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Ion motion and emission profiles in low-pressure cylindrical discharges
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Ions in a cylindrical, low-pressure gas discharge move in a combination of axial and radial fields.
Their motion is predominantly in the radial direction and this motion affects the shape of ion emis-

sion lines observed along the discharge-tube axis. Calculations are presented here that show in detail
how the ion motion affects these line shapes for a Tonks-Langmuir radial potential with ion mean

free paths of various values relative to the tube radius. These calculations predict both values for
the axial ion drift velocity and asymmetrical longitudinally emitted line shapes. The predictions of
the theory compare well with experimental observations made on argon-ion-laser discharges.

I. INTRODUCTION

In a low-pressure electrical discharge in a cylindrical
tube, ions formed in the body of the discharge move under
the influence of both longitudinal and radial electric
fields. The radial field in such discharges is generally
much stronger than the longitudinal one so that the
motion of ions from their point of creation is predom-
inantly in the radial direction. This radial motion, when
combined with the random component of ion velocity,
leads to line profiles observed in the direction perpendicu-
lar to the tube axis being broader than profiles observed in
the axial direction. Line profiles observed in the axial
direction have been generally assumed to reflect the ran-
dom ion velocity distribution, with a Doppler shift of the
line center by an amount corresponding to a uniform
longitudinal ion drift velocity. It is our intention in this
paper to show that the longitudinally emitted ion line
shape does not take this simple form. It is Doppler shift-
ed, but it is also rendered asymmetric because ground-
state ions accelerate for different time durations depend-
ing on their radial positions at creation and subsequent
electron input excitation (and almost immediate emission).

In a cylindrical discharge the longitudinal electric field
arises from the externally applied potential and can be as-
sumed to be uniform in the longitudinal direction within
the positive column. The radial field results from the
negative charge which builds up on the tube walls in order
to preserve plasma quasineutrality. Because the electron
temperature T, in such a discharge is much greater than
that of the ions, the random electron current to the wall, '

eN, (w)(kT!2trm, )'i, where N, (w) is the electron density
at the wall and the other symbols have their usual signifi-
cance, is much greater than that of the ions. If the aver-
age radial drift velocity of ions at the wall is u, (w), then
in equilibrium

N, (w)(kT, /2trm, )'i =N;(w)u„(w),

where N;(w) is the ion density at the wall. In normal cir-
cumstances this equation is only satisfied by having
N;(w))N, (w). The extent of the sheath region near the
wall where this change imbalance occurs is typically of

the order of a few Debye lengths. The Debye length A,D

in SI units is defined by

A D, ——[@okT, /N, (0)e ]' (2)

where P(r) is the radial distribution of potential in the
discharge. The radial variation in ion production G(r) is
assumed to be proportional to the electron density

G (r) =ZN, (r), (4)

where Z is the ionization rate (electron-ion pairs produced
per second per electron). The ions are assumed to be
formed at rest and then fall collisionlessly to the walls
where they recombine with electrons and re-enter the
discharge as neutral particles. If a group of ions originate
in an elementary annulus of width dp at radius p, their
concentration at radius r is

Nz„G(p )(p/r )dp/u——z„, (5)

where U&„ is the radial velocity acquired by an ion in mov-
ing from radius p to radius r, and

1/2

up,
— [P(p) —P(r)]

where M is the ion mass. The total ion density at radius r
is then

N;(r) = f Np„ .

Working from these assumptions, Tonks and Langmuir
were able to calculate the radial distribution of charged

where N, (0) is the axial electron density. In most low-
pressure discharges of practical importance, such as are
used to excite noble-gas ion lasers, A,D ((R, where R is

0

the radius of the discharge tube, so the plasma is
quasineutral except very close to the wall.

In the theory of the low-pressure discharge given by
Tonks and Langmuir' the quasineutral plasma and sheath
are treated separately. Outside the sheath the electron
density is

N, (r) =N, exp[eP(r)/kT, ],
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particles within the plasma, the radial potential distribu-
tion, and the parametric variation of the electron tempera-
ture. However, they treat the space-charge sheath near
the discharge-tube wall separately from the quasineutral
plasma and attempt to match their solutions for sheath
and plasma at the sheath boundary. To describe the
whole region of plasma and sheath more exactly a single
solution for N, (r) and P(r) should be found. In cylindri-
cal geometry this has been done by Forrest and Franklin.
The assumption of quasineutrality in the plasma is aban-
doned, although in practice the actual deviation from
quasineutrality is negligible outside the sheath region. -

Forrest and Franklin ' characterize the plasma by two
parameters u and 5, where

ADZM;
CX (g)

kT

and

kT, v;

2ZM;D, 2Z

where M; is the ion mass, D, is the diffusion coefficient
of the electrons, and v; is the collision frequency of the
ions for (momentum plus charge) transfer. a is a measure
of the extent to which space-charge effects are important
in the plasma, a small value of a implies that quasineu-
trality is obeyed within the plasma. Complete neutrality
corresponds to a=0; for large values of a (&10 ) the
boundary between the quasineutral plasma and the space
charge becomes ill-defined and the assumption of bulk
quasineutrality within the plasma is no longer valid. In a
typical argon-ion-laser discharge plasma a is estimated to
be —10 (Ref. 5), so the assumption of bulk quasineu-
trality is very reasonable. If in addition the flow of ions
to the wall is indeed collisionless, then the factor 5' is
zero and Tonks-Langmuir theory should provide a very
adequate description of the plasma. In this case the radial
electron density distribution can be written in the form

/

N, (r) =N, exp( —1.155I 1 —[1 (r/R) ]'~
I )—(10)

and the radial potential distribution as
(

P(r)=
1.155kr,

[ 1 ( r /R )2]1/2
I

If ions undergo collisions on their way to the wall, then
Tonks-Langmuir (TL) theory will no longer hold, al-
though in practice for an ion mean free path &R the de-
viation of N, (r) and P(r) from the forms given by Eqs.
(10) and (11) should be relatively small.

As pointed out by Valentini in a series of papers,
considerable deviation of the radial electron density and
potential from the forms given by Eqs. (10) and (11) will
occur if the plasma is highly ionized, as this depletes the
neutral-atom density on axis. Additional complications
also can arise produced by directed motion of neutral
atoms leaving the wall if the ion flux at the wall becomes
large enough. '

Thus, the focus in this paper will be on low-pressure
discharge plasmas without applied external magnetic field

where the theory originally formulated by Tonks and
Langmuir holds. Several authors ' ' "' have con-
firmed the correctness of this theory in the close-to-
collisionless regime where the degree of ionization is not
too high. For practical purposes, the conditions for
Tonks-Langmuir theory to hold have been demonstrated
experimentally by Webb. ' He has shown that for values
of the product poR &0.4 Torrmm (where po is the pres-
sure in the tube after thermal driveout ) that the radial-
ion-density profile follows that predicted by Tonks-
Langmuir theory. This, surprisingly, corresponds to an
ion-mean-free-path —to—tube-radius ratio of only about
0.1.

The ion dynamics which result froin combined radial
and longitudinal motion have very interesting effects on
the emission profiles of ion transitions observed from
such a discharge. In practice, discharge plasmas where
such effects might be expected to be observed occur in the
noble-gas ion lasers, where current densities up to several
million amps/m are passed through gases at low-number
densities (typically 3&(10 m ). It has been common
practice to observe the emission profiles of ion transitions
in such plasmas and thereby to deduce several parameters
of the plasma, such as the electron and ion temperatures,
and the radial and longitudinal ion velocities. Much of
the diagnostic information about these plasmas has been
derived from experimental observations by the use of for-
mulas derived by Kagan and Perel. ' ' Kitaeva and her
co-workers have done considerable work in this area. ' '

II. TRANSVERSELY EMITTED ION
LINE SHAPES

The predominant radially directed motion of the ions in
a low-pressure cylindrical discharge, when combined with
the random component of ion velocity (usually assumed to
belong to a Maxwellian distribution), leads to line profiles
observed in the transverse direction being broader than
profiles observed in the axial direction. This fact has led
numerous investigators' ' to deduce plasma parameters
such as electron, ion, and neutral-atom temperatures, and
average directed ion velocities from transverse and axial
line-shape observations.

In the simplest model, the transversely emitted profile
is assumed to be a superposition of two Gaussian profiles,
one blue shifted by a constant radial velocity, which
comes from ions in the near half of the tube bore, and one
red shifted by a constant radial velocity, which comes
from ions in the far half of the tube bore.

Kagan and Perel' ' perform a more realistic analysis
of the problem, in so far as they attempt to determine the
distribution of ion velocities including both longitudinal
and transverse ion drifts. However, simplifying assump-
tions about the form of these distributions are made to
simplify the analysis, and as a consequence the final rela-
tionships between measured linewidth and various plasma
parameters are in error. Sze and Bennett ' made a subse-
quent study of the effect of transverse ion motion on ob-
served line shapes and were able to correct the formulas of
Kagan and Perel to more exactly relate the plasma param-
eters T, (the neutral-atom temperature) and T, (the elec-
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tron temperature) to observed transverse line shapes. The
observed transverse ion temperature T*, measured by as-
suming that the transversely emitted line shape results
from a one-dimensional Maxwellian distribution, is '

T*=0.716T, +0.21T, .

However, it should be pointed out that even this relation-
ship depends to some extent on the geometrical arrange-
ment in which radiation emitted in the transverse direc-
tion from the cylindrical plasma is collected.

A better treatment of radial ion motion in the collision-
less regime has been given by Zakharov and Pekar who
integrate the Boltzmann equation for the ion distribution
function numerically and obtain the expression

T*=0.64' +0.11ST,

Unfortunately, their final averaging in the radial direction
makes the same error as Kagan and Perel' and pointed
out by Sze and Bennett: ' namely, the average over radi-
ally directed velocities should be '

R
2

ni Upnep dp
Up= (14)

0
P1,I n~P dP

where uz(p) is the radially directed velocity, and n;, n, are
the radially dependent ion and electron densities, respec-
tively. Averaging of the form' '

R
ni Upne dP

Up= (15)
0 n;n, dp

does not take into account the cylindrical symmetry of the
situation.

III. LONGITUDINALLY EMITTED ION .

LINE SHAPES

The simplest assumption that has been made in analyz-
ing the longitudinally emitted line shape is that it has a
Doppler width that reflects the true ion temperature in
the discharge and a center frequency which is Doppler
shifted by an amount

metrics have nothing to do with asymmetries which might
be observed if emitted ions could be significantly ac-
celerated during their radiative lifetime. The neglect of
the full effects of longitudinal ion motion might well ex-
plain the very large discrepancies between the Lorentzian
widths estimated from axially emitted ion line profiles by
different investigators.

In the model to be considered here ions are assumed to
be produced from neutral atoms at a rate proportional to
local electron density and then move in the combined ra-
dial and longitudinal electric fields in the positive column.
Excited ions are produced by electron collisions predom-
inantly on ground-state ions so their excitation from the
neutral-atom ground state is a two-step process. Howev-
er, the excited ion lifetimes associated with levels that are
usually observed for diagnostic purposes are very short
[10 ns or less (Ref. 5)], so there is negligible change in ion
velocity during the time the ion is excited. Thus, the line
shapes observed from excited ions reflect the velocity dis-
tribution of the ion ground state. If ions were excited
directly from neutrals by a single electron collision their
line shapes would reflect the neutral-atom velocity distri-
bution. It is assumed that the neutral atoms have no
memory of previous ionization and charge exchange neu-
tralization so that their velocity is Maxwellian distributed
about zero. We shall consider the case where the ions
move both collisionlessly and with collisions to the tube
wall. A collision will be assumed to produce a new ion
with no net directed velocity. In this model, ions at radius
r, where 0 &r &R, can have different acquired longitudi-
nal velocities depending on the radial position p where
they originated, where 0&p(r. The lar'gest longitudinal
velocity is acquired by ions which have drifted collision-
lessly from the tube axis. We shall assume that the net
ion motion is still predominantly radially directed so the
probability of a given ion making a collision is purely a
function of the radial distance it has traveled, r —p. This
assumption is justified in more detail in the Appendix.
We shall also assume that the degree of ionization in the
discharge is sufficiently low that neutral-atom depletion
and directed velocity effects can be neglected.

Av, =U, v0/C, (16)
IV. RADIAL VARIATION OF LONGITUDINAL

DRIFT VELOCITY
where U, is the directed axial velocity in the direction of
observation associated with the peak of the ion velocity
distribution in the z direction. It has been standard prac-
tice to assume that u, is independent of radial location
within the discharge cross section. Indeed, it is not al-
ways clear whether published observations of axially emit-
ted line shapes involve light collection from the whole, or
a part, of the tube cross section.

By this means, supposedly correct values for the ion
temperature T; can be determined. This generally in-
volves unfolding the Lorentzian contribution from the
Voigt profiles which have been assumed to be emitted in
the axial direction. It is our intention in this paper to
show that the ion motion in the longitudinal direction is
not so straightforward as is implied by Eq. (16). Indeed,
under appropriate conditions, asymmetrical line shapes
should be observed in the axial direction. These asym-

In this section we shall derive quantitative expressions
for the radial variation in longitudinal ion drift velocity.
This variation results because ions which are excited from
the ground state to a short-lived emitting level have an ac-
quired longitudinal velocity that depends on the radial po-
sition where the ground-state ion was originally formed
and the final radial position where the ion is excited from
the ground state (and almost immediately emits).

A. Collisionless regime

If the radial potential function is P(r ), an ion moving
from its point of creation p to radius r acquires a longitu-
dinal velocity

Uzpr = dr',
M P Upq
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r G(p)Uxprp
(18)

where E~~ is the longitudinal electric field. Thus the aver-
age longitudinally directed velocity at radius r is

Vx = —~ox (19)

For certain forms of the radial potential Eq. (18) can be
written in a simpler form. For an assumed linear varia-
tion in radial potential of the form

Equation (18) is most easily evaluated by rewriting it in
dimensionless form with plR =x, U/R =a, and using a
dimensionless radial potential

V(x) =eP(x)/kT, .

eE((R
SP

M
2kT,

where

the radial variation in longitudinal drift velocity is
' 1/2

f (a, V0) =Af (a, V0), (20)

f(a, V0) = 2 [1—(1+V0a)e ]/I [a +1/(2V0)]F((V0a)' ) —z (a/V0) I (21)

and E(z) is Dawson's integral

F(z)=e ' f e' dt . (22)

tf

1/2

M 2kT, Vo

For a quadratic potential (which approximates the TL
potential near the tube axis) of the form

v~ = —vox', (23)

the radial variation in longitudinal drift velocity is

V,„=Ag (a),

where

~ y exp(V0a tanh y)
g(a) = dy .

+(( V0a')'/ ) cosh'y
(25)

The limiting value for the longitudinal drift velocity on
axis 1s

which will later be seen to be a physically realistic value,
in contrast to the zero axial drift velocity predicted by Eq.
(20).

Using the relation given by Forrest and Franklin
I /2

M 1.109
(27)'kT, Z

where Z is the ionization rate in the discharge, the longi-
tudinal drift velocity on axis can be written as

U, o
——1.032 «(( ln2

a result in extremely close agreement with one derived by
Kagan and Perel. '

For the TL potential given by Eq. (11), Eq. (18) can be
written explicitly as

eE~IR

M 2 31kT

a xe " a 1

0 [( 1 x 2)1/2 (1 a 2)1/2]1/2 x [(1 x 2)1/2 (1 2)1/2]1/2

a xe "
0 [(1. x2)1/2 (1 a2)1/2]1/2dx

These integrals are written out in full so that the principal
problem in their numerical evaluation can be pointed out.
Depending on the value of a, these elliptic integrals blow
up at one or both endpoints. They were evaluated by nu-
merical integration, except near the endpoints where
analytical expressions for the contribution to the in-
tegrands were used. The accuracy of this integration pro-
cedure was checked by determining the axial drift velocity
and comparing it with the analytic value determined from
(26), which is

U = (A ln2)(2/1. 155)'/ (30)

The integration procedure used gave this result with high
precision if long computational time was allowed. Be-
cause many points were required, the computational accu-
racy required was relaxed to 1Wo to reduce computation
time.

The lorigitudinal drift velocity averaged over the tube
bore is
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f drr f"dpN, „u„„

f dr r f dpN&„
(31)

which is determined numerically by similar procedures to
those described for Eq. (29).

Nz„G(p)(——p/r) exp[ (r p) I—A, ]—dp/uz„. (32)

The radial variation in longitudinal drift velocity be-
comes, therefore,

f 'dx

Rx exp V ——(a —x)X

(V V )1/2 x (V V )1/&

f 'dx

Rx exp V ——(a —x)X

(v —v )'"
(33)

For a linear potential

A o
3/2

u~= z f(x, V'),
Vo Vo

(34)

where Vo ——
~

Vo —R/A,
~

and f(x, VO) is of the form
given by Eq. (21).

For a quadratic potential

u =Ah (x),
where

B. With collisions

We assume that the mean free path A, for drifting ions
is independent of their velocity and again assume that the
predominant motion is radially directed. With these as-
sumptions the probability of an ion originating at radius p
and reaching radius r is exp[ —(r —p)/A, ]. Thus, in con-
trast with Eq. (5),

values of the collision factor R/A, . The results for the
linear potential probably do not have any practical signifi-
cance but are included for completeness. The quadratic
and TL potentials give identical results near the axis and
both show significant radial variations in drift velocity.
Interestingly enough, for values of R/A, -0.5 this radial
variation becomes quite small except close to the tube
walls (where some of the assumptions of the model may
break down in any case). Curves for values of R/A, &2
are not to be taken too seriously as the use of a TL poten-
tial will cease to be a good approximation in this case.

Numerical values of longitudinal drift velocities calcu-
lated from Eq. (33) and averaged over the tube bore are in
good agreement with measured values of Ell and T, ob-
tained for argon discharges. For example, Fig. 4 shows
the calculated variation in u, in units of 3 with collision
factor R/A, for a TL potential. The value of 2 is

eE
M 2kT,

(37)

R/X

in units of m/s. For a typical argon ion laser with R =1
mm, kT, =2.5 eV, and Ell ——300 Vm ', A =208 m/s.
With R/A, =l the calculated value of u, is 189 m/s.
Under these conditions Ballik et al. measure u, =170
m/s with a small variation with pressure. In larger-bore
discharge tubes, measured longitudinal drift velocities
tend to be slightly lower. This is consistent with a reduc-
tion of Ell sn larger tubes, an increase in the collision fac-
tor R/A, , and electron temperatures which are slightly
lower (under equivalent conditions of current density and
pressure). The pressure variation is quite consistent with
(i) the variation of E~~ with pressure, with E~~ generally
falling as the pressure decreases, and (ii) the variation of
u, with R/A, . The latter variation is surprisingly small
until pressures outside the normal operating regime of ar-
gon ion lasers are reached. Most of these lasers operate
with R/A, -l. Webb has concluded that the mean free

h(x)=

X
0&/2 dy y exp

y exp —Voy + Ry

~0~' Rx
2 +

cosh y A, coshy coshy

l.2

I—

l,o
QJ)

f'dy
(

2 . 2)1/2

(36)

which presents no problems in numerical evaluation. On
axis the longitudinal drift velocity reduces to Eq. (26).

For a TL potential Eq. (33) can be evaluated numerical-
ly by similar techniques to those described in the collision-
less case. The longitudinal drift velocity averaged over
the tube bore is evaluated from Eq. (31).
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C. Results and discussion

The radial variation of longitudinal drift velocity for
linear, quadratic, and TL potentials is shown in Figs. 1—3
for both the collisionless case and for various nonzero

r/R
FIG. 1. Radial variation in longitudinal ion drift velocity in a

cylindrical discharge with a linear radial potential, for various
values of the collision factor R/A. . R is the tube radius and A,

the ion mean free path.
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path of the predominantly radially moving argon ions fol-
lows the formula
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FIG. 2. Radial variation in longitudinal ion drift velocity in a
cylindrical discharge with a Tonks-Langmuir radial potential,
for various values of E. /k, shown on each curve. The collision-
less case for a quadratic radial potential is also shown normal-
ized to the same axial velocity as the other curves.
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FIG. 4. Normalized longitudinal ion drift velocity averaged

over the tube bore for a cylindrical plasma with a Tonks-
Langmuir radial potential, for various values of the collision
factor A /A, .

A,;=3.3X10 /po m, (38) V. RADIAL DRIFT VELOCITIES

where po is the effective filling pressure in Torr in the
discharge region. Typical effective filling pressures, after
thermal driveout, are -0.05 —0. 1 Torr. The work of
several different investigators, which has been summa-
rized by Davis and King, is entirely consistent with the
predictions of Eq. (31). It is our belief that the predic-
tions of this theory together with measurement of the
electric field in the positive column and the ion drift velo-
city represent the most reliable method for determining
electron temperatures in 1ow-pressure cylindrical plasmas.
This is particularly true given the difficulty of obtaining
reliable and reproducible data with probes, particularly in
narrow-bore discharges where they constitute a severe per-
turbation of the plasma.
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FICs. 3. Radial variation in longitudinal ion drift velocity in a
cylindrical discharge with a Tonks-Langmuir radial potential,
for various values of R /k, shown on each curve.

Within the framework of our model the number of ions
formed at any point in the discharge is a function only of
the neutral-atom density and the electron temperature.
These ions are generally considered to be formed solely by
electron impact on neutral atoms or neutral metastables.
Sze and Bennett ' argue that the ion production rate
should include ions formed by charge exchange, thereby
leading to a different radial distribution of ions with no
net radially directed velocity. Because we are mostly in-
terested in the close-to-collisionless regime we lump a11

ion-formation processes together and assume that the ran-
dom distribution of ion velocities is still Maxwellian. The
effective production rate for ions (electron impact plus
charge exchange) is treated as equivalent to the rate for
electron impact only in the collisionless regime. Thus, al-
though charge exchange interrupts the directed motion of
ions, it does not distort the potential substantially from
the Tl. form nor the formation rate from the rate given
by Eq. (4). In any case, if one attempts to include the ap-
parent effect of charge exchange on the radial ion distri-
bution, one should also include the radially directed
motion of neutrals which can persist after they are formed
by neutralization of an ion or charge exchange. 9 The ra-
dial variation in radial ion drift velocity is, therefore, in
the collisionless regime

r

J dp Kpqvp„
v, (r) =

dP 1Vp,

where U&, is the radial velocity acquired by an ion in going
from radius p to r. Explicitly,
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FIG. 5. Relative radial ion drift velocity as a function of ra-
dius in a cylindrical discharge with a Tonks-Langmuir radial
potential.

2kT,
v„(r)=

M

dxxe "

a
dx

p (y y )1/2

(40)

VI. EFFECT OF DRIFT VELOCITIES
ON LONGITUDINALLY EMITTED

ION LINE SHAPES

Collisions are included in Eq. (40) in a simple manner by
the inclusion of a factor exp[ —(R/A, )(x —a)] in both in-
tegrals. Some specific results from Eq. (40) in the case of
a TL potential are shown in Fig. 5. These curves are in
close qualitative agreement with curves given by Valen-
tini. Once again we do not use large values of the col-
lision parameter as the close-to-collisionless regime is
what interests us and where our model is appropriate.

Because the influence of the radial ion velocities on the
transversely emitted line shapes has been the subject of
several previous investigations, ' ' ' ' we wi/1 not con-
sider it further here.

A. Without radial motion

It is only because the predominant net directed velocity
of the ions is toward the wall that we can assume the ran-
dom component of the longitudinal ion velocity v,
remains Gaussian. If the predominant motion of the ions
was in' the longitudinal direction then, the longer the
mean free path the more asymmetrical the distribution
function over v, would become. We can illustrate this by
considering a one-dimensional uniform plasma with a,

field E~~ applied.
We assume that ions are formed from neutral atoms at

a uniform rate per unit volume. The distribution function
of these ions, before they accelerate in the field, is

1/2

f'"'=
2 kT

M
7T a

(41)exp( Mv, /2—kT, ) .

We consider ions found within a small region dz. For
an ion formed with velocity v,', after a time t its velocity
will be

U =0'+ t. (42)

f (v, ) o: exp (v, bt)—
a

(43)

where we have written b =eE~~M for the acceleration of
ions in the field. However, collisions must be taken into
account. An equilibrium situation could not exist without
ion removal, as ions are being continuously formed. After
a time t, an ion initially formed with velocity v has trav-
eled a total distance s. The probability of this ion actually
being observed after time t is e ' where A, is the ion
mean free path, which we will initially assume is indepen-
dent of ion velocity. For ions initially formed with veloci-
ty v,

' )0 (in the direction of the applied field),

Thus, if all these ions are observed, in the absence of col-
lision, the emitted line shape will correspond to a velocity
distribution

s =s i
——v,

' t +bt /2 . (44)
As a result of the radial dependence of longitudinal ion

drift velocity we expect the Doppler shift of ion-emission
center frequencies to vary radially. If we assume that the
Gaussian distribution of random longitudinally directed
velocities is preserved in the presence of a longitudinal
field, then the emitted line shapes from different radial
positions in the tube would, in the collisionless regime, be
progressively blue shifted on moving from the tube axis to
the wall. However, if light emitted in the axial direction
from only a restricted annular region was collected, a
symmetrical Voigt profile would be observed. If light em-
itted in the axial direction from the whole tube bore was
observed, this would involve a series of superimposed
Voigt profiles with a distribution of amplitudes and center
frequencies reflecting the radial variation of ion density
and longitudinal drift velocity. We would expect such a
profile to be broader than a profile observed from a more
restricted region of the bore. A profile observed in this
way would suggest higher ion. temperature than the true
value.

s =s2 ——v,'t bt /2 . — (45)

If, however, v, & bt, these ions must have originated with
velocity v,

' &0 and have been decelerated by the field and
then reversed direction. The total distance traveled by
this group of ions is

s =s3 v, /b+bt /2 ——v, t . — (46)

To calculate the overall velocity distribution we must con-
sider these three groups of ions. It is worth pointing out
that a group of ions formed within a velocity interval dv,
remain within this same velocity interval as they ac-
celerate, although they do spread out in space. However,
if a long enough region in the z direction is observed, this
is not important. For the first group of ions the distribu-
tion function is

For ions formed with velocity v,
' &0 there are two possi-

bilities for the total distance traveled. For ions observed
at time t with U, & 0,
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"'b
f)(v, )=I exp — (u, —bt)

Therefore, for example, the emission line shape on the red
side of line center is, apart from a normalization constant,

Xexp[( u—,t +bt /2) /A, ]dt,
g (v) ~ e«c( 8/—v D }gD(v) exp(8 /D), with v & vp,

For the second group,

with u, )0 and v&vp.

X exp[( v, t bt I2) I—&]dt,

fz(v, )=f exp — (u, —bt)

(47)
where

D = +(41n2)
eE() eEII vp

2M MehvD
P

chvL EI~vo+ (4 ln2)
2vpA, Mchva

2

u —vo

vo

(51)

(52)

For the third group,

with u, &0 and v&vp. (48)

Xexp[(u, t bt /2 —v, Ib)I—A, ]dt,

with u, &0 and v&vp. (49)

00 M
f3(v, ) = exp — (u, bt)—z 0/b 2kT

and gD(v) is the Gaussian line shape of the neutral atoms
of full width at half maximum height (FWHM),

1/2
2vo 2kT ln2

AvD ——
M

I

With some algebra it can be shown that the overall line
shape of the one-dimensionally accelerated ions is, apart
from a normalization constant,

v —vo
exp (4 ln2)(1+ Q)

Ava

2

~ 1+erf [41n2(1+Q) ] '
AvD

gD(v), v & vp (54)

v —vp
g(v) cc ~ exp —4Q ln2

Ava

' 1/2
1+Q
1 —Q

v —vo
exp (41n2)(1 —Q)

hva
I

2

X ~ erf [41n2(1 —Q)]'~
AvD

gD ( v)» v & vp, (55)

where Q =kT/eE~~A, and Q & 1.
Note that as Q~0 the line-shape function becomes

v —vp
g (v) cc 1+erf (4 ln2)

hvD
(56)

Mv,
P 2kT

eE~~ af
Pl BU 2%k T (57)

This is the same line-shape function that results from solving the collisionless Boltzmann equation appropriate to
cylindrical geometry with no radial or azimuthal variation of the distribution function f, namely,

]. /2

where Z is the ionization rate and X, is the electron density (assumed constant everywhere).
For Q&1,

v —vo
g(v) oc exp —4Q ln2

Ava

'2
2 Q+1
1/2 Q

1/2

F [(41n2)(Q —1)]' gD(v), with v& vp,
AvD

(58}

where F(z) is Dawson's integral. In a typical ion laser
Q=0.3 but may vary from 0.1 to 1.0.

The overall line shape given by Eqs. (54) and (55) or
(54) and (58) becomes more asymmetric as Q —+0, as can
be seen from Figs. (6) and (7). For Q &0.5 the lines begin
to look 1ike symmetrical Gaussians, but become narrower
than the undistributed Doppler-broadened line would be.
This is not a real effect but results from our treatment of

f(v, )=I exp

(59)

In these circumstances the distribution function must

A, as independent of particle velocity. If the electric field

E~~ is set to zero, then Eq. (47) becomes

Mu, u, t
exp dt, with v, &0 .
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FIG. 6. Line shapes of ions accelerating from a Gaussian
velocity distribution in a uniform electric field Ell as a function
of the relative mean-free-path factor Q =kT/eE~~A, , shown on
each curve.
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FIG. 7. Line shapes of ions accelerating from a Gaussian
velocity distribution in a uniform electric field EII as a function
of the relative mean-free-path factor Q =kT/eE~~A, , shown on
each curve.

remain Maxwellian as ions are not accelerated after their
formation from neutrals. Therefore, for the model to be
consistent,

given in Eq. (60) prevents the anomalous narrowing of
Doppler-broadened lines as EII 0 predicted by Eqs.
(54)—(56).

r+E,
~

f(u, )
A,

Uz

(60) B. With radial motion

where r is a constant. For E~~
——0, Eq. (60) differs from

the exact result for a single-component gas in which only
motion along a single direction leads to collisions, ' name-

ly,

For ions which originate in an annulus dp at radius p
and drift radially to radius r, the contribution to the ion
line shape emitted in the 1ongitudinal direction is

[g(v)]p„——Np, exPI —[(2(v v0+bp„)/b, vD] ln2—] .

Mu, /kT
~mNa g[uz(M/2kT)'/ ]

where N is the number density of particles with cross sec-
tion cr (assumed velocity independent ) and

%'ith an ion mean free path A,

GpP dP R r a
R R

(64)

p(x)=xe " +vox (1+erfx) .

As U, —+0 we can see that
' 1/2

1 2M
AT

(62)

(63)

where up is given by Eq. (6). hp„ is the longitudinal
Doppler shift acquired by this group of ions, observed in

. the direction opposite to the field

~pr uzpr v0/c

The difference between Eqs. (60) and (61) arises because in
our one-dimensional model we are allowing empirically
for a velocity dependent cros-s section.

A mean-free-path variation with velocity of the form
I

wher'e v0 is the rest center frequency of the ion line. u,p„
is the longitudinal drift velocity acquired by an ion which
moves from p to r and is given by Eq. (17).

The total line shape observed from ions at radius r is

r Pfp
[g(v)]„=J dp exp

PUpq

so, for a TL potential

r

R r
R + I [2(v—v0+Ap„)]/hva I ln2 (67)

Rx exp V ——(a —x)

0 [(1 x 2) 1/2
( 1 a 2)1/2]l/2g (v)]„= dx

g~O a 1& exp —4 v —vo+
155 f& [(1 x 2)1/2 ( 1 y2)1/2]1/2

2

ln2 -, (6&)
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where A =(eE~~R M (M/2kT, '

The line shape observed if the entire tube bore is ob-
served is, apart from a normalization constant,

g(v)= f g(v)ada . (69)

The line shapes predicted by Eqs. (68) and (69) become
markedly more asymmetric as the longitudinal electric
field increases, as can be seen from Figs. 8—10. The
evaluation of Eq. (68) was carried out by numerical in-
tegration with analytic evaluation of the contribution to
the integrals near their endpoints where their integrands
blow up. To obtain good numerical accuracy these com-
putations are quite lengthy, even on a large computer.

The shape of these lines is a function of R/A, and the
dimensionless drift velocity factor

A@0

c Eve)&1. 155

For a low power, small bore, argon ion laser with R =1
mm, kT, =2.5 eV, EII ——300 Vm ', A, =488 nm, and.
b,vD ——3.5 6Hz, E=0.11. An increase in axial field
strength and/or tube diameter could easily raise F.

For values. of F 0.3, line asymmetry is becoming quite
apparent, as can be seen from Fig. 9. Such line asym-
metries have been observed by Davis and Lindsay. This
confirms our belief that radial variations in axial drift
velocity should be considered carefully when line-shape
measurements are being used to determine plasma param-
eters in cylindrical gas discharges. Figures 8—10 also
show the measured broadening of axially emitted ion line
shapes over the originating neutral-atom distribution. For
example, at F=0.3, R/A, =O the lines are approximately
18% wider than neutral lines. At F =0.5, R/A, =O they
are approximately 39% wider, at I' =0.5, R/A, = 1 they
are approximately 32% wider. These increased widths are
quite consistent with experimental observations made on
argon ion lasers. For example, Ballik et al. see ion lines
varying from 0.5% to 25% wider than the neutral lines
depending on operating current and pressure. Sze and

Bennett ' see ion lines from 3% to 19% wider under simi-
lar operating conditions.

VII. CONCLUSIONS

The radial and longitudinal motion of ions in low-
pressure, cylindrical discharge plasmas affects the shape
of emitted ion line shapes. We have considered in detail
how the longitudinal ion velocity varies with radial posi-
tion in a low-pressure cylindrical gas discharge. Evalua-
tions have been carried out for different relative ion drift
velocity and mean-free-path conditions. They show that
under typical conditions appropriate to ion laser opera-
tion, asymmetrical line shapes should be observed in the
longitudinal direction. These line shapes become substan-
tially broader than lines emitted from neutral species de-
pending on the relative values of axial field strength, tube
radius, electron temperature, and ion mean free path. The
predictions of the theory presented here are in satisfactory
agreement with experimental observations of plasma pa-
rameters in gaseous-ion-laser discharges.

APPENDIX: ION TRAJECTORIES

dz/dt =eE~~t/M,

dr/dt = [2e (Pz —P„)/M]'~

dx/dt =(2kT, /M)'i (V —V )'

(Al)

As we have stated previously, the ion trajectories we
have been considering are assumed to be directed predom-
inantly towards the wall. Thus, the probability of a col-
lision is only a function of the radial distance traveled by
a much more slowly longitudinally drifting ion. To justi-
fy the assumption that radial distance traveled is the dom-
inant factor in determining whether collisions are impor-
tant, specific ion trajectories in a TL potential combined
with a weaker longitudinal field have been calculated.

The equations of motion of an ion starting at rest from
radius p are

I,O I,O

0,8 0.8

o 0,4

LtJ

0,2

V)

LLJ 0,6I-z'

~ 0,4

LLJ

0,2

0,0
—2 —

I 0 I 2
FRACTIONAL LINEWIDTH SHIFT FROIVI LINE CENTER

FIG. 8. Axially emitted ion line shapes observed from radial
positions near the axis and wall in a cylindrical discharge where
the ions move in a uniform axial field and a Tonks-Langmuir
radial potential. The collisionless case with a drift velocity fac-
tor F=0.3 is shown.

00-3 -2 —
I 0 I 2

FRACTIONAL LINEWIDTH SHIFT FROM LINE CENTER

FIG. 9. Axially emitted ion line shapes observed from radial
positions near the axis and wall in a cylindrical discharge where
the ions move in a uniform axial field and a Tonks-Langmuir
radial potential. Examples for the collisionless case and
R/X=1 are shown for a drift velocity factor F=0.5.
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