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Electrolyte friction and the Langevin equation for charged Brownian particles
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A Langevin equation for a charged spherical Brownian particle, diffusing in an ionic solution, is
derived as a contraction of a description based on the fluctuating diffusion equation for the local
concentrations of the electrolyte ions of the supporting solution. A fluctuation-dissipation relation is
demonstrated between the electrostatic friction and its corresponding fluctuating force. Expressions
are derived for the electrolyte contribution to the friction coefficient in terms of the equilibrium in-

terionic correlation functions. The results previously found by Schurr are shown to follow in the
Debye-Hiickel limit.

I. INTRODUCTION

In a recent work, Gorti et al. ' have measured the self-
diffusion coefficient D, of charged spherical macroparti-
cles in an ionic solution as a function of electrolyte con-
centration. They find that D, decreases from a "satura-
tion" value as the ionic strength is diminished. In an at-
tempt to establish a theoretical interpretation, they com-
pare their experimental results with the expression for D,
given in terms of Einstein s relation, D, =kET/g, in
which the friction coefficient g is supposed to be the com-
bination of a "solvent" plus an "electrostatic" contribu-
tion, g=g'+P'. For g', Gorti et al. ' assume Stokes's ex-
pression, P=6mga (for a sphere of radius a in a medium
of viscosity rt), whereas for the electrostatic contribution
P' they consider the results of the theories developed by
Schurr and by Booth, which provide expressions for P'
in terms of the ionic strength of the solution. Their con-
clusion is that the former theory provides a better fitting
scheme for the experimental data.

In essence, Schurr's theory is based on the calculation
of the fluctuating electrostatic force on the macroparticle,
due to the spontaneous equilibrium fluctuations in the lo-
cal concentration of small ions in the neighborhood of the
macroparticle. In this theory, the existence of a Langevin
equation for charged macroparticles is implicitly assumed,
and use is made of a fluctuation-dissipation relation be-
tween the transport coefficient P' and the correlation
function of the fluctuating electrostatic force. In addi-
tion, a number of simplifying assumptions and approxi-
mations are introduced, some of which could probably be
dispensed with in a more general theoretical approach.
One of the motivations of the present work is the need of
a formal derivation of the Langevin equation and of the
fluctuation-dissipation relation underlying Schurr s
theory. As a consequence, a general scheme for calcula-
tion of P' was produced, from which Schurr's results fol-
low as a particular limit.

The Langevin equation has been the basis for the classi-
cal description ' of Brownian motion. Several workers
have shown that the Langevin equation follows from the
fundamental laws of classical mechanics, although only

formal expressions are produced for the friction coeffi-
cient and the fluctuating force. The actual evaluation of
the friction coefficient makes use of phenomenological,
hydrodynamic arguments such as those leading to the
Stokes expression, (=6+pa. It is then fair to say that a
useful alternative derivation of the Langevin equation
could originate from a fully hydrodynamic level of
description. This point of view was taken by Fox and
Uhlenbeck, and others. ' Starting from Newton's
second law for an uncharged Brownian particle plus a
fluctuating version of the hydrodynamic equations which
describe the dynamics of the supporting fluid (i.e., the
noncontracted description) it has been shown ' that a
Langevin equation with memory follows when the hydro-
dynamic variables are eliminated. The Markovian limit
of this equation is the ordinary Langevin equation. This
procedure is an example of what is generally referred to as
the "contraction of a description. " Berman' has demon-
strated, under rather general conditions, that if the non-
contracted description (i.e., that involving the fluctuating
hydrodynamic equations in the example above) can be cast
as a Gaussian, Markovian stochastic process, in which a
fluctuation-dissipation theorem and the Onsager-Casimir
relations hold, then a fluctuation-dissipation relation fol-
lows at the contracted level. This is a relation between the
memory function occurring in the Langevin-type equation
resulting from the contraction, and the time correlation
function of the corresponding fluctuating force.

It would certainly be interesting to develop a formal
derivation of the Langevin equation for a charged
Brownian particle along these lines, i.e., as a contraction
of a description involving the fluctuating hydrodynamic
equations that describe the dynamics of the fluctuations
in local composition and in local mass, energy, and
momentum densities around the macroparticle. Such a
derivation, however, would differ from the previous work
on uncharged macroparticles ' in only two essential
respects: the presence of diffusive fluxes and of long-
ranged (Coulomb) interactions. Thus, it may be more in-
structive to first carry out a somewhat simpler derivation
in which the proper treatment of these two features is
clearly exhibited. This is done in this paper under the fol-
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lowing approximation: We shall neglect the dynamic cou-
pling of the fluctuations in local mass, energy, and
momentum densities with the fluctuations in local compo-
sition. The former are driven by hydrodynamic (mass, en-

ergy, and momentum) fluxes and have a faster dynamics
than the latter, which are mainly driven by diffusive pro-
cesses. Although the cross effects being neglected may be
theoretically interesting by themselves, we do not expect
them to contribute significantly to the total friction on the
macroparticle. Thus, we can imagine that the process of
contraction can be carried out in two independent stages.
The hydrodynamic variables are first eliminated from the
description, as done in previous work, ' ignoring the
electrostatic effects. This results in a "solvent" friction
and its corresponding fluctuating term in the force on the
macroparticle. The second stage of the contraction is car-
ried out here, and consists of the elimination of the vari-
ables determining the local composition of the ionic solu-
tion, i.e., the local concentrations n;(x, t) (i =1,2, . . . , v)
of electrolyte ions around the macroparticle. These vari-
ables will be assumed to obey a fluctuating version of the
diffusion equation. From the fluctuation-dissipation rela-
tion between the fluctuating and the dissipative diffusive
fluxes in this equation, we demonstrate the fluctuation-
dissipation relation between the dissipative and the fluc-
tuating electrostatic terms of the resulting Langevin equa-
tion for the macroparticle. This equation is not local in
time, and expressions are derived for the memory function
in terms of the equilibrium-concentration —concentration
correlation functions for the small ions, and of the matrix
W;J of Onsager's phenomenologic coefficients appearing
in the fluctuating diffusion equation. Schurr's results
follow when the simplest approximation (Debye-Huckel)
for the interionic correlations, along with other simplifica-
tions, are employed in our general expressions for the elec-
trostatic friction P .

This paper is organized as follows. In Sec. II, the fluc-
tuating diffusion equations are set up to describe the local
fluctuations in the concentration of the various species of
ions around the macroparticle. These equations, along
with Newton's second law for the macroparticle, are the
dynamic equations on which we base our developments.
The force on the macroparticle is the addition of the sol-
vent friction with its corresponding fluctuating force, as
in the Langevin equation for an uncharged particle, plus
the electrostatic force on the macroparticle derived from
its interaction with the small ions. Although the resulting
equations are nonlinear, the description of the diffusion
processes from a reference frame fixed to the macroparti-
cle allows its linearization around the equilibrium values
of the macroparticle velocity V and the local concentra-
tions (n;(r)),q,„. This linearization is carried out in
Sec. III where the properties of the equilibrium solution
are discussed. In Sec. IV we show that the linearized
equations can be cast as a multivariate Langevin-type
equation for the stochastic vector whose components are
the components of the macroparticle velocity V(t) and the
fluctuations in the local concentration 5n;(r, t). The
fluctuation-disspation relation is established between the
relaxation matrix of this equation and the correlation
function of its fluctuating, purely random, Gaussian sta-

tionary term. In addition, the ("local"' ) Onsager-Casimir
relations are also shown to hold at this noncontracted lev-
el. According to Herman's contraction theorem, ' it is not
difficult to show that then the fluctuation-dissipation
theorem at the contracted level follows. We have chosen
to give an alternative demonstration based on the explicit
construction of the time correlation function of the fluc-
tuating electrostatic force on the macroparticle. The for-
mal steps in this derivation are summarized in a contrac-
tion theorem in th'e Appendix, which, although more res-
trictive than Herman's contraction theorem' is still gen-
eral enough to be useful in other applications. The result-
ing Langevin equation is discussed in Sec. V, where the
approximations needed to reproduce Schurr particular re-
sults are indicated.

II. THE NONCONTRACTED DESCRIPTION

g q;n;(x, t)

f dx
3 [x~—R~(t)],

e ~x —R(

(a = 1,2, 3) (1)

Bn;(x, t) = —V J;(x,t) (i =1,2, . . . , v) .
Bt

(2)

The first term on the right-hand side of Eq. (1) is the fric-
tion of the solvent (M is the mass of the macroparticle)
and f'(t) the corresponding fluctuating force, which we
shall assume to have the same properties as for uncharged
macroparticles, so that g' can be approximated by its
Stokes expression

P=6nga, (3)

with t) being the viscosity of the solvent, and a the radius
of the macroparticle. The fluctuating force f' (t) will be
modeled by a Gaussian, stationary, and purely random
process, ' with zero mean and correlation function given
by

(f' (t)f'p(t') ) =y' p5(t t') (a,P—= 1,2, 3), (4)

where y~& is related with g' by the following fluctuation-
dissipation relation:

2g'k~ T
M

(5)

The third term in Eq. (1) corresponds to the electrostatic
force on the macroparticle of charge Q and radius a. q; is
the charge of ions of type i, whose local number concen-
tration is n;(x, t), and e is the dielectric constant of the
solvent. The domain of integration V is defined as

~

x—R(t)
~

& a, and it changes with time, as the macro-
particle moves according to

Our starting point is the following time-evolution equa-
tions for the macroparticle velocity V(t) and for the local
concentrations n;(x, t) (i =1,2, . . . , v) of electrolyte ions:

dV (t)
&.(t)+f'.(r)

dt
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dR( )

dt
(6)

The continuity equations for n;(x, t) in Eq. (2) will be
complemented with the pertinent constitutive relations
(Fick's Law). Let us notice first that the boundary condi-
tions on n;(x, t) at the moving surface of the macroparti-
cle lead to an implicit dependence of n;(x, t) and J;(x,t)
on R(t). All this dependence on R(t) can be eliminated
by describing the diffusion equation in a reference frame
fixed to the macroparticle, i.e., by using the linear, but
time-dependent, transformation, x=R(t)+r, in Eq. (2).
This equation would then read

Bn;*(r,t)
=V(t) V„n (r, t) V„.J—,

' (r, t).,
Bt

where

n (r, t)—=n;(R(t)+r, t)

and

tions, " and we shall not commit ourselves to any of them
at this stage.

In Eqs. (12)—(15) we have omitted the asterisk that in-
dicates the reference frame to which the position vectors r
and r' are referred. This is due to the fact that these
equations express the functional relationship between the
electrochemical potential and the local ionic concentra-
tions, which is independent of the reference frame em-
ployed in its description. Similarly, Fick s law in Eq. (11),
involving only spatial derivatives, has the same form as in
the laboratory-fixed reference frame. From now on we
shall drop the asterisk on n;* and J;*, with the under-
standing that the position variable in n;(r, t) and j;(r, t) is
referred to the center of the macroparticle. In summary,
our dynamic equations now read

dV (t) p g r
V~(t)+f' (t) J—dr g q;n;(r, t)

(u = 1,2, 3) (16)

J; (r, t)—=J;(R(t)+r, t) .

The fluxes J,'(r, t) have two contributions,

J,*(r, t) =J; (-r, t)+J; (r, t), (10)

8 n;(r, t)
=V(t) Vn;(r,.t)+ g W;, Vz[pp, (r, t)]

C}t

Ppj(r, t) =Pp~"[r;n (t)]+PqJQ/Er, (12)

where the functional dependence is denoted by the square
brackets around the argument of Ppj", which is the actual
("intrinsic") chemical potential and can be written in gen-
eral as'

where J; is a fluctuating flux originating in the thermal
fluctuations of the eliminated hydrodynamic variables,
and J;(r,t) are the correspondhng "systematic" diffusive
fluxes, given by Fick's Law,

J;"(r,t) = WJV„I3pJ(r, t) —(i =1,2, . . . , v),
where summation over repeated indices (j= 1,2, . . . , v) is
implied, P=1/k&T, T being the temperature, and tuj. (r, t)
is the electrochemical potential of ions of species j at r.

is a matrix of Onsager phenomenological coeffi-IJ
cients, such that W,J.——WJ;. .

The electrochemical potential is a functional, " rather
than an ordinary function of the local ionic concentra-
tions n], n2, . . .-, n . This is indicated as

+f;(r, t) (i,j=l,2, . . . , v), (17)

III. EQUILIBRIUM SOLUTION
AND LINEARIZED EQUATIONS

At equilibrium, the average value of V~(t) is zero,
whereas the equilibrium average of n;(r, t), denoted as
(n;(r) ),q,„ is such that

( J,"(r,t) )„.„=0. (19)

From Eqs. (11)—(14), we see that (n;(r)),q,„must be
such that

where the fluctuating terms f; (r, t)= —V.J;(r, t) will be
modeled by a Gaussian, stationary, purely random pro-
cess, with zero mean and correlation function given by

(f; (r, t)fJ (r', t') ) =yj (r, r')5(t t') (ij = 1,2, .—. . , v) .

(18)

V(P)M;(r) ),q,„=g f E~i(r, r')V'(ni(r') ),q,„dr'
J

+PV
E'E'

(20)=0,
I&)5cj [r;n] (2):—cjk [r,r', n]

5nk(r')
(14) where

Ppj."[r;n]=Ppz+ln[nj(r)] —c~'"[r;n] . (13)

In.this equation, cj "[r;n] is a functional of n, such that
its functional derivative,

cjk'[r, r', n]= 13q qk/e
~
r —r' ~— (15)

This, however, is only one of several possible approxima-

is the two-particle direct correlation function appearing in
the Ornstein-Zernike integral equation of the theory of
liquids. ' The simplest expression for cJ'k' is the so-called
Debye-Hiickel approximation, which in our case reads

E;J(r,r') —=
5p,'"[r;n]

5n~ (r') g ={a&

5' 5(r —i' )

( ) )
cij' [r r'~ (n &eq. av. ]

ni r eq. av.
(21)

The inverse of this matrix E~i(r, r'), defined by the equa-
tion
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g f EJ.(r, r') ojk (r', r" )d r' =5;k 5(r—r"), (22)

X [nJ(r') —(n.(r') &, . „.] &

An alternative notation for o,z (r, r') is

o;J (r, r') = (n;(r) &,q,„5J5(r—r')

+ &;( ) &...,. &,( ') &, ,„h;,(, '),

(23)

(24)

which, when inserted in Eq. (22), along with Eq. (21),
shows that Eq. (22) is another form of writing the
Ornstein-Zernike equation for inhomogeneous fluids, '

hj(r, r') =cJ(r, r')

is the matrix of static correlation functions. These are de-
fined as

o;J(.r, r') =—([n;(r) (—n;(r) &~,„]

and the fluctuations in local concentration. This is an ex-
pression of the local equilibrium assumption implicit in
our theory. " In addition, we have used the fact that the
average electrostatic force on the macroparticle is zero at
equilibrium.

To conclude this section, we notice that the third term
in Eq. (27), being of a mechanical nature, does not have
associated an additional fluctuating force, as opposed to
the "solvent" friction term in that equation, which is re-
lated with the fluctuating force f'(t) by the fluctuation-
dissipation relation in Eqs. (4) and (5). In a similar
manner, the first term in Eq. (28) has also a purely
mechanical origin, and is not associated with any fluctuat-
ing term in that equation. However, the second term,
describing diffusion, is related with the fluctuating
"forces" f;"(r,t) via a fluctuation-dissipation relation,
which completes the definition of the stochastic properties
of this fluctuating term in Eq. (18). Such a fluctuation-
dissipation relation reads'

y,"J.(r, r') = 2W;J.V,5(—r r') . — (30)

n;(r, t) = (n;(r) &,q,„+5n;(r, t) (26)

in these equations, and keeping only linear terms in
5n;(r, t) and V(t), we get

(25)

where cz(r, r') abbreviates c 1 [r,r', n]. This equation re-
quires an additional "closure" relation between c(r, r')
and h (r, r'), which, along with Eqs. (12)—(14) and
(20)—(25) leads to the simultaneous solution for
(n;(r) &,q,„and o,z(r, r') and all other quantities involved
in those equations. Although this is in general a rather
complicated problem, it can be shown, '"' for example,
that the nonlinear Poisson-Boltzmann equation for the
electrical double layer around the macroparticles results
from these equations when the Debye-Hiickel approxima-
tion, Eq. (15), is employed as the closure relation.

Assuming that the equilibrium solutions (n;(r)&,q,„
are available, we now linearize the time-evolution equa-
tions [Eqs. (16) and (17)] around (V&,q,„(which van-
ishes) and (n;(r) &,q,„.Substituting

Finally, we should point out that our equations for
(n;(r)&~,„and 5n;(r, t) should be complemented with
corresponding boundary conditions which reflect the im-
penetrability of the macroparticle for the small ions, and
pertinent electrostatic boundary conditions. However,
within the particular approximations that we shall intro-
duce later the explicit consideration of these conditions
will be unnecessary.

IV. FLUCTUATION DISSIPATION
AND ONSACiER-CASIMIR RELATIONS

AT THE NONCGNTRACTED LEVEL

The derivation of the Langevin equation for the
charged spherical macroparticle starts from the time-
evolution equations for V(t) and 5n;(r, t) in Eqs. (27) and
(28). In essence, we want to solve Eq. (28) for 5n;(r, t) and
insert it in Eq. (27). An interesting procedure to achieve
this makes use of the linear irreversible thermodynamic
theory of fluctuations. ' We first notice that Eqs. (27)
and (28) can be written in terms of the stochastic vector

and

55n;(r, t)

Bt
=[V(nl(r) &.q. a .1'V(t)

(27)

a =(V', V, V,5ni(r), 5n2(r), . . . , 5n„(r))

as the following stochastic differential equation:

da (t)
dt

= —Ga (t)+f(t),

where the fluctuating force f ( t) has components

f—=(f i,f2,f3,fi(r),fp(r), . . . ,f (r)) .

(31)

(32)

(33)

From Eqs. (27) and (28), we can see that the relaxation
matrix 6 can be written as

+f; (r, t), (28) 611 6126=
L

(34)

where use has been made of the following relationship:

5Pp; (r, t) = g f EJ(r, r')5nj (r, t)dr' (29)

between the fluctuations in the local chemical potential

where the submatrices G;J are defined as

(Gii) p =— 5 p (a,P=1,2, 3),
M

(35)



3600 MEDINA-NOYOLA AND VIZCARRA-RENDON

Qqira
(G12),;,=—

Mar

(hz=1, 2, 3; i =1,2, . . . , v; rC V),

(G2, );,p—= —[Vp(n;(r)),q,„J
(36)

with

kpT
(rrll }aP=( Va VP &eq. av. =5aP M
(o.,2);,=(c721);, =(V 5n;(r)), „=0, (46)

(i =1,2, . . . , v; rE V; P=1,2, 3), (37) and

(G22), , j, = —g P;kV„Ekj(r, r')
k

(ij =1,2, . . . , v; r, r'E' V) . (38)

The matrix product in Eq. (32) involves summation on
common discrete indices a=1,2,3, i =1,2, . . . , v, and in-
tegration over the volume V(

~

r
~

& a) for the common
continuous indices r or r'. The properties of the fluctuat-
ing forces f'(t) and f; (r, t) assumed before can now be
enunciated in terms of the composite fluctuating vector
f(t) defined in Eq. (33). Thus, f(t) is a vector of stochas-
tic Gaussian, stationary, purely random variables, with
zero mean and correlation function given by

(f(t)f"(t') ) = I 5(t —t '), (39) with

E11 E12

E21
(48)

(+22)ir jr 'rrij (r~r )

where the equipartition theorem has been used in Eq. (45),
and the lack of correlation between V and 5n;(r) in Eq.
(46) is a consequence of the fact that 5n;(r) depends only
on position variables which are statistically uncorrelated
with momentum variables at equilibrium. In Eq. (47),
o;j(r,r') refers to the definition in Eq. (22) above. In a
similar manner, and using Eq. (43), we can write the ma-
trix E as

where the transpose of f has been indicated as f . The
matrix I can be written as

M'E-'-p=
k T5-'

B
(49)

~11 ~12
r

y'
0

0
(40} and

(E12}a,ir (E21 }ir,a=0
&

p"q(a) = (const)exp( aEa), — (41)

with the matrix E being the matrix of second derivatives
of the entropy. The equilibrium correlation matrix

o=(aa ),q,„:—f W'q(a)aatda (42)

can be calculated from Eq. (41), yielding

where the partitioning of I is similar to that of G in Eq.
(34), and y' and y are the matrices appearing in Eqs. (4)
and (18). In addition, we have assumed that the correla-
tions between f'(t) and f; (r, t') (i =1,2, . . . , s) are zero
for a11 times t and t'.

With these assumptions for the fluctuating force f(t),
and from the stochastic differential equation for a(t) in
Eq. (32), we can conclude that a(t) is a multivariate
Gaussian, stationary, Markov stochastic process' (i.e., an
Ornstein-Uhlenbeck stochastic process), whose various
probability distribution functions can be written in terms
of the matrices G and I . In particular, one can calculate
P(at

~
ao), the conditional probability that the stochastic

variable a (t) has values a at time t, given the values ao at
time zero. For very large values of t, this function must
approach the equilibrium distribution W'q(a), which is
given by the Boltzmann-Planck distribution

(E22)ir, jr =Eij(r,r'), (51)

where E;i(r, r') was defined in Eq. (21).
The requirement that P(at

~
ao) approaches 8"q(a) as

t~ ec leads to the generalized fluctuation-dissipation
theorem, which reads

Go+a.G =I
Alternatively, writing the relaxation matrix 6 as

(52)

(53}

the fluctuation-dissipation relation in Eq. (52) can also be
written as

r=k, (L, +L, ') . (54)

In Onsager's theory of irreversible thermodynamics, ' L, is
the matrix of transport coefficients whose symmetry con-
stitutes his celebrated reciprocity relations. In general,
however, the relaxation matrix may have contributions
due to streaming or mechanical terms in the evolution
equations for a [like the first terms of Eq. (28), and the
third in Eq. (27)J. These contributions destroy the sym-
metry of L. In a correct application of the theory, howev-
er, these nondissipative terms should only contribute to
the antisymmetric part of L, so that if we split L in its
symmetric and antisymmetric parts,oE=I . (43)

~12

~21 22
(44)

In our application, the equilibrium correlations are given
by

(55)

Eq. (54) reads

I =2kBL, '. (56)
We now demonstrate that in our particular application

the fluctuation-dissipation relation in Eq. (56) is con-
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where

$y
(L ii }ap= 5ap

M

QVi ra(L~2);,= g f 3 a;J.(r, r')dr',
vk

T
(L2] }ir,p= Vp& ni (r}&eq. av.

(58)

(59)

(60)

(L22) r,jr'= — WiJ. V', 5(r r') . —srjr k IJ r (61)

Now, let us see that the following property of the above
submatr1ces L, 12 and L21 holds:

L21 ———L12 . (62)

From Eq. (20) of Sec. III, which defines (n;(r) &,q,„we
have that

g f dr'Ekj(r", r')V'(nj(r') &,q,„= . (63)
PmQr"

Multiplying by rr;k(r, r") and integrating over r", sum-
ming on k, and using Eq. (22), we have

V(n;(r)&,q
„——g f o;k(r', r}dr'. (64)

ekQr'
v ektiT(r')3

The comparison of this equation with the definitions in
Eq. (59) and (60) demonstrates that

T
(L21) ir=a(L21 }ir a= ~a& ni(r} &eq. av,

sistent, and in fact, equivalent to the fluctuation-
dissipation relations, previously assumed in Eqs. (5) and
(30) above. In addition, we demonstrate that, indeed, the
mechanical and streaming terms in Eqs. (27) and (28) con-
tribute only to the antisymmetric part of L. Let us first
identify the matrix L of our problem. Using Eqs. (53),
(43), (34},and (44), we find that

L11 L12
(57)

in the previous section. These symmetry properties of the
matrix L are called Onsager-Casimir relations. Accord-
ing to Herman's contraction theorem, ' they are essential
to demonstrate the fluctuation-dissipation relation at the
contracted level.

V. THE CONTRACTED DESCRIPTION
AND THE RESULTING LANGEVIN EQUATION

dV (t)
V (t)+f'(t)

m

—g f K p(t t')Vp(t')dt'+F —(t), .
P

(67)

where the matrix K(t) is defined as

—6» it IK(t) = —Gi2e G (68)

In the previous section we showed that the time evolu-
tion equations that govern the dynamics of the Brownian
motion of a charged macroparticle can be written, within
well-defined approximations, as a multivariate stochastic
differential equation of the Langevin type for a vector of
random variables a(t}. In general, the elimination of
some of the components of a(t) leads to a Langevin equa-
tion with memory for the vector whose components are
the remaining variables ( Vi, V2, and V3 in our case). The
memory function involved in this equation is proportional
to the time correlation function of the resulting fluctuat-
ing force. Such fluctuation-dissipation relation can be
shown to follow as a direct consequence of the
fluctuation-dissipation relation holding at the uncontract-
ed level. In the Appendix, these statements are formally
enunciated as a rather general theorem. Considering the
content of the last section, it is easy to see that the hy-
pothesis of such theorem are fully satisfied in our particu-
lar application. Thus, we now quote the most relevant
consequences of that theorem as they apply to our prob-
lem. Taking a =( V~, Vq, V3, 5n;(r), . . . , 5n (r)) and
a~ ——(V~, Vq, V3), we see from Eqs. (A9) and (A10) that
the Langevin equation resulting from the process of con-
traction is

(L 1z ) ir .a (65)

LS
0 L12

21

and now it is trivial to see that the fluctuation-dissipation
theorem in Eq. (56) is equivalent to the fluctuation-
dissipation relations assumed in Eqs. (5) and (30). In ad-
dition, the lack of correlation between f'(t) and f;(r, t), as-
sumed in Eq. (40), is actually a consequence of the an-
tisymmetric relationship between L12 and L21. This rela-
tionship, in its turn, is a consequence of the nondissipative
nature of the mechanical and streaming terms of the re-
laxation equations. Its very demonstration indicates the
self-consistency of the linearization procedure carried out

On the other hand, it is clear from Eqs. (58) and (61) that
both L» and L22 are symmetric. Thus,

kgT(F (t)Fp(t')&= K p(t t') . —
M

(69)

Due to the spherical symmetry, K p is expected to be di-
agonal and isotropic, i.e.,

K p(t)=k(t)5 p. (70)

Using Eqs. (35)—(38) and (61), we have that

and Fa(t) is the fluctuating force originated by the spon-
taneous, thermal distortion of the ionic atmosphere
around the macroparticle. According to the contraction
theorem, and to the assumptions summarized in the
preceding section, this force is a Gaussian, stationary pro-
cess with zero mean and correlation function given by the
following fluctuation-dissipation relation [see Eqs. (All)
and (45)]
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k(t)= f dr f dr'g 3(e " );,j,
l,J

Huckel interionic correlations, disregarding the presence
of the macroparticle, i.e.,

with

X, ( j(r') ),q.Bz
(71)

5;j5(r—r') Pq 2( 1)1+j
E;,(r, r') =

n e/r —r'/

[compare with Eq. (21)], and

(79)

(G22)',j ' y ~'k~ Ekj(r r )
k

(72)
2

1 j+j
0;J(r, r')=n5;15(r —r') — q e

—"''—'',
e[r—r'[ (80)

c(t)=(V(t) V(0)) . (73)

The Laplace transform of this function can be obtained
from the Langevin equation above:

c(z) —= f e c(t)dt

S

z+ +k(z) (V(0) V(0)), (74)

where

k(z)= f e "k(t)dt

= —[G12(ZX+ G22) 'G21]„. (75)

The self-diffusion constant D, can be defined in terms of
c(z) as

The statistical properties of the random motion gen-
erated by the Langevin equation of the type above have
been studied. ' Thus, it is known that V(t) is a Gaussian,
but non-Markovian stochastic process. Nevertheless, be-
cause of its Gaussian nature, all its statistical properties
are determined by its time correlation function,

with

~ =8m.Pnq'/e;

and (e) use of these approximations in the following ex-
pression for P',

M 2

[ 12(~22~ 22 022) 12]z,z
—1

k~2T

This is formally equivalent to Eq. (78). Carrying out the
integrals involved in the matrix operations in Eq. (81), we
arrive at Schurr's result:

(82)[1—e "'( I +2@a)] .
12ea a

The comparison of this result with experimental measure-
ments seems to indicate that even though there is some
qualitative agreement, a somewhat reduced value of Q has
to be used in order to fit the experimental data. It would
be interesting to see if the use of a more accurate approxi-
mation than the Debye-Huckel could lead to a better
agreement between theory and experiment. The use of our
results render such calculations perfectly feasible.

D, = —,
' V t.VO t= —,c O (76)

and, using Eq. (74) with (V(0).V(0)) =3kt1 T/M, as

VI. CONCLUDING REMARKS

In this paper we have presented a derivation of the elec-
trostatic terms of the Langevin equation for a charged
macroparticle diffusing in an electrolyte solution. In this
derivation we have calculated the fluctuating electrostatic
force on the macroparticle produced by the spontaneous
distortion of its ionic atmosphere. As the source of the
latter, we considered the fluctuations in the local charge
density around the macroparticle driven by diffusion, and
have neglected any correlation with the local fluctuations
of total density driven by hydrodynamic fluxes. In this
manner, the treatment of the electrostatic interactions
were left as the main complication. Concepts borrowed
from the equilibrium theory of inhomogeneous fluids pro-
vided a useful formal tool to describe these interactions.
As a result, expressions were derived for the memory
function appearing in the Langevin equation in terms of
the equilibrium distribution of the small ions around the
macroparticle and their static spatial correlations. As a
simple illustration, we have evaluated the electrostatic
contribution to the friction coefficient P' within the
Debye-Hiickel. approximation, and have found that this
corresponds to the results of Schurr's theory. Our deriva-
tion, however, seems more straightforward (once the
Langevin equation has been derived), and more economi-
cal in the assumptions and simplifications involved. In
addition, the consideration of more realistic models (e.g. ,

D, = k21 T/g: kjt T/( p+ p—'), (77)

with

g '=Mk(z =0)= —M(G12G22 G21 )z z, (78)

where Eq. (75) was also used.
The actual evaluation of the memory function k (t), the

velocity autocorrelation function, and the electrostatic
friction P requires the solution of the equilibrium proper-
ties (n;(r) ),q,„and Etj(r, r') This is in ge. neral a rather
complicated problem, but well-defined models and ap-
proxirnations, nowadays standard in the statistical ther-
modynamic theory of liquids, render this aspect of the
problem perfectly manageable, and a detailed account of
calculations of this type will be reported later. For the
time being, and to conclude this paper, we shall indicate
that one of the simplest calculations that can be done
starting from the general expression for P' above leads to
the result of the theory of Schurr for the electrostatic
friction. The simplifications needed to reproduce Schurr's
results are the following: (a) two species of small ions; (b)

q2 ———q1 ——q; (c) same mobility, such that W;j Dn5;j——
(D is the diffusion constant of small ions, n the bulk
number concentration of ions of either type); (d) Debye-
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charged hard spheres) and more accurate approximations
for the description of interionic correlations is immediate
from our results. Simplifications such as the symmetry of
the charge of the small ions (q) ———q2) and the lack of
dynamic coupling between the diffusion of small ions of
different type (L12——0) can also be lifted with the use of
our results. A report on this type of calculation will be
given latter.

12 ~21

Finally, let the matrix L, defined as

I.= Go,I

kg

be such that

~12 ~21~ ~11 F11& ~22 i22

(A7)

(A8)

APPENDIX: THE CONTRACTION THEOREM

In this appendix we state, and outline the demonstra-
tion of, the following.

Theorem. Let a(t) be a vector of N random com-
ponents, satisfying the stochastic differential equation

Ba(t)
dt

= —Ga (t)+f(t) (A 1)

{f( t)f (t') ) = I 5(t t') . — (A2)

Let a fluctuation-dissipation relation hold between G and
I, such that

in which G is a positive-definite relaxation matrix and
f (t) is an N-dimensional vector of Gaussian, stationary,
and purely random "forces," with zero mean and correla-
tion function given by

where X is an n g n-dimensional matrix given by

K(t) = —Gi2e G2i (A10)

and F(t) is a Gaussian, stationary, random vector, un-
correlated with fi(t), with zero mean and correlation
function given by

{F(t)Ft(t') ) =K(t —t')o» . (A 1 1)

Demonstration. Let us define the projection operators

Then, the random vector ai(t) satisfies the following
stochastic differential equation:

8a 1(t) = —G»a, (t)+f, (t) —I K(t t')a—, (t')+F(t),
0

(A9)

(A3) P= 00 an—d Q=l P— (A12)

in which

o:—lim {a(t)at(t)) . (A4)

in which I and l11 are the N xN and n &(n-dimensional
identity matrices, and the 0 s are matrices with all its ele-
ments being zero. Let us also define

Let us call a)(t) the n-dimensional vector whose com-
ponents are the first n components of a, and similarly for
f. Let us partition the matrix G as

a'"=Pa and a' '=—Qa

and similarly for f. Thus,

(a'") =(a1,0 ) and (a(2))t=(Ot, az),

(A13)

611 G12
6 G G

where the 0's are vectors whose components are zero.
Multiplying Eq. (Al) by Q, we can write

in which G» is n ~n dimensional, G,2 is n&&(N n) di-—
mensional, etc., and similarly for the other N && N
dimensional matrices. For simplicity, let us assume that
there are no static correlations between the components of
a)(t) and the other variables in a, i.e., that

a(2) t Qga'"(t) Qg—a' '(t)+f' —'(t), (A15)
Bt

whose solution, inserted in the corresponding equation for
a'"(t), leads to the following equation for a"'(t):

ga())(t) pga'"(t)+ pge-Q ('-'Qga")(&)d&
Bt 0

pge QGta(2)(0—)+f(1)(t) pge QG(t —~)f(2—)(r)dr
0

(A16)

This is an equation for the N components of a"'(t), (N n) of which —are zero. Using the properties of P, we can write
the equation for the first n components of a"'(t), i.e., for the vector a 1(t), as

8 a)(t)
Bt

—G22(t —~) —G2,2,
—62&(t —~)= —G i )a 1 (t)+f) (t)+ G12e0

621' 1(T)dr+ —G12e a2(0) — G12e f2(r)dr
0

(A17)
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from which Eqs. (A9) and (A10) follow, with
—G22t —G22(t —w)F(t)= —G12e a2(0) — G12e f2(r)dr .

0

(A18)

Thus, F(t) is a linear combination of the random vari-
ables a2(0) and f2(r) (0&r&t). From Eqs. (A2), (A3),
and (A7), we have that

(f(t)f(t')')t=kB(L+L')&(t —t'), (A19)

so that, because of Eq. (AS), f1(t) and f2(t') are uncorre-

lated. For a2(0) we take its equilibrium distribution, i.e.,
a2(0) is uncorrelated with f ( t), and has a Gaussian distri-
bution with zero mean and covariance given by

( a2(0)a2'(0) ) =cr22 ~ (A20)

Thus, we conclude that F(t) is such that

(F(t)f1(t')) =0 (A21)

and that F(t) 1s a Gaussian stochastic processes with zero
mean. We now evaluate its correlation function
(F(t)F(t') ). Using Eq. (A18), we have that

G —G (t —~) —(G )~(t' —')(F(t)F (t')) =G12e "(a2(0)az(0))e " (G12) + f dr f dr'G, 2e " (f 2( r)f 2( r'))e " (G12)t .

(A22)

The second term in the right-hand side of this equation can also be written, using Eq. (A19) and (Ag), as

-G (t -~) —(G )~(t' —r')f dr f dr'G12e " 2kBL22e " (G12) 5(t —r')

and since

(A23)

—(G2g) (t' —v') —(kgL22u22 ) (t' —8)
L22e =L22e

B 22 22=e L22 (A24)

t t'
G12e " f dr f dr'e " 5(r r') 2kBL—22(G12)

=G12e " (e " ' —1)(2G22) '2kBL22(G12)t

—1
—G22(t + t')=G12e (2622 ) 2kBL 22 ( G12 ) G12e — (2622 ) 2kB L 22(G12 )

—G22(t + t')=G12e o22(G12) G12e ~22( G12 ) (A25)

where we have used the fact that

(2G22) 2kBL22 (2kBL22~22 ) kB 22 ~22

(A26)

—G22t —(G22) t'
y

—G22(t+t')
G12e o22e (G12) G12e o22(G12)

(A27)

where we have used the fact that

—(Gyp) t —(kgL22n22 ) tI —1$~
O22e =O22e

=~22e

kBL22~22 t=e O22 ~ (A28)

Thus, using the results in Eqs. (A25) and (A26), Eq. (A22)
reads

I

(,F(t)F(t') ) = —G12e " G21o11,

where we also used the relation

(A29)

Similarly, using Eq. (A20), we see that-the first term on
the right-hand side of Eq. (A22) can also be written as

~22( G12 ) ~22( kBL 12o 22
—1

=kBI. 12

kB~ 21
= —G21O11. (A30)

Comparing Eq. (A29) with the expression for the
memory in Eq. (A10), we are led to Eq. (All). Since the
correlation function (F(t)F (t') ) only depends on

~

t —t'
~

we conclude that F(t) is also a stationary (and,
in fact, even) process. Thus, the theorem has been demon-
strated.
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