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Analysis of the electronic properties of extremely condensed matter
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To investigate dense matter the discrete-variational Xa method is applied to neon clusters to cal-
culate their energy levels. In these clusters atoms are assumed to be located at simple or face-
centered cubic-sites. The calculations are carried out up to a density of about 1000 times that of a
usual solid. For highly compressed clusters the kinetic energies of orbitals, as well as the repulsive
potentials between electrons, increase. At the same time attractive potentials between electrons and
neighboring nuclei lower the energies. As a result of these two competitive effects, orbital energies
do not change monotonically with the density.

I. INTRODUCTION

Extremely dense plasma, whose density is a few hun-
dred times that of a usual solid, can be produced nowa-
days in the inertial-confinement fusion experiments. In
these experiments the plasma temperature is thought to be
over hundreds of electron volts. This experimental pro-
gress has prompted many theoretical studies of its elec-
tronic property based on various models. These models
are usually characterized by the so-called ion-coupling pa-
rameter I introduced by Brush et al. ' It is defined as the
ratio of the repulsive potential energy ( eZ*) /Ro between
a pair of ions with an effective charge eZ' and separated
at a distance Ro to the kinetic energy kz T of the thermal
motion of the ions [i.e., I =(eZ*) /RokiiT].

The electronic states of a low-density and high-
temperature plasma (i.e., I'& I) can be treated as atomic.
Neighboring ions and electrons outside the ion core
change the electronic potential and they affect 'orbital en-
ergies. Various methods are proposed to find this effec-
tive potential and the electronic states in it. These lev-
els are also subject to Stark broadening by the strong elec-
tronic field of the surrounding ions.

When I" exceeds unity, atoms in the plasma come into
close physical proximity and the atomic orbitals encounter
the neighboring atoms. For a sufficiently dense plasma
the Debye length is nearly equal to the ion-sphere radius.
The ion-sphere model and the Thomas-Fermi theory as
well as its modifications are most frequently used in this
density region. Within the atomic picture the behavior
of the compressed electrons can be solved without much
difficulty.

However, these atomic models cannot take into account
the covalent nature between atoms. Solid-state physics
can provide alternative approaches. For example, an ex-
tension of the tight-binding approximation for disordered
material has produced fruitful results. However, it works
only in limited density or temperature regions.

Here in this paper we report a cluster approach using
the discrete-variational Xa method (referred .to as the

DV-Xa method, hereafter). The DV-Xa method has
been applied so far to the analysis of chemical bonding,
the estimation of optical transition energies, and so on. It
has proved to give accurate one-electron orbital energies
for many materials. A relativistic version of this method
has been also used for the analysis of quasimolecular x
rays. There the situation is similar to our present prob-
lem in the sense that the nuclei are located close to each
other.

The DV-Xa method has three advantages. First, this
method allows us to go beyond the atomic picture; elec-
tronic levels can be obtained in the molecular scheme, and
the results will show not only a shift from atomic levels
but also splitting into bands of levels. The lowest edge of
the bands may give information on the so-called continu-
um lowering. Second, the DV-Xu method uses numerical
basis functions generated from an atomic effective poten-
tial in the cluster, which, in turn, is determined by the
wave function of the cluster. The effective potential and
the wave function are calculated in a self-consistent
manner. This procedure reduces the computational effort
as compared with the usual self-consistent Hartree-Pock
method. Third, the muffin-tin potential approximation is
unnecessary. The DV-Xa method allows us an accurate
estimation of orbital energies.

In this report the DV-Xn method is applied to neon
clusters in which the motion of the nuclei is assumed to
be frozen. Since the electrons move much faster than the
nuclei, this assumption is justified as a first-step ap-
proach. Neon is used frequently in inertial-confinement
experiments. We discuss here only those features of elec-
tronic properties which are common to all cluster types,
because the nuclear configuration is fixed in a somewhat
arbitrary way as explained in the next paragraph. The
densities, up to about 1000 times that of a usual solid, are
treated here. The highest of densities has not yet been
achieved experimentally. Knowledge of this density re-
gion may be useful for the analysis of future experimental
data.

The results of a computational simulation' show a
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sharp peak in the correlation function of ions in the plas-
ma in the high-density limit. Since this suggests a short-
range order for the configuration of ions, they are packed
closely, at least, for a sufficiently dense plasma. There-
fore, we take up here two types of model clusters, i.e., a
simple cubic Ne8 cluster and a face-centered-cubic Ne~3
cluster, which are buried in the neon matrix. The differ-
ence between the isolated clusters and those in the matrix
is in the boundary conditions on the cluster. For an iso-
lated cluster, the electronic wave function spreads out and
is zero at infinity. For an embedded cluster, however, the
electronic charges should maintain neutrality with the nu-
clear charge within a finite volume. Having this in mind,
we have used boundary conditions specified in Secs. II
and III B.

The plan of this paper is as follows. In Sec. II we re-
view briefly the computational method of DV-Xa and
mention the points which are particularly important for
the simulation of dense matter. In Sec. IIIA the results
for the compressed atomic neon are presented. They are
compared in Secs. IIIB and III C with the results for Nes
and those for Nei3. In Sec. IV the physical meaning of
the results are discussed in detail. In Sec. V the unsolved
problems in this work will be pointed out.

Rwe l l

FIG. 1. The contribution of the well potential in Eq. (2.2) is
schematically illustrated. Dotted and solid curves represent
original and modified potentials and wave functions, respective-
ly. The well potential truncates the tail of a wave function and
consequently raises the kinetic energy of the orbital.

Vc,.(r )=— v+ J 4m.r' p„(r')dr'
rv rv

II. COMPUTATIONAL METHOD p„(r')
+ 4nr' dr', (2.3)

1 d 2 d l(l+1)r„+2V (r, )+ 2 R„'i(r„)r~ dr dr r~

=F.„"iR„"i(r ), (2.1)

where n and I represent the usual principal and azimuthal
quantum numbers. The effective atomic potential V„(r )
is given as the sum of the Coulomb potential Vc and the
exchange potential V„:

Vc (r„)+V,„(r„) for r„&R di
V„(r )= '

+ oo for r &R,&&
. (2.2)

The radius R,~~ of the well potential will be discussed
later. In Eq. (2.2) Vc, is the sum of the attractive
Coulomb potential from the nucleus of a charge Z„and
the repulsive Coulomb interaction between electrons, i.e.,

Since the detailed computational method is reported by
Adachi and Rosen, "' a brief review suffices here. In the
DV-Xu method single-electron states are calculated on
the basis of an effective potential which involves the ex-
change interaction between electrons approximately in the
form of a local potential proportional to the cubic root of
the local density p(r) at each point r. We use atomic units
unless otherwise noted.

The basis atomic radial wave functions R„"i(r„) with
r„=

~

r —R
~

in a spherical effective potential V„are
determined numerically by the Hartree-Pock-Sinter (HFS)
equation:

V,„„(r„)= —6a p„(r„)
3

4m

1/3

(2.4)

The parameter a is fixed to be 0.7 for all of the calcula-
tions.

The effective potential outside R~,ii is assumed to be
infinite in Eq. (2.2). In other words, a spherical well po-
tential of radius R,ii (called the well radius, hereafter) is
superposed artificially on the effective atomic potential
(see Fig. 1). This potential barrier is used to truncate the
tail of the basis function in the usual application. In this
work, this well potential can play the role of confining the
basis function within a limited volume at the outset. The
well radius is chosen so that charge neutrality is satisfied
for a specified atomic or electron density.

The potential (2.3) is an atomic potential. The basis
functions obtained using this potential are convenient for
many practical purposes. At small interatomic distances,
however, inner-core orbitals are extremely localized be-
cause of the attractive potential from the neighboring nu-
clei. These localized orbitals cannot be represented by
linear combinations of the basis functions generated from
the potential (2.3). Therefore, we take approximate ac-
count of the potential due to neighboring atoms by spheri-
cally averaging them, and use an effective potential

where p is a spherical charge distribution around the vth
nucleus. The exchange interaction V,„ is given in the
Xa approximation'
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z.'+ ao
~ p~(r ) ZJ /r —a.

Jf 4mr'2p„(r')dr'+ f 4mr' . ", dr'+ g — + f ' r'pj(r')dr'r„o " "~ r' .
~

r aj—
~

2ajr "~+~J.

(2.5)

throughout the present calculations. aj is the distance from r to jth atom.
The total Hamiltonian of the %-electron cluster is given by the sum of the kinetic energies and Coulomb and exchange

terms as
N

H= ——,
' g V,'+Uc+U, „.
j=1

The Coulomb term Uc is calculated by gathering up the contributions from all atoms in the cluster, i.e.,

(2.6)

N

X
—Z 1 ~„m p,(r')f 4mr' p„(r')dr'+ f 4~r' ', dr' inside the cluster

y y 0 V

+ oo outside the cluster . (2.7)

(A precise definition of the cluster region will be given
later. ) The exchange term U,„ is given in the framework
of the Xa approximation as

N

U,„=—6a g p„(r)
4m

1/3

(2.8)

Because the basis atomic wave functions prepared in Eq.
(2.1) automatically satisfy the boundary condition on the
surface of the potential wells, the separation of the cluster
domain is not necessary. The role of these well potentials
is considered in Sec. III.

The solution P of the Hamiltonian is expressed as a su-
perposition of symmetrized orbitals XJ:

g(, )
——g C,X,.(r) . (2.9)

Here the XJ are linear combinations of atomic basis func-
tions, namely,

XJ = g W~pPp QWJ R„"((r)——F(8„,$„) . (2.10)

The coefficients lV„' are determined from the geometrical
symmetry of the cluster.

A variational procedure leads to a secular equation,

(2.1 1)

for vector C, whose elements are CJ in Eq. (2.9). Here H
and S denote the Hamiltonian and overlap matrices de-
fined by the elements

be evaluated using the wave function obtained. This pro-
cess is repeated until self consistency is achieved

III. RESULTS

This section discusses the Ne8 and Ne13 clusters as the
representatives of simple and face-centered cubic lattices
[see Figs. 2(a) and 2(b)]. The basis functions used in all
the calculations are from 1s to 3d atomic orbitals.

A. Compressed atomic neon

Using the basis functions generated from Eq. (2.1) with
the well potential (2.2), an atomic neon has an electronic
charge distribution only inside the well. If well radius is
taken to be the ion-sphere radius R0, the electron density
p, for this atom can be evaluated to be

p, =10/ —', m.R() .

The charge neutrality in an atomic region requires the
atomic density p„ to be

~ .z
HJ. =(X; ~H ~XJ) (2.12)

sj=(X, iX, ) . (2.13)

In order to get the values of H,j and S,
&

the DV-Xa
method performs the integration using Diophantine-type
integration.

Trial charge distributions p„(r„) for use in Eqs. (2.5),
(2.7), and (2.8) are first assumed, and the wave functions
are calculated. Improved charge distributions p„(r„) can

FIG. 2. Model clusters for high-density neon. (a} Simple cu-
bic cluster Nes. (b} Face-centered-cubic cluster Ne~3. Open cir-
cles in (b} indicate the atomic sites outside the cluster con-
sidered.
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Figures 3(a) and 3(b) illustrate the obtained atomic ener-
gies for larger and smaller Ro regions, respectively.
Where Ro is larger than 2.0 a.u. (p„ is less than 2X10
atoms/cm ), there is no difference between the present re-
sults and those for an isolated neon. As the atomic densi-
ty increases the energy of the IC shell goes up and reaches
190 eV at 10 atomslcm . The L and -M-shell orbitals
also show a similar increase in their energies. The ener-

gies of s-type orbitals (l=0) become larger than those of
p- and d-type orbitals. In the smaller interionic region in
Fig. 3(b) the orbital energies show the linear dependence
in logarithmic scale upon the atomic distance.

B. United-atom limit and simple cubic cluster of Nes

l. United atom-limit of Nee (Hg)
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3

( &0 eV)

0

A simple cubic cluster of neon in Fig. 1(a) becomes an
Hg atom in the united-atom limit, provided it is an isolat-
ed cluster. Since this isolated cluster does not satisfy the
condition of charge neutrality, it is not a suitable model
for our present purpose. However, we have tried a calcu-
lation with this condition as a test of computer codes and
for comparison with the following results.

Figure 4 plots the orbital energies of the Nes against the
interatomic distance, the range of which is of interest in
connection with the following discussion. The number of
nondegenerate orbitals is 48. Orbital energies are calculat-
ed at interatomic distances 0.3, 0.5, 0.7, 1.0, 1.4, 2.0, 4.0,
and 8.0. in a.u. The Lagrange interpolation of degree
three connects them smoothly. As is expected, the 2s and
2p orbitals of the neon atoms mix with those of neighbor-
ing atoms as the interatomic distance decreases. Some of
the bonding levels come down and approach the core orbi-
tals of the Hg atom. On the contrary, antibondinglike
levels gain their energy. Even the 1s orbitals of the neon
atoms mix with each other at distances smaller than 1.0
a.u. The energy shifts start from larger interatomic dis-
tances. The attractive potential from the eight neon
atomic cores causes these shifts. Figure 5 illustrates the
effective potential Uc+U, „ in the Hamiltonian [in Eq.
(2.6)] at an interatomic distance 1.4 a.u. This potential is
common to all one-electron molecular orbitals. We will
discuss the meaning of this potential in Sec. III C.

At interatomic distances shorter than 0.02 a.u. the
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FIG. 3. Energy levels of atomic neon for various ion-sphere
radius Ro. (a) Larger-Ro region (i.e., low-density region) to a
linear energy scale. (b) Smaller-Ro region (i.e., high-density re-
gion) to a logarithmic energy scale.

6p ~

05 1 2

Interatomic distance (a. u. j

FICx. 4. Orbital energies for simple cubic cluster Ne8 vs the
interatomic distance. Spatial spread of the wave function is not
limited in this calculation.
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which do not overlap each other. This model prevents
atomic wave functions from mixing. On the other hand,
the boundary condition 8 yields delocalized distribution
of electrons. In model A, which lies in between these two
extremes, the atomic orbitals can interact with each other
within the cluster.

The calculated orbital energies for varying d are sum-
marized in Table I and illustrated in Figs. 7(a) and 7(b) in
linear and logarithmic energy scales, respectively. The
calculation was performed at d =0.5, 0.7, 1.0, 1.2, 1.4, 2.0,
4.0, and 8.0 a.u.

As for the energies of the outermost bands of orbitals,

FICi. 5. The effective potential on an inclined plane which
holds four Ne atoms. Contours shown are for —4.0, —8.0,
—10.0 —20.0. , —40.0, and —80.0 hartrees at an interatomic
distance of 1.4 a.u. Crosses indicate the positions of the atoms. 1Q-

„025 10
I

3
(10 8V)

Atomic density (atoms/ crn~ I

1owest orbital of the cluster is the bonding orbital of Ne
ls. The energy of this orbital is about —80 keV and ap-
proximately agrees with that of the Hg 1s orbital (about
—83 keV).

Q—
L
Cg 2p

2. Simple cubic cluster Res

Now we return to the analysis of dense matter. The
atomic density p„of the cluster is

1
Pn= d3

where d represents the interionic distance. If the electron
density p, is taken to be 10pn, the 80 electrons in a cluster
must be localized within the volume (2d) . The shape of
this volume, which may alter the electronic propert fy o

be A the
e c uster, is not known. Here we assume this 1 tvoume oe, t e overlapping spheres each of which is centered

on each atom (in Fig. 6) and B, a cube of a volume (2d) .
Th e results for the B-type cluster will be presented at the
end of this subsection.

Usmg the basis functions localized in a sphere of radius

o (=0.63d), the charge neutrality is satisfied in our hy-
pothesis. In the ion-sphere model, which is valid for
I ~~1, the electronic charge is localized within spheres

-30—

At o mic density ( a t orns/cm }
1026 1024

I l

3 (eV)
—5
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Eb '2s

05 1 2 5 10
In tera t o mi c di sta nce ( o.u. )
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CA
l
QJ

Qp 2 a

—10

FIG. 6. Shape of overlapping spheres for Ne8. Electronic
charge is confined only inside the spheres.

l I

0,5 1 2
Interatomic distance (a.u. )

FIG. 7.. Orbital energies for simple cubic neon cluster Ne8 for
varying interionic distance R. (a) Low-density region. (b)
High-density region.
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TABLE I. Orbital energies for the Ne8 cluster (in hartrees).

rionic
tance
(a.u. ) 0.5 0.7 1.0 1.2 1.4 2.0 4.0 8.0

la lg
2a lg
3a lg
4a lg
5a lg
6a lg

—50.43
56.83

148.70
177.24
367.03
533.19

—41.33
23.85
71.42
96.63

194.60
275.24

—39.29
7.42

25.94
49.06
93.71

129.34

—39.61
—10.59
—3.43
10.03
52.93
66.25

—39.58
—24.86
—16.94
—11.39

39.42
49.03

—54.53
—0.28

3.33
11.83
17.61
20.42

—60.69
—2.60
—0.92

1.94
2.87
3.21

—60.70
—2.58
—0.93

0.19
0.53
0.86

1 eg
2eg
3eg
4eg

1 t lg
2t lg
3t lg
4t lg
St lg
6t lg
7t lg
8t lg
9t lg
10t lg

52.03
174.79
179.15
361.97

—36.39
67.49

112.55
170.07
211.09
237.87
249.76
379.36
429.21
572.90

24.95
94.95
96.96

193.88

—36.95
32.93
61.15
86.43

120.46
134.49
139.54
204.20
234.78
313.61

13.23
49.13
50.26
94.21

—38.23
15.25
26.53
39.01
60.24
66.95
71.02

100.47
113.16
151.37

—9.44
—1.61
12.05
52.11

—39.36
—8.26

8.90
11.24
23.03
36.97
41.22
56.93
62.96
97.00

—28.24
—14.34
—11.50

37.21

—39.65
—32.22
—28.06
—21.92
—19.37
—14.60
—13.53

40.96
48.42
62.20

2.43
11.11
12.03
18.25

—54.43
1.57
3.53
5.07

13.13
14.00
15.98
19.55

27.41

—0.92
2.18
2.98
3.28

—60.69
—2.55
—0.90
—0.82

2.14
3.12
3.22
3.57
3.74
4.64

—0.93
0.42
0.79
0.83

—60.70
—2.58
—0.93
—0.93

0.29
0.54
0.71
0.97
1.01
1.07

1 t lu
2t lu
3t lu
4t lu

112.48
210.77
270.69
434.31

63.20
117.33
155.23
241.62

31.10
61.34
78.44

123.98

8.99
20.82
45.50
93.71

—31.05
—17.77
—16.62

51.54

4.74
14.10
16.73
25.02

—0.82
3.32
3.45
4.86

—0.93
0.68
0.94
1.26

la lu
2a lu
3a lu
4a lu
5a lu
6a lu

—29.21
118.67
225.51
246.64
444.88
609.37

—34.85
63.22

116.01
141.77
239.71
340.04

—37.77
27.54
52.01
72.26

116.72
162.51

—39.20
9.47

30.99
41.59
65.52

103.50

—39.71
—32.37
—23.64
—15.90

49.71
70.39

—54.43
2.96
5.55

16.06
21.20
29.19

—60.69
—2.52
—0.81

3.06
3.74
4.66

—60.70
—2.58
—0.93

0.41
0.82
1.09

leu
2eu
3eu
4eu

119.03
245.01
275.60
456.80

66.82
141.34
157.84
253.50

32.88
71.96
79.88

129.93

13.09
42.17
49.14
99.68

—33.24
—21.55
—17 62.

54.54

4.95
16.12
17.28
25.95

—0.81
3.44
3.78
4.96

—0.93
0.71
1.07
1.27

1 t 2u
2t 2u
3t2u
4t2u

59.34
181.26
208.22
369.34

30.02
99.11

117.66
198.85

15.21
51.27
59.02
97.06

—8.19
12.98
19.63
54.08

—29.39
—16.95
—12.29

38.99

2.69
11.36
13.92
18.97

—0.91
2.22
3.23
3.46

—0.93
0.44
0.82
0.95

1 t 2g
2t 2g
3t2g
4t 2g
5t2g
6t 2g
7t2g
8t2g
9t 2g
10t2g

—43.48
61.88

105.69
158.18
183.36
206.11
256.17
372.86
413.33
548.81

—39.13
27.61
58.47
77.93
97.76

115.54
144.02
198.75
227.41
291.23

—38.73
11.39
25.58
33.22
50.13
60.65
72.24
97.20

111.48
140.88

—39.50
—9.70
—0.72

5.74
10.22
20.11
41.34
54.62
62.87
90.56

—39.60
—30.21
—25.64
—19.99
—15.49
—14.56
—12.29

39.79
47.17
55.21

—54.43
0.72
3.47
4.65

12.09
13.69
14.61
18.58
20.27
25.59

—60.69
—2.57
—0.91
—0.82

2.03
2.96
3.16
3.21
3.49
4.65

—60.70
—2.58
—0.93
—0.93

0.23
0.54
0.66
0.84
0.95
1.12
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their dependence on d can be classified into three
categories. First, for d&2.0 a.u. , the calculated orbital
energies do not differ much from those of the atomic case.
In this region the orbital energies gradually go up with the
decreasing d. The energies of the ls orbitals increase with
decreasing d down to about 1.5 a.u. ; this behavior of ls
energies is in contrast with the decreasing behavior for the
Hg-like cluster stated in Sec. III B 1. The Coulomb repul-
sive interaction between the core and valence electrons
makes this difference.

For 1.0&d &2.0 the valence orbitals of each atomic
neon are mixed in a complicated manner and their energy
levels diverge from each other. The loweririg of the bot-
tom of the 2p band is noticeable in this region. The
lowest orbital energy in the 2p band is about —350 eV at
d = 1.4 a.u. The I.agrange interpolation of orbital energies
suggests the lowest 2p energy to be about —600 eV at 1.3
a.u. However, the calculation of the orbital at 1.3 a.u.
turned out to be too difficult to obtain self-consistent re-
sults and we cannot determine an accurate value of the
bottom of the valence band. The basis functions may not
be suitable for the cluster at this interionic distance.

Finally, for 2 &1.0. a.u. the valence orbital energies
show a dependence similar to the atomic case, though
their levels diverge from each other by making bonding
and antibonding orbitals. Their energies in logarithmic
scale increase linearly with a decreasing interatomic dis-
tance.

A 8-type cluster is calculated using basis functions
prepared without the well potential in Eq. (2.2) and mak-
ing the addition of a well potential at (2d)3 on the Hamil-
tonian. This potential selectively contributes to enhance-
ment of the energies of wave functions which would have
a large amplitude outside the cluster. In the variational
procedure, electrons are filled in the orbitals which are lo-
cated inside the cube and less affected by the additional
potential. By modifying the Hamiltonian in this manner,
spurious orbitals appear whose energies are decided in a
rather arbitrary way. However, the obtained charge dis-
tribution is limited within the cube (2d) . As for the oc-
cupied levels, the B-type cluster makes the same results as
those of A. This suggests that the electronic property is
decided mainly by the position of the atoms and the
volume in which electrons exist and is not sensitive to the
spatial distribution of charges. Furthermore, truncated
atomic basis functions are sufficient for representing the
appropriate electronic charge density of the cluster.

4t orni c densi ty ( a toms I cm )

1025 1 023

S, P, CI

(102eY)

4J

0
L
f 2s

0

for various interionic distances are tabulated in Table II
and shown in Fig. 8. The overall features of the energy
dependence on the density as the same as those of the Nes
cluster. On the lower-density side, i.e., for d &5.0. a.u. ,
the obtained results do not show a remarkable difference
from that of the energies of isolated atom. Valence orbi-
tals form band structures in the region of the interionic
distance between 0.7 and 1.5 a.u. Bemuse the Ne~3 cluster
is made of a larger number of atoms, the bandwidth is
larger than that for the Nes. The energy difference be-
tween the valence band and the 1s orbital becomes small
at 1.4 a.u. , and the bottom of the valence band is comput-
ed to be —600 eV. The energy of the core orbital in-
creases slightly with a decreasing d from 5.0 to 1.4 a.u.
In the region of extremely small distances (2 &0.7 a.u.),
even the core orbitals make a band structure and levels re-
pel each other. The valence orbitals exhibits a monotoni-
cal increase with the decreasing density.

Figure 9 shows the expectation values of the orbital ra-
dii against the interionic distance. The dashed line shows
the well radii, 0.79d. For d~ 8.0 a.u. the well potential
does not affect the spread of the wave function. As the
interionic distance decreases, the tails of the M-shell orbi-
tal become truncated at about 4.0 a.u. , but they still over-
lap with the orbitals of the neighboring atoms. The orbi-
tal radii of 2s and 2p are about 0.7 a.u. in the case of an
isolated atom. %'hen the interionic distance diminishes to
this extent, the energies of the I. shell change drastically
as shown in Fig. 8. If the atomic distance becomes much
smaller than this normal size of the I. shell, their energies
increase monotonically. As for the is orbitals, even the
smallest interionic distance treated in this paper is not
sufficiently short to compress them.

The effective potential in the Hamiltonian for the Ne~3

C. Face-centered-cubic neon c1uster Ne~3

For the case of Ne~3 cluster, illustrated in Fig. 2(b), the
atomic density p„ is

v2P=d3
where d represents the distance between a pair of nearest-
neighbor atoms. The requirement of charge neutrality
determines the electronic density to be 10p„. In this cal-
culation, we assumed that 130 electrons are located within
the overlapping spheres with a radius of about 0.79d and
centered at the neon sites. The orbital energies obtained

1

le
2cl]
]t]g

-30—
]al

1 2

Interatomi c distance ( a.u. )

FIG. 8. Orbital energies for the face-centered-cubic cluster
Ne~3 against the distance of nearest-neighboring atoms.
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TABLE II. Qrbital energies for the Ne~q cluster (in hartrees).

rionic
stance

(a.u. ) 0.4 1.0 1.5 2.0 4.0 8.0

la lg
2a lg
3a lg
4a lg
Sa lg
6a lg
7a lg
8a lg
9a lg
10a lg

—67.33
—46.51

26.59
119.00
133.27
177.57
232.28
329.51
475.24
592.92

—47.17
—45.75
—43.98
—10.98

1.84
1S.86
22.56
27.58
31.55
77.99

—53.64
—53.56
—0.09

3.06
4.88

13.57
13.95
17.78
23.85
30.98

—57.27
—57.23
—0.24

0.11
1.87

10.19
11.06
12.50
16.67
17.25

—60.81
—60.76
—2.75
—2.73
—1.17
—0.62
—0.11

0.83
1.08
1.S1

—60.67
—60.61
—2.60
—2.60
—0.92

0.07
0.14
0.32
0.50
0.54

la lu
2a lu
3a lu

104.56
220.75
406.39

11.21
24.72
57.12

5.41
17.10
25.47

2.18
12.75
17.79

—1.22
1.34
2.31

—0.92
0.36
0.65

1 eg
2'3'
4eg
5eg
6eg
7'
8eg
9eg
10eg
11eg

lt lg
2t lg
3t lg
4t lg
St lg
6t lg
7t lg
8t lg
9t lg
10t lg
1 1 t lg
12t lg

1 t lu
2t lu
3t lu
4t lu
St lu
6t lu
7t lu

—44.58
56.87
90.80

137.08
180.86
201.30
224.09
238.96
337.23
382.50
575.22

—47.70
42.76
78.94

130.58
148.40
174.97
199.47
223.01
248.66
343.09
380.08
546.16

73.76
108.58
174.21
227.36
236.23
354.36
433.86

—46.35
—22.84
—6.33

1.04
16.98
20.09
25.21
27.64
28.25
43.55
78.76

—46.34
—31.89
—9.81
—4.07

5.59
13.66
21.06
23.19
25.21
29.44
48.77
78.53

—8.21
10.20
16.17
24.00
25.16
45.42
66.91

—53.56
3.11
4.41
5.38

13.18
15.12
16.47
18.17
21.19
23.68
30.24

—53.56
2.02
4.08
4 94

11.71
13.32
13.90
16.22
18.37
20.95
23.74
29.02

4.52
5.56

14.07
17.39
17.83
22.55
27.05

—57.27
0.16
1.91
2.10

10.16
10.88
12.15
12.30
15.81
16.42
18.88

—57.27
0.06
1.81
2.03
9.20

10.09
10.30
11.65
11.87
14.50
16.15
18.02

1.97
2.16

10.25
12.32
12.57
16.09
17.42

—60.81
—2.75
—1.20
—1.18
—0.30

0.18
0.92
1.38
1.61
1.83
2.52

—60.81
—2.75
—1.20
—0.12
—0.47
—0.00

0.49
0.88
1.35
1.42
2.16
2.83

—1.21
—1.12

0.43
1 34
1.37
2.35
2.72

—60.67
—2.60
—0.92
—0.92

0.15
0.28
0.35
0.58
0.56
0.59
0.67

—60.67
—2.60
—0.92
—0.92

0.12
0.26
0.32
0.45
0.52
0.53
0.61
0.71

—0.92
—0.92

0.29
0.38
0.53
0.66
0.69

la lu 251.47 43.14 18.91 12.78 2.49 0.70

1 a 2g
2a 2g
3a 2g

44.71
165.21
319.89

—25.02
11.04
25.86

3.06
12.00
19.82

1.76
9.17

14.42

—1.21
—0.10

1.25

—0.92
0.23
0.51

1eu
28u
38u
4eu

95.83
166.58
231.76
424, 55

0.35
13.87
23.81
64.29

5.24
13.38
17.61
26.37

2.08
10.00
12.21
16.72

—1.20
0.68
1.40
2.74

—0.92
0.34
0.50
0.68
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Interionic
distance

(a.u.) 0.4 1.0

TABLE EI. (Continued).

1.5 2.0 4.0 8.0

1t2g
2t 2g
3t2g
4t 2g
5 t2g
6t 2g
7t2g
8t2g
9t 2g
10t 2g
11t2g

—44.02
82.64
96.97

156.37
191.53
211.21
216.98
239.34
360.99
388.82
563.56

—46.34
—6.22
—2.73
12.96
20.05
24.14
26.03
27.98
30.81
49.29
68.54

—53.56
3.34
4.89
5.44

14.30
16.22
16.52
17.37
23.20
24. 17
29.46

—57.27
0.17
2.01
2.14

10.38
11.25
12.11
12.62
16.11
17.11
18.66

—60.81
—2.74
—1.21
—1.18
—0.22

0.67
1.31
1.59
1.64
1.92
2.32

—60.67
—2.60
—'0.92
—0.92

0.15
0.32
0.37
0.54
0.57
0.62
0.66

1t2u
2t2u
3t2u
4t2u
5t2u
6t 2u
7t2u
8t2u
9t2u
10t 2u
11t2u
12t 2u
13t2u
14t 2u
15t2u

—52.72
13.81
61.75
86.64

103.62
147.98
167.76
183.92
192.32
221.80
304.45
329.20
395.11
429.16
540.37

—46.37
—40.59
—15.16
—10.04

0.54
11.60
15.01
19.78
21.43
23.04
25.70
26.12
30.39
56.46
82.29

—53.56
1.01
3.78
4.11
5.13
5.75

13.30
13.85
14.60
16.29
18.89
20.64
23.35
25.77
29.86

—57.27
—0.49

1.75
1.89
2.05
2.15
9.95

10.43
10.88
11.59
13.59
15.32
16.04
16.56
18.00

—60.81
—2.75
—1.21
—1.20

1.19
—1.15
—0.60
—0.11

0.21
0.82
1.26
1.29
1.39
2.32
2.62

—60.67
—2.60
—0.92
—0.92
—0.92
—0.92

0.10
0.25
0.27
0.33
0.39
0.52
0.54
0.59
0.63

A t omi c densi t y ( at o ms I c m 3 )

,026 ) 024 1022
cluster at an interionic distance 1.4 a.u. is shown in Fig.
10. It is greatly different from the effective potential for
the Hg-like Nes cluster in Fig. 5. In the case of Nes the
potential gradually becomes deeper as the distance frown

the atomic core becomes small, but the potential for the
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Flay. 9. Average orbital spread (r ) used for the Ner3 cluster
calculations. Dashed curve indicates an upper bound owing to
the truncation of the wave functions in advance. For details see
text.

FIG. 10. Effective potential for the We~3 cluster calculation
on a horizontal plane which holds the central atoms. Contours
of —1.0, —2.0, —4.0, —8.0, —10.0, —20.0, —40.0, and —80.0
hartrees are shown. The distance of nearest-neighbor atoms is
1.4 a.u. Crosses indicate the positions of atoms.
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Ne~3 cluster goes down suddenly near the atomic core and
is almost flat between atoms.

IV. DISCUSSION

The electronic properties of highly compressed matter
studied in the present work can be stated in four points.

The first characteristic of highly compressed matter is
the large magnitude of the kinetic energy of electrons.
This can clearly be seen in the results for the atomic neon.
The wave function employed here has an amplitude only
in the well potential. This makes valence orbital energies
increase with decreasing Ro. Since the energy of a state
in a spherical well potential is proportional to the inverse
of the square of Ro, it is natural that the orbital energies
show a linear dependence on Ro on a log-log scale.

The second feature is the growth of the 1s orbital ener-

gy as Ro becomes small. This cannot be explained by the
confinement of the 1s wave function into the well poten-
tial. Since the mean orbital spread (r ) for the 1s orbital
of the neon atom is about 0.1 a.u. , the applied potential
barrier does not alter the spatial size of this orbital nor its
kinetic energy. The increase of the 1s energy is attributed
to the repulsive interaction between the electrons, which
changes the screening charge. For Ro smaller than 0.5
a.u. the charge does not distribute as an isolated atom.
Since the valence orbital wave functions are sine-wave-
like, charge distribution becomes uniform. Electrons con-
centrated near the nuclei make the attractive potential
small for 1s orbital. This change in the amount of charge
screening for the core orbital explains the second feature.

The third feature is characteristic of the cluster calcula-
tion. When neon atoms come together, the valence orbi-
tals of the atomic neons make bonding and antibonding
molecular orbitals and form a bandlike structure. This ef-
fect is superposed on the increase of the energy owing to
the confinement of the wave functions (the first feature).
The lowering of the energy by making a bonding orbital is
though to be smaller than the increase of the kinet'ic ener-

gy by compression, because the orbital energies for the
Nes and Ne~3 clusters at Ro &2.0 a.u. incline toward the
higher-energy side.

The fourth feature is the lowering of the bottom of the
valence band at 1.4 a.u. As the interionic distance de-
creases, the valence electrons of the neon atom are affect-
ed by the attractive Coulomb potentials not only from the
nucleus belonging to the same atom but also from the
neighboring nuclei. The steep lowering of the 2s and 2p
bands seems to occur when the average radii of these orbi-
tals match the interionic distance. In other words, these
orbitals have large amplitudes at the position of the neigh-
boring atom cores. As shown in Fig. 9, the effective po-
tential for the Nei3 cluster at d=1.4 a.u. is thought to be
of a short-range type. The inner-core orbitals gain their
energy because of the large effective screening charge, as
mentioned in relation to the second feature. As the in-
terionic dj.stance approaches 1.4 a.u. , these orbitals are
squeezed up to the shoulder of the potential. On the other
hand, the valence electrons move around every atomic site
and lower their energies. Therefore, the difference be-

tween the energies of valence and core orbitals becomes
small.

Kishimoto and Mima applied the tight-binding ap-
proximation to disordered materials and estimated the
width of the 2p band of the Ne+ ion up to a density of
about 100 g/cm (i.e., 3.0X 10 atoins/cm ). The result
depends upon the atomic potential used for their calcula-
tion (i.e., the strength of the perturbation). The obtained
values for the 2p bandwidth are about 450 and 120 eV at
60 g/cm (i.e., 1 SX 10 atoms/cm ) for the Coulomb po-
tential and the ion-sphere potential, respectively. Our
present result for the Nei3 cluster is 360 eV and is in be-
tween their two values. This reflects the fact that the ob-
tained effective potential in our calculation is a mixture of
Coulomb and ion-sphere potentials. As mentioned in Sec.
II, we do not suppose any shape of the atomic potential in
the calculation, except the additive well potential which is
used to fulfill the requirement of charge neutrality. Then
the potential is originally Coulombic and the interaction
between electrons automatically adds the feature of an
ion-sphere potential as the interionic distance becomes
small.

When the interionic distance becomes zero, our present
model ends up with a united atom in the well potential of
infinite height. The results obtained for the clusters at
Ro &0.5 a.u. are nearly the same as those for the united
atom. The density corresponding to Ro ——0.5 a.u. is about
1000 times of a usual solid. Though the valence orbitals
form the band structure and broadened energy levels of
the united atom, the features obtained cannot be an accu-
rate representation of the electronic property. The en-
largement of clusters and the addition of basis orbitals for
continuum wave functions may improve the results.

In a relatively low-density region the obtained results
may not be accurate either. Gupta and Rajagopal es-
timated that the level shifts of the inner core for the den-
sities from 1.0X10 to 4.54X10 atoms/cm are 127
and 71 eV at T=100 and 700 eV, respectively. The value
obtained for the Ne&3 cluster is about 50 eV in our calcu-
lation and is about half of their values. The interionic dis-
tance in question is 3.0—1.7 a.u. and the density is about a
few times that of a usual solid; i.e., it is outside the region
of our interest. For a precise calculation in this density
region accurate potential and wave functions outside the
clusters may be rieeded. The contribution from thermal
ionization also should be taken into account.

V. SUMMARY

The DV-Xcx cluster method is a useful approach for the
analysis of the electronic properties of extremely high-
density plasma. Assuming clusters of small size, we have
applied this method to the neon plasma at zero tempera-
ture.

As mentioned in Sec. IV, the present results do not
agree well with those obtained by effective potential
methods for intermediate-density plasma. This discrepan-
cy is due mainly to the omission of the thermal Auctua-
tion from neutrality in the cluster. When the Debye ra-
dius RD is larger than the ion-sphere radius, a knowledge
of the delocalized electron wave function is indispensable.
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This requirement cannot be achieved in our present
models for the intermediate-density plasma.

We believe that the DV-Xu method can be applied to
an arbitrary electron temperature by considering free or
excited orbitals and assuming the Fermi distribution for
the electron population. As a matter of fact, these orbi-

tais are obtained in the present calculations as antibond-
inglike orbitals whose occupation numbers equal zero.
However, the propriety of substituting continuum wave
function for discrete ones should be checked. We are
working in this direction and the results for an arbitrary
electron temperature will be presented in the near future.
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