted into
(104). Another consequence of (104) is

X,rz'"=
' I/3

2vp

d (r/R)

so that

r=0

I= —vp (109)

R/Z-'"=
' 1/3

(Vp
I

(102)
Z ZvpV(r)= ——+ for r&0.
r R (110)

Now we insert first (96), and then (87), (100), and (101),
into (89) and obtain

When the potential is normalized according to (43), i.e.,
when Eqs. (102) hold, this additive constant is proportion-
al to Z, as it should be.
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