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The linearized Vlasov-Poisson equations are used to investigate the electrostatic stability proper-
ties of nonrelativistic non-neutral electron flow in a planar diode with cathode located at x =0 and

anode at x =d. The electron layer is immersed in a uniform applied magnetic field Boe„and the
equilibrium flow velocity V~q(x) is in the y direction. Stability properties are calculated for pertur-

bations about the choice of self-consistent Vlasov equilibrium fb(H, P~)=(nb/2am)5(H)5{P~),
which gives an equilibrium with uniform electron density (nb ——const) extending from the cathode
(x =0) to the outer edge of the electron layer (x =xb). Assuming flute perturbations (8/Bz =0) of
the form 5$(x,y, t)=5/k(x)exp(iky icot), the—eigenvalue equation for 5/k(x) is simplified and

solved analytically for long-wavelength, low-frequency perturbations satisfying kxb « 1 and

~

co —kV~
~

&&cg„:—co, —co~b. This gives a quadratic dispersion relation for the complex oscillation

frequency ~. Defining p=&~b/co„and g =d/(d —xb), it is shown that the necessary and sufficient
condition for instability (Imcu & 0) is given by (1+p+g)(p+g) & 2(1+p)( I+p/4) . It is found that-

the maximum growth rate in the unstable region can be substantial. For example, for d =2xq and

g =2, the maximum growth rate is (Imago) =0.25(kxb)co„which occurs for p=2. 3.

I. INTRODUCTION AND SUMMARY

There is considerable interest in the equilibrium and
stability properties of sheared, non-neutral electron flow
in cylindrical' and planar models of high-voltage
diodes with applications to the generation of intense
charged-particle beams for inertial confinement fusion. s

These analyses' have represented major extensions of
earlier work ' to include the important influence of
cylindrical, ' nonlinear, relativistic, ' electromagnet-
ic, and kinetic ' effects on equilibrium and stability
behavior. The majority of these studies, however, have
been based on a macroscopic cold-fluid description of the
electron flow. While such models provide important in-
sights into gross stability properties, they are not readily
generalized to incorporate the important influence of ki-
netic effects that depend on the detailed features of the
electron distribution function fb(x, p, t). The present
analysis makes use of the linearized Vlasov-Poisson equa-
tions to investigate electrostatic stability properties of
nonrelativistic electron flow in a planar diode with uni-
form applied magnetic field Bee, . Such a model of
course incorporates kinetic and finite-temperature effects
in a natural manner. Moreover, many of the theoretical
techniques used here have been developed in earlier stud-
ies' of the kinetic equilibrium and stability properties
of non-neutral plasmas, appropriately extended to planar
diode geometry.

In the present analysis, we make use of the linearized
Vlasov-Poisson equations to investigate the electrostatic
stability properties of nonrelativistic non-neutral electron

Boe = y„b(x)e

CATHODE

FIG. I. Planar diode configuration and Cartesian coordinate
system.

flow in a planar diode. As illustrated in Fig. 1, the
cathode is located at x =0 and the anode is located at
x =d. Moreover, the electron layer is immersed in a uni-
form applied magnetic field Bee„and the equilibrium
electron flow velocity Vsb(x) is in the y direction. The
basic assumptions and kinetic equilibrium model are
described in Sec. II, and detailed equilibrium properties
are calculated for the specific choice of self-consistent
Vlasov equilibrium fb (H, P~ ) = (ns /2m m )5(H)5(Py)
Here, H =(2m) '(p„+p~+p, )—ego(x) is the electron
energy, P~ =pz —mm, x is the canonical momentum in the
y direction, (bo(x) is the equilibrium electrostatic potential,
and co, =eBO/mc is the electron cyclotron frequency.
This choice of fb(H, P~) leads to a uniform density pro-
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file nb(x) =n~ ——const over the interval 0 &x & xb
2e—E, /mco„[Ep. (19) and Fig. 2], and a parabolic tem-

perature profile T~b(x) that assumes its maximum value

TJ b (m /8)co„xb at x =xM= xb—/2 [Eq. (25) and Fig. 2].
Here, E,= —(Bgo/Bx)„o is the electric field at the
cathode; co„:—co, —cozb (assumed positive) is the square of
the frequency of oscillations in the (x',y') orbits including
the influence of the self-electric field E„(x)e„andapplied
magnetic field Boe, ; and cozb 4n——nbe /m is the plasma
frequency squared.

In Sec. III, the linearized Vlasov-Poisson equations are
used to investigate electrostatic stability properties for
flute perturbations (B/Bz =0) about the general class of
self-consistent planar Vlasov equilibria fb(H, P~). This
leads to the eigenvalue equation for the perturbed poten-
tial amplitude 5/k(x) given in Eq. (38). The particle
trajectories (x',y') are then calculated for the specific
choice of equilibrium distribution function fb (H, P~ )

=(nb/2mm)5(H)5(P~) in Eq. (14) and the corresponding
rectangular density profile in Eq. (19). For this choice of
fb, the exact eigenvalue equation (38) reduces to Eq. (54).

In Sec. IV, the eigenvalue equation (54) is simplified
and solved analytically for low-frequency, long-
wavelength perturbations satisfying

~

co —kVd
~

&&co„,and
kxM «1 Here. Vd = V&~(xM) =co,xM, where xM ——xb/2.
Since co„=~,—co~b &0 is assumed, the present stability
analysis is restricted to densities below Brillouin flow (i.e.,
cozb & co, ). We adopt a model in which all oscillatory con-
tributions to the orbits xIi and yo in Eqs. (55) and (56) are
neglected [see Eqs. (51) and (52)]. These terms generally
give rise to harmonic contributions to the exponent in the
orbit integral (55) of the form co —kVd nco„f—or n&0, as
well as a modification of the amplitude of the n =0 term
in the orbit integral proportional to (co —kVd) . Specifi-
cally, in order to investigate the qualitative features of sta-
bility properties for

~

co —kVd
~

&&co, and kxM &&1, the
model approximates y o ——y + Vd ~, x o

——xM, 5/k (x o )

=&Pk(xM), and (B/Bxo )~0k(xo )=[B54k(x)/Bx]„„in

1 p+ — (1+p, +g) =0,
2 1+@

where the geometric factor g is defined by g =0 /(d xb—)
The necessary and sufficient condition for instability
(Imco &0) is given by

1 (I+p+g)(p+g)
2 1+p 4

'2

Moreover, in the unstable region of (p,g) parameter space,
the growth rate Imco can be expressed as [Eq. (83)]

2 1/2
—(g+p) 1+

kVd g+p 2 1+p
1+

4

where kVd &0 is assumed. It is found that the maximum
growth rate for the instability can be substantial. For ex-
ample, for d =2xb and g =2, maximum growth occurs
for @=2.3, with (Imco),„=0.5kVd ——0.5(kxl)co, .

Finally, the present analysis has important implications
for stable diode operation, at least with regard to the low-
frequency, long-wavelength flute perturbations considered
here. These implications are discussed in Sec. V.

II. ASSUMPTIONS AND KINETIC
EQUILIBRIUM MODEL

A. Assumptions

Eqs. (55) and (56). This gives the approximate eigenvalue
equation (65). In Sec. IV C, the eigenvalue equation (65) is
solved exactly for long-wavelength perturbations with
kx~ &&1, and it is shown that the resulting dispersion re-
lation for the complex eigenfrequency co is given by [Eq.
(77)]

I 2~—kV„
kv +'~ '+4"
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T&b (x)
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A

nb
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In the present analysis we make use of the Vlasov-
Poisson equations to investigate the dectrostatic stability
properties of nonrelativistic non-neutral electron flow in a
planar diode. The diode configuration is illustrated in
Fig. 1 where the cathode is located at x =0 and the anode
at x =d. The non-neutral electron plasma is immersed in
a uniform applied magnetic field Boe„and the average
electron flow is in the y direction. To make the analysis
tractable, the following simplifying assumptions are
made.

(a) Perturbations are about a quasisteady equilibrium
(B/Bt =0) with no spatial variation in the y and z direc-
tions, i.e., B/By =O=B/Bz. However, equilibrium quanti-
ties are allowed to vary in the x direction with B/Bx~o.

(b) We denote the equilibrium electric field by
Eo(x) =E„(x)e„,where E„(x)= —Bgo(x)/Bx and Po(x) is
the electrostatic potential. The boundary conditions on
yo(x} are

FICx. 2. Equilibrium density profile nq(x) [Eq. (19)] and tem-
perature profile Tqb(x) [Eq. (25)j for the choice of distribution
function fb in Eq. (14).

Po(x =0)=0 and Po(x =d)=V,
where V is the applied voltage. In general, it is assumed
that the equilibrium electric field at the cathode,
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E =—
x=o

(2)

5/k(x =0)=0=5/k(x =d), (4)

which corresponds . to zero tangential electric field,

5E~ = —(8/Gy)5/ =0 at x =0 and at x =d.

B. General equilibrium properties

Any distribution function fb(x, p) that is a function
only of the single-particle constants of the motion in the
equilibrium field configuration is a solution to the
steady-state 9/Bt =0) Vlasov equation. '6 For
Eu(x) = —e„BPO(x)/Bx and Bo(x)=Boe„ the single-
particle constants of the motion consistent with the as-
sumptions in Sec. IIA are the axial momentum p, =mu„
the canonical momentum in the y direction

Py =py —mcocx

and the particle energy

H = —ego(x) .p
2m

Here, —e is the electron charge, m is the electron mass,
co, =eBO/mc is the electron cyclotron frequency, p=mv
is the mechanical momentum, and p =p„+p&+p,. For
present purposes, we consider the class of self-consistent
Vlasov equilibria' '

f'5(x, p) =f6(K,PJ )

that depend explicitly on H and P~ but not on axial
momentum p, .

For specified fb(K, P~), the equilibrium electron density
nb(x) is defined by

nb(x)= f d'p fb(H, P~), (8)

and the electrostatic potential $0(x) is determined self-

is nonzero. The limiting case E,=0 corresponds to
space-charge-limited flow. '

(c) For nonrelativistic electron flow, with eV/mc «1,
the equilibrium electron current in the y direction,
—e fd p u„fb(x,p), is siifficiently low that the induced
axial self-magnetic field Bo,(x)e, is negligibly small in
comparison with the externally applied magnetic field

21,22oe, .
(d) For present purposes, perturbed quantities are as-

sumed to be independent of z(B/Bz =0) and spatially
periodic in the y direction with periodicity length L. Per-
turbed quantities 5$(x,y, t) are expressed as

5$(x,y, t) =5/(x, y)exp( i cot)—

= g 5/k(x)exp(iky i cot), — (3)
k

where Imago & 0 corresponds to instability. Here,
k =2m n/I. , n is an integer, and the summation gk ex-

tends from n = —oo to n =+Do. The boundary condi-
tions on the perturbed electrostatic potential at the
cathode and the anode are

consistently from Poisson's equation

3 p$0(x) =4vrenb(x)
Bx

=4vre f d p fb(H, P~) . (9)

nb(x) Vyg(x) = f d p uyfb(H, Py ) . (12)

In a similar manner we can define an effective tempera-
ture Tib(x) perpendicular to the equilibrium flow direc-
tion by

2 2

nb(x)Tib(x) = f d p fb(H, Py ) .
2m

(13)

C. Equilibrium model

For purposes of the stability analysis in Secs. III and
IV, we consider electrostatic perturbations about the
specific choice of equilibrium distribution function' ' '

fb(x, p)= 5(H)5(Py ),
277m

(14)

where P„=p~ mto, x, H=— /2m ego(x), —and nb is a
constant. The choice of fb in Eq. (14) corresponds to
emission of electrons from the cathode with zero kinetic
energy, i.e., (2m) '(p„+p~+p,)=0 at x =0. It neces-
sarily follows that p„,pz, and p, are separately equal to
zero at the cathode (x =0). Substituting Eq. (14) into Eq.
(8) and integrating over p„,the electron density profile
nb(x) can be expressed as

nb(x) =2nb f dpipi5(pi —pro(x)), (15)

Since H depends on $0(x), it is evident that Eq. (9) is gen-
erally a nonlinear equation for the electrostatic potential
Po(x). Making use of the boundary conditions in Eqs. (1)
and (2), Poisson's equation (9) can be integrated to give

II

$0(x)= E,x—+4vre f dx" f dx'nb(x') (10)

in the diode region 0&x &d. Enforcing $0(x =d) = V, the
applied voltage V is related to E, and the equilibrium
density profile nb(x) by

II

V= E,d+—4rre f dx" f dx'nb(x') .

For specified fb(H, P~), other equilibrium properties are
also readily calculated. For example, since H is an even
function of p„andp„the average flow velocities in the x
and z directions are trivially zero, i.e.,

f d Puxfb f d Pfb
'(u ~= f dPufb f dPfb=0.

On the other hand, since fb(H, P„)depends explicitly on
P~, the average flow velocity in the y direction is general-
ly nonzero. Denoting

~,'~(x)=«u, &i= f d'P u, fb f d'Pfb,

the equilibrium flux of particles in the y direction is given
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where pi ——p„+p„andpip(x) =[2megp(x) —p&]p
defined by

pip(x) =2mectpp(x) m—co,x (16)

nb =const, p J p(x) & 0
nb(x) =

0, pip(x) &0 .

That is, the boundary (x =xb) of the electron layer is
determined from pip(xb) =0, or equivalently,

ep—p(xb)+ —,mco, xb ——0 .2 2 (18)

Note that Eq. (18) corresponds to the envelope of turning
points for which p„+p,=0. The equilibrium density
profile in Eq. (17) can be expressed in the equivalent form
(Fig. 2)

Carrying out the integration over pi in Eq. (15), we obtain
the rectangular density profile (Fig. 2)

with the ratio E, /(cp, —co&b ) remaining finite.
For the choice of distribution function in Eq. (14), the

average flow velocity in the y direction defined in Eq. (12)
is readily shown to be

Vyg(x) =co,x (24)

in the region 0&x &xb where the electron density is
nonzero. On the other hand, from Eq. (20), the equilibri-
um Ep&&Bp velocity, VE(x)= —cE„(x)/Bp, is given by

E(x)= c+ IBp+(cp~~b/cp )X. The fact that +Vpb

and VE(x) are generally different is a reflection that the
distribution function fb(x, p) in Eq. (14) has nonzero tern
perature Tib(x) and there is a corresponding pressure-
gradient force on an electron fluid element. Making use
of Eqs. (13), (14), and (23), we find that Tib(x) can be ex-
pressed as

Tjb(x)= —eZ,X+ (cppb —cp )x0

712
(CO~ —

CO&b )(XXb —X )
2

nb(x) =0 n~=const 0&x &xb

0, xb(x&d (19)
(Cpq —

COpb )
2

xb

2

'2
xb

2

'2

(25)

Pp(x) =
' —E,x+2mnbex, 0 &x &xb

V+(4nnbexb E, )(x d)—, xb &x—&d
(20)

where xb is determined self-consistently from Eq. (18).
Substituting Eq. (19) into the equilibrium Poisson equa-

tion (9), and enforcing the boundary conditions in Eqs. (1)
and (2), we obtain

for 0 &x &xb. Note from EcI. (25) that
. Tib(x =0)=0=Tib(x =xb), and that Tib(x) assumes its
maximum value Tib ——(m/8)(co, —cozb)xb, at
x =xM =xb/2 (Fig. 2).

As a further point, it is readily verified that the equili-
brium profiles in Eqs. (19), (20), (24), and (25) are con-
sistent with equilibrium force balance on an electron fluid
element, i.e.,

where E, = —c)Pp/c)x
~
„p.Note from Eq. (20) that

C)pp/C)x is continuous at x =xb The rema. ining boundary
condition, that the potential Pp(x) is also continuous at
x =xb, determines the voltage V self-consistently in terms
of other system parameters. This gives

o o o o V&b
[nb (X)TJ b (x)]= nb (x)e—E (x)+ Bp

Bx C
(26)

as expected.
In conclusion, an attractive feature of the choice of

equilibrium distribution function fb(x, p) in Eq. (14) is
that the corresponding (self-consistent) density profile has
the simple rectangular form in Eq. (19) and that other.
equilibrium properties are equally tractable analytically
[see Eqs. (20), (24), and (25)]. Although Eq. (14) neces-
sarily implies that p„=p~=p, =O at the cathode ('x =0),
we note that p„+p,=pJQ(x) is generally nonzero except
at x =0 and x =xb. The exception is the limit of Bril-
louin flow (E, +0 and cp ~b Ice,—~ 1) where
pip(X)=0=2mTib(x), and the electron flow is laminar
over the entire interval 0 &x &xb.

As is often the case, depending on the application, there
is some degree of latitude in the specific choice of Vlasov
equilibrium fb(x, p). For example, an alternate choice of
equilibrium distribution function consistent with
p„=p~=p, =0 at the cathode (x =0) would be
fg(x, p)=const)&5(H)5(P~)5(p, ). For this choice of dis-
tribution function, however, the corresponding self-
consistent density profile nb(x)= Jd p fb(x, p) is singu-
lar both at x =0 and at x =xb [where
p J p(xb ) =2mepp(xb ) mcp, xb 0],—and the ——expression
for nbp(x) no longer has the simple rectangular form in
Eq. (19).

(21)V= E,d+4nenbx—b(d xb/2) . —

Substituting Eq. (20) into Eq. (18), the location of the
layer boundary (xb) is determined from

2 ~2 2Tm(co, cp b)xb = —eE,xb, — (22)

where cozb 4mnbe Im——The soluti. on xb=0 to Eq. (22)
corresponds to the location of the cathode (x =0). The
remaining solution for xb corresponds to the location of
the outer edge of the electron layer in Fig. 2, i.e.,

2eE,/m—
A. 2

CO&
—CO &b

(23)

For present purposes, we assume E, &0 and densities
below or at Brillouin flow, i.e., co~b &co, . This assures
xb &0 in Eq. (23) and Fig. 2. The condition xb &d im-
poses the further restriction —2eE /m & (cp co b)d—

2 2For specified E, &0 and co pb (co the boundary location
xb can be calculated self-consistently from Eq. (23). Note
from Eq. (23) that the limiting case of Brillouin flow
(co~blc0, ~1) corresponds to E,~O and co, —co~b~0
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III. ELECTROSTATIC STABILITY PROPERTIES

A. Linearized Vlasov-Poisson equations

Making use of the assumptions outlined in Sec. II A, we
investigate linear stability properties for electrostatic per-
turbations about the class of self-consistent Vlasov equili-
bria fb(x, p) =fb (H, &~). For two-dimensional spatial
variations, the perturbed distribution function and electro-
static potential are expressed as'

m, v'(t') = eE„—(x')e„—edt'

v'(t') &&Boe,

(30)

5E(x') = —e„(B/Bx')5$(x',y') —e~(B/By')5$(x', y') .

In Eq. (29), x'(t') and p'(t') are the particle trajectories in
the equilibrium field configuration that pass through the
phase-space point (x,p) at time t'=t. That is, x'(t') and
p'(t') =mv'(t') satisfy

5fb(x, p, t) =5fb(x,y, p)exp( ice—t),

5$(x, t) =5/(x, y )exp( i cot), —
(27)

, x'(t') =v'(t'),
dt'

subject to the "initial" conditions

where Imago & 0 corresponds to instability. The perturbed
electric field is given by 5E(x, t) = —V5$(x, t), and the po-
tential amplitude 5$(x,y) satisfies the linearized Poisson
equation

B' B'
2 + z 5$(x,y)=4me f d'p 5fb(x,y, p) . (28)

Bx By

Making use of the method of characteristics, we integrate
the linearized Vlasov equation from t'= —oo to t'=t.
Neglecting initial perturbations, the formal solution for

5fb can be expressed as'

5fb(x,y, p)=e f dt'exp[ ice(t' t—)]—

x(t =t)=x,

v'(t'=t)=v .
(31)

fb(H, Py ) = +e

Making use of

v'. 5E(x') = —v (a/ax )5j(x )

These trajectories are determined in closed form in Sec.
IIIB for the choice of equilibrium distribution function
fb(H, P~) in Eq. (14).

Continuing with the formal simplification of Eqs. (28)
and (29), we note that

where

X 5E(x'). 0fb(» p)
P (x' p')

= —(d /dt ')5P (x'),

and the fact that dfbldH and dfb/dP~ are constant (in-
dependent of t') along a particle trajectory, Eq. (29) can be
expressed in the equivalent form

dfb ' , , d - , , t}fb
0 0

5fb(x,y, p) = —e f dt'exp[ iso(t' t)]—, 5&(x'—,y') —e fBPy
dt'exp[ it@(t' t)]—, 5$(—x',y') .

By'
(33)

(34)

In Eq. (33), we Fourier decompose with respect to the y dependence [Eq. (3)], and integrate by parts the contribution pro-
portional to (d/dt')5$ This give. s

de - . dfb df'
5fbk(x, p) = —e 5/k(x) ei co +k— f dt'exp[ itur+ik(y' —y)]5/k(x')—Ba Ba

occurs in Eq. (34), where x'(t') and y'(t') are the particle
orbits in the equilibrium field configuration [Eqs. (30) and
(31)].

In Sec. IV, Eqs. (34)—(36) are analyzed for the specific
choice of equilibrium distribution function fb(H, P~) in
Eq. (14). In this regard, it is useful to further simplify
Eqs. (34) and (35) making use of the identity

r

(Ifb)=fb
&

+I +ua, , aI dfb dfb
(37)

Bpy Bpy BPy ~ BH

B2

Bx
5/k(x) k5gk(x)=4~e f—d p 5fbk(x, p) .

(35)
Substituting Eq. (34) into Eq. (35) then gives a closed
eigenvalue equation that can be used to determine the
eigenfunction 5/k(x) and complex eigenfrequency to for
electrostatic perturbations about the general equilibrium
distribution function fb(H, P~). We note that the orbit in-
tegral'

where BH /dp~ =p~ /m =u~. We substitute Eq. (34) into
Eq. (35) and make use of Eq. (37) to eliminate Idfb/dP~.
Integrating by parts with respect to p~, Poisson's equation
(35) can then be expressed in the equivalent form'

tI= f dt'exp[ i~r+ik(y' —y)]5/k(x')— (36)

for the kth Fourier amplitude. Here r = t ' t, and—
5fbk(x, p) is related self-consistently to 5/k(x) by the
linearized Poisson equation
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a' -,- » p. ar . Bfb - afb

ax
&Pk(x) —k &Pk(x)=4Tre f d p fbik —I(co —kuy)S &—Pk(x)

aPy
y BH BH

(38)

where the orbit integral S is defined in Eq. (36}. As indi-
cated earlier, in Sec. IV the eigenvalue equation (38) is
analyzed in circumstances where the equilibrium distribu-
tion function is sPecified by fb(H, Py )
= ( nb /2m m )5(H)5(Py ).

and

cucPy
U =U COS(CO„T)—CO„X—XM+ z Sin(CO„T)

m cop

(46)

S. Particle trajectories in the equihbrium fieIds

In this section, we determine the particle trajectories
x'(t') and v'(t') in the equilibrium field configuration cor-
responding to the rectangular density profile in Eq. (19)
and Fig. 2 and the choice of equilibrium distribution
function in Eq. (14). From Eq. (20) and
E„(x)= —asap(x)/ax, the equilibrium electric field within
the electron layer is given by E„(x)=E,—(m /e)co pbx for
0&x &xb Elimi.nating E, by means of Eq. (22), we ob-
tain

~cVz+ sin(co„T)
601)

(47)

and

where xM =—xb/2. From Eqs. (42) and (45), the y motion
is given by u„'=co,x'+P„/m, i.e.,

r

Py OcPy
Uy = cocx + +coc x —xM + z [cos(cocT)—1]

772 m Q)p

E» {X)= — (COc —CO b )Xb — CO
p m m-2

2e e
(39) 3' =3'+ ~c&M—

CO pb Py COc Vz

1 T+ z [1 cos(co T—)]
m cga Q)p

c4 Vz A 2
dt'g 2 (~c ~pb }Xb+~pbX ~c "y (40)

for 0&x &xb. From Eq. (30), the axial motion is free-
streaming with u,

' =u, and z'=z+u, T Makin. g use of
Eqs. (30) and (39), the (x',y') motion is determined from

c cocPy+ x —xM+ z sin(cO, T) . (48)
Q)p SPY Q)~

J

For future purposes of evaluating the BS/Bp„ term in
the eigenvalue equation (38), we make use of Eqs. (45) and
(48) to calculate Bx'/BP„and By'/BPy. This gives

de
t', =~cVx (41)

Bx' coc
2 [cos(co„T)—1],

BPy m CO„
(49)

vy
—co,x'= vy —co,x =Py /m =const, (42)

where use has been made of the boundary conditions
uy(t'=t)=uy and x'(I'=t)=x. Eliminating u„' in Eq.
(40) by means of Eq. (42), we obtain the oscillator equa-
tion for x'(t')

within the electron layer (0&x &xb). Equation (41) can
be integrated to give

2ay' CO pb COc

3 sin(co„T) .
BPy mcoc mcoc

Moreover, for electrons with Py =0, the orbits (xp, u„'p)
and (yp vyp) can be expressed as

Vx
Xp =XM + (X —XM )Gos(COc T) + Sln(CO& T),

2
X + (COc —

COpb
)X =

2 (COc —
COpy )Xb —COc(uy COcX)—

(43} and

U»p =U»COS(COcT) —COc(X —XM )Sln(COcT),
(51)

Equation (43) is solved subject to the boundary conditions
x'(t'=t)=x and u»(t'=t)=(dx'/dt'), , =u„. Defining
the betatron frequency co„(including self-field effects) by

~cVx
y p

——y +co, u„/co„+co,xM T 2co—s(co„T)
CO~

2 2 A2
Q)p =COc —Q) pb

we obtain

cPyx'=x+ x —xM+ 2 [cos(co„T)—1]
m cop

(44)
COc+ (x —xM }sin(co,T),
67~

~cVx
uyp ——CO, xM+cO, (x —xM )cos(cO„T)+ sin(cO„T) .

CO~

Vx+ S111(COc T), (45) From Eq. (52), we note that the average (nonoscillatory)
drift velocity in the y direction is given by
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Vd =coqxM =coqxb /2

COc eEc
)me„

(53)

IV. ELECTROSTATIC EIGENVALUE EQUATION

A. Exact eigenvalue equation

where use has been made of Eq. (22) to eliminate xb
That is, the average y velocity is v~0 ——Vd, where the
overbar denotes average over the m„oscillations in
Eq. (52). Similarly, y p =y +Co, u„/Co,+ Vdr, and
(x p, U

'
p) =(xM, O). Note that the average orbit for xp os-

cillates about xM ——xb/2, which is the midway point be-
tween the cathode (x =0) and the boundary of the elec-
tron layer (x =xb).

In this section, we simplify the electrostatic eigenvalue
equation (38) for the choice of equilibrium distribution
function in Eq. (14) and rectangular density profile in Eq.
(19) and Fig. 2. The corresponding particle trajectories
(x',y'), required in evaluating the orbit integral I in Eq.
(36), are defined in Eqs. (45) and (48). Substituting Eq.
(14) into Eq. (38) and integrating over p~, Poisson's equa-
tion can be expressed as

5/k(x) k5$k—(x)=4ne f dp„dp,
X 2Am

5(Hp)ik
Bp

a—[i(co kco —x)Ip+5pk(x) j 5(Hp)
BHo

(54)

where Hp=[H]p p=(p&+p& )/2m —pip(x)/2m, the effective perpendicular momentum pip(x) is defined in Eq. (16),
and Ip and (c)I/c)pz )p are defined by

Ip ——[I]t p ——I dt'exp[ i cow+—ik(yp —y)]5/k(xp )

and

"c)I

C)Py

BI'
dt'exp[ icos+—ik(yp —y)] ik

a

2
CO py +c

,r+, »n(~„r) 5y, (x p )
mes, m co„

COc+ 2 [«s(co„r)—1] 5ctpk(x p )
m Qj~ C)XO

In Eqs. (55) and (56), (xp,yp) are the P~ =0 trajectories
defined in Eqs. (51) and (52), and use has been made of
Eqs. (49) and (50) in deriving Eq. (S6).

The eigenvalue equation (54) and supporting definitions
in Eqs. (51), (52), (55), and (56) constitute an exact
description of the linear stability properties for electro-
static perturbations about the self-consistent kinetic
equilibrium in Eq. (14). Equation (54) can, in principle,
be simplified and analyzed in several parameter regimes
of physical interest.

B. Approximate eigenvalue equation for co =k Vq

For present purposes, we assume co~b &co, and co„~O
and consider perturbations with frequency co and wave
number k satisfying'7

kxM (& 1 (S8)

and that the x variation of the eigenfunction 5/k(x) is
sufficiently slow that

~

XMc)/c)x
~

& 1. In the present
analysis, we adopt a model in which all oscillatory contri-
bution to xp and yp in Eqs. (55) 'and (56) are neglected
[see Eqs. (51) and (52)]. These terms generally give rise to
harmonic contributions to the exponent in the orbit in-
tegral (55) of the form co —k Vd nco„for—n&0, as well as
a modification of the amplitude of the n =0 term in the
orbit integral proportional to (co —kVd ) . Specifically, in
order to investigate the qualitative features of stability
properties for

~

co —kVq
~

&&co„and kx& &&1, the model
approximates yp =y+ Vgr xp =xM 5/k(xp) =5/k(xM),
and

(
co —kVd

~
(&co„. (57) (c)/c)xp )5/k(xp ) = [c)5/k(x)/c)x]„

That is, the wave perturbation has phase velocity co/k
nearly synchronous with the average particle drift velocity
Vd in the y direction. Moreover, the Doppler-shifted fre-
quency co —kVd is far removed from resonance with the
betatron frequency co„defined in Eq. (44). In addition, it
is assumed that the perturbation wavelength in the y
direction is long with'

in Eqs. (55) and (56). This gives

. 54k(xM )Ip —— dt 'exp( ico~+ ik Vd ~)5/k—(XM )=i—00 co —k Vd

and

(59)
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. kpdt'exp( i~—~+~'kVd~) —i ~5/k(xM )
00 m

toe ()
54k(xM }

m tv

ikp 50k(xM )

2
—l

(co —k Vd )

c
54'km~„+—k Vd BX

(60)

In Eq. (60), we have introduced the quantity p defined by

~cp=
v

(61)

Note that p is a measure of the strength of the equilibrium self-electric field. For
cozen «co„it follows that

p=cozklco, «1, corresponding to weak self-electric field. On the other hand, for cori, /co, =0.5 (say), it follows that
p =1, and the self-electric field is much stronger than for the case of a tenuous electron layer.

Substituting the approximate expressions (59) and (60) into Eq. (54), the eigenvalue equation becomes

a' -,- 2, 54k«M) ~, k
5/k(x) k5p—k(x) =r3~b k IJ, , +

x (m —kVd) u co —Vg x

s—kN&X dpx diaz 5
Co p$

—— 5/k(xM)+5/k(x) f 5(HO) .
co —k Vd 77 0

(62)

Paralleling the evaluation of the equilibrium density pro-
file nb(x) in Sec. IIC, it is straightforward to show that
the contribution in Eq. (62) proportional to
(2mm} ' fdp„dp,5(Ho) corresponds to a body-charge per-
turbation extending from x =0 to x =xb, whereas the
term proportional to (2n. ) ' fdp„dp,(d/dHO)5(HO) corre-
sponds to a surface-charge perturbation at x =xb. Mak-
ing use of 2mHO ——pi —pro(x), where pi ——p„+p, and
pi 0(x) =m co„x(xk —x), we obtain

dp 4' 5 i " 2

27r BHp 0 Qp i
5(HO)=2m f dpi 5(pi —pip)

2
5(x xb) . —

COpXb
(64)

for x &0. Here, U(xb —x) is the Heaviside step function
defined by U(xs —x)=+1 for x &xk and U(xb —x)=0
for x & xb. Similarly, it is readily shown that

QPZdJ Zf, 5(Ho)= f dpi5(pi —pip)
= U(xb —x) (63)

Substituting Eqs. (63) and (64) into Eq. (62), the eigen-
value equation becomes (for 0 &x & d)

r

54k(xM ) ~. k 5
254k(x) k'54k(x)=MP'—b k2IP 2+ 2 kv 8

54k
(co —k Vd ) co„~ U(xk —x)

P A keg, (x —xM )+ [50k(x) 54k(xM }1+- 5/k(xM ) 5(x —xb ),
+M cg —k Vd

(65)

where use has been made of xM ——xk/2, p =~~b/~. &
and Vd =~~xM.

The simplified eigenvalue equation (65) can be solved exactly (Sec. IVC) for the eigenfuriction 5/k(x) and complex
eigenfrequency co. Keep in mind that Eq. (65) is valid for

I
~—kVd

l
&&co, and kxb &&1 [Eqs. (57) and (58)].

C. Solution to approximate eigenvalue equation

Within the electron layer (0 &x &xb}, only the body-charge perturbation proportional to U(xi, —x) contributes on the
right-hand side of Eq. (65). On the other hand, in the region xb &x & d, Eq. (65) reduces to the vacuum eigenvalue equa-
tion (8 /Bx )5/k —k 5/k=0. Therefore, the solution to Eq. (65) that satisfies 5/k(x =0)=0=5/k(x =d) can be ex-
pressed as
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A sinh(kx)+8[cosh(kx) —1], 0&x &xb

5/k(x) = [A sinh(kxb)+8[cosh(kxb) —1]
sinh[k(x —d)] xb &x &d

sinh k xi, —d

(66)

where we have enforced continuity of 5/k(x) at x =xb. Substituting Eq. (66) into Eq. (65), the coefficient 8 is given by

~pb z 54'k(xM) ~c k 5
50k

(~—kVd )2 ~„co—kVd Bx
(67)

Moreover, integrating Eq. (65) across the surface of the electron layer at x =xb, we find

lim 5/k — 5/k
6~0+ BX Qb +p BX

p kVd
[50k(xb) 50k—(xM)]+ kV 50k«M)

XM co —k Vd
(68)

where use has been made of coc(xb —xM ) =cocxM ——Vd. Substituting Eq. (66) into Eq. (68) gives

cosh[k (xb —d)]
k [A cosh(kxs )+8 sinh(kxb )]—k [A sinh(kxb )+8[cosh(kxi, ) —1]J Slllll k Xb —d

P, A A kVd
[50k(xb ) 50k(xM)]+ 50k(xM )

u —kVd

which relates the discontinuity in perturbed electric field at x =xb to the perturbed surface-charge density.
From Eq. (66), we find that 5/k(XM), (85/k/Bx)„„,and 5/k(xb) can be expressed in terms of A, 8, kxb, and kxM.

5/k(xM ) =A sinh(kxM )+8[cosh(kxM ) —1], (70)

and

50k
x =xM

=kA cosh(kxM ) +kB sinh(kxM ), (71)

5/k(xb ) =A sinh(kxb )+8[cosh(kxs ) —1] .

Substituting Eqs. (70) and (71) into the definition of 8 in Eq. (67) gives

Q) pb ~c
A p 2

sinh(kxM )+p cosh(kxM)
(co —kV~) co —k V~

(72)

CO pb+B p [cosh(kxM )—1]—1+p
(co —k Vd )

sinh(kxM ) =0, (73)
co —k Vd

which relates the coefficients A and B. The second independent relation between A and 8 is obtained by substituting
Eqs. (70) and (72) on the right-hand side of Eq. (69). This gives

co —2k Vd
A kxMcosh(kxs) —sinh(kxb) [kxMcoth[k (xb —d)] —pI —p sinh(kxM )

co —k Vd

cu —2k Vd+8 kxMslnh( kxb ) —[cosll(kxb ) —1][kxM cotll[k (xb —d) ]—p I
—jl [cosh(kxM ) —1] =0 . (74)

co —k Vd

The dispersion relation that determines the complex eigenfrequency co in terms of equilibrium parameters and the wave
number k is obtained by setting the determinant of the coefficients of A and 8 in Eqs. (73) and (74) equal to zero.

D. Analysis of electrostatic dispersion relation

We expand the coefficients of A and 8 in Eqs. (73) and (74) for kxb « 1 [Eq. (58)]. Retaining leading-order terms and
setting the determinant of the coefficients of A and 8 in Eqs. (73) and (74) equal to zero gives
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kV„cop'b kV~
p 1+

co —k Vg co —k Vg

3 kVg1+ + —p+~
d —xb 2 2 cu —kV~

kVg
1 —p

co —k Vg

~2 2 2~ copb k Vg

co, (co —k Vg )

d kVg
+p+p6 —Xb co —k Vg

(75)

a) —k Vg

kVg
(76)

where use has been made of xb ——2xM and Vq co,x——M.
Introducing the dimensionless frequency Q defined by

lmco =k V~ g+p

X —(g+p) 1+1

2 1+p 1+
4

2 1/2

the dispersion relation (75) can be expressed in the
equivalent form

+p Q +2p(1+ —,
' p)Q8 —Xb

(83)

Eliminating p in favor of cozb/co„and introducing the
parameter h defined by

1/2

1 p+— 1+p+
2 1+p 4 —Xb

=0, (77)

( 3 —co &b /co~ ) co &b /co~'.+
4(1 —co zb /co, ) 8(1 r3&b—/co, )

where use has been made of
co zb /co, =p/(1+ p).

Equation (77) is the final dispersion relation within the
context of the present simplified model based on the as-
sumptions in Eqs. (57) and (58). As such, no a priori ap-
proximation has been made that the electron density is
low (p « 1). Indeed, Eq. (77) is valid even if the parame-
ter p=cozb/co„ is of order unity or larger, as long as the
betatron frequency ~„doesnot become so small that the
inequality in Eq. (57) is violated.

The quadratic dispersion relation (77) can be solved ex-
actly for the complex normalized eigenfrequency
Q=(co —kV~)/kVq. Introducing the geometric factor

(78)

the necessary and sufficient condition for instability
(Imago & 0) obtained from Eq. (77) can be expressed as

1 (1+p+g)(p+g) (1 ( )2 (79)(1+p)
Equivalently, since g =d/(d —xb ) & 1, Eq. (79) gives

1 +co pb /co q

2(1 co~b/co—, )
(84)

the instability criterion in Eq. (80) can be expressed in the
equivalent form

xb h —1

d h

Stability boundaries in the parameter space (p,g) are il-
lustrated in Fig. 3. The solid curve corresponds to the
stability boundary (Imago =0) obtained from Eq. (80),
whereas the dashed curve corresponds to the stability
boundary obtained from the approximate criterion in Eq.
(81). The region of (p,g) parameter space aboue the curve
corresponds to 'instability (Imago & 0), whereas the region of
parameter space below the curve corresponds to stable os-
cillations (Imago=0). As expected, the approximate insta-
bility criterion in Eq. (81) is quite accurate for moderately

g & [—,(3+2p) + —,p (1+p))' ' ——,
' (1+2p) (80)

as the necessary and sufficient condition for instability.
For the ease of moderately low electron density satisfying
p & 1, Eq. (80) can be approximated by

83 2
p'(1+p) (81)
8 3+2p

When the inequality in Eq. (80) is satisfied, the real oscil-
lation frequency (Reco) and growth rate (Imago) determined
from Eq. (77) are given by (for kVq &0)

l.5 —.

I-
0 2.5

and

Raco —k Vg = —k Vg
p 1+(g+p) 4

(82)

FKx. 3. Stability boundary in (p,g) parameter space obtained
from Eq. (80) (solid curve) and from Eq. (81) (dashed curve).
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xb

d

0,5—
UN

To summarize, within the context of the assumptions of
low frequency [ ~

co —kVd
~

&&co„ in Eq. (57)] and long
wavelength [kxM «1 in Eq. (58)], the kinetic stability
analysis in Secs. III and IV leads to the approximate
dispersion relation (77) for the complex eigenfrequency co.
The necessary and sufficient condition for instability
(Imago &0) is given in Eq. (80) and is illustrated in Figs. 3
and 4. It is clear that the maximum growth rate for insta-
bility can be substantial. For example, for the parameters
in Fig. 5, (Imago), „=0.5k Vd ——(0.5)(kxM )co„where
kxM « 1 has been assumed in Eq. (58).

0 0.5
GJ /4J

pb c

FIG. 4. Stability boundary in (co pb/N xb/d) parameter
space obtained from Eq. (85).

low electron density (p & 1). Shown in Fi~. 4 is the stabili-
ty boundary in the parameter space (r3&b/co„xb/d) ob-
tained from Eq. (85). We remind the reader that the sta-
bility analysis in Sec. IV has been restricted to low-
frequency perturbations satisfying

~

co —k Vd
~

&&co„
=(co, cozb—)' [Eq. (57)]. In this regard, the stability
boundary obtained from Eq. (85) and illustrated in Fig. 4
is not valid as cozb/co, approaches unity. '

The normalized growth rate (Imago)/kVd and real oscil-
lation frequency (Reco —kVd)/kVd have been obtained
from Eq. (77) for a broad range of system parameters p
and g. Shown in Fig. 5 are plots of the growth rate
(dashed curve) and real oscillation frequency (solid curve)
versus p for the case d =2xb and g =2. Evidently, for
the choice of parameters in Fig. 5, the growth rate as-
sumes a maximum value of (Imago), „=0;5k V~ for p=2. 3.
Note also from Eq. (83) and Fig. 5 that (Imago)/kV~ in-
creases linearly with p for small JM, i.e.,

V. CONCLUSIONS

In this paper, we have made use of the linearized
Vlasov-Poisson equations to investigate the electrostatic
stability properties of nonrelativistic nonneutral electron
flow in a planar diode (Secs. II—IV). The detailed stabili-
ty analysis has been carried out for fiute perturbations
(8/Bz =0) about the choice of equilibrium distribution
function fb(H, P~)=(nb/2irm)5(H)5(P„) in Eq (14.) with
corresponding self-consistent, rectangular density profile
nb(x) in Eq. (19) and parabolic temperature profile
Tib(x) in Eq. (25) (see also Fig. 2). For low-frequency
[Eq. (57)], long-wavelength [Eq. (58)] perturbations, the
eigenvalue equation is approximated by Eq. (65), and the
corresponding dispersion relation for the complex eigen-
frequency co is given by Eq. (77). The detailed analysis of
Eq. (77) in Sec. IV D shows that instability exists
(Imago &0) for the region of (p,g) parameter space defined
in Eq. (80) and illustrated in Fig. 3. Moreover, the
analysis indicates that the maximum growth rate of the
instability can be substantial, depending on the values of p
and g.

Finally, the analysis in Sec. IVD emphasizes stability
behavior in a parameter regime corresponding to instabili-
ty (Imago&0). A further important property readily fol-
lows from the analysis of the dispersion relation (77).
Namely, the inequality

for p « 1. As expected from Fig. 3, it is found that insta-
bility ceases (Imago=0) once p exceeds some critical value
(Fig. 5).

P &PM(g)

is a necessary and sufficient condition for stability, where
pM(g) is the solution to [see Eq. (83)]

0.6
(PM+g)(1+PM+g) =2(1+PM ) 1+ Pm

4

2

(88)

04
3
E

0.2

I

3
0)

That is, Eq. (77) supports only purely oscillatory solutions
(Imago =0) when the inequality in Eq. (87) is satisfied (Fig.
3). Making use of p=cozb/(co, cozb), Eq. (—87) can be ex
pressed in the equivalent form

2.5
0

5

A. 2
CO&y pM

COc ~ + (89)

FIG. 5. Plot of normalized growth rate and real oscillation
frequency vs p obtained from Eq. (77) for d =2xb and g =2.

That is, at sufficiently high density, the instability
described in Sec. IVD is completely stabilized (Fig. 4).
Since pM/( I+@M ) & 1, we note from Eq. (89) that stabili-



32 KINETIC STABILITY PROPERTIES OF NONRELATIVISTIC. . . 3565

zation occurs at densities below the condition for Bril-
louin flow. For example, for d =2xb and g =2, Eq. (89)
gives to&b/to, )0.8 as the condition for stability. This
may have important implications for stable diode opera-
tion. In particular, if the density buildup of the electron
layer is such that rozs/to, exceeds pM/(1+@M) on a suff-
icientl fast time scale, then the instability discussed in

Sec. IVD need not have a deleterious effect on electron
layer stability and confinement.
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