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The linearized Vlasov-Poisson equations are used to investigate the electrostatic stability proper-
ties of nonrelativistic non-neutral electron flow in a planar diode with cathode located at x =0 and
anode at x =d. The electron layer is immersed in a uniform applied magnetic field By€;, and the
equilibrium flow velocity Vf,,(x) is in the y direction. Stability properties are calculated for pertur-
bations about the choice of self-consistent Vlasov equilibrium f§(H,P,)=(R}/2mm)8(H)8(P,),
which gives an equilibrium with uniform electron density (#, =const) extending from the cathode
(x =0) to the outer edge of the electron layer (x =x;). Assuming flute perturbations (3/3z=0) of
the form 8¢(x,y,t) =8¢ (x)exp(iky —iwt), the eigenvalue equation for 8¢y (x) is simplified and
solved analytically for long-wavelength, low-frequency perturbations satisfying kx, <<1 and
lo—kV;|?<< wﬁswf—a’ipb. This gives a quadratic dispersion relation for the complex oscillation
frequency . Defining =&, /w? and g =d /(d —x,), it is shown that the necessary and sufficient
condition for instability (Ime > 0) is given by (1+u+g)(u+g)>2(14u)(1+u/4)% It is found that
the maximum growth rate in the unstable region can be substantial. For example, for d =2x, and
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g =2, the maximum growth rate is (IM® )yax=~0.25(kx} )., which occurs for pu~2.3.

I. INTRODUCTION AND SUMMARY

There is considerable interest in the equilibrium and
stability properties of sheared, non-neutral electron flow
in cylindrical*?> and planar®~7 models of high-voltage
diodes with applications to the generation of intense
charged-particle beams for inertial confinement fusion.®’
These analyses! ™’ have represented major extensions of
earlier work®~!® to include the important influence of
cylindrical,l’2 nonlinear,? relativistic,>*~7 electromagnet-

ic,*~7 and kinetic>® effects on equilibrium and stability
behavior. The majority of these studies, however, have
been based on a macroscopic cold-fluid description of the
electron flow. While such models provide important in-
sights into gross stability properties, they are not readily
generalized to incorporate the important influence of ki-
netic effects that depend on the detailed features of the
electron distribution function fu(x,p,#). The present
analysis makes use of the linearized Vlasov-Poisson equa-
tions to investigate electrostatic stability properties of
nonrelativistic electron flow in a planar diode with uni-
form applied magnetic field Bg€,. Such a model of
course incorporates kinetic and finite-temperature effects
in a natural manner. Moreover, many of the theoretical
techniques used here have been developed in earlier stud-
ies!*~%0 of the kinetic equilibrium and stability properties
of non-neutral plasmas, appropriately extended to planar
diode geometry.
In the present analysis, we make use of the linearized
Vlasov-Poisson equations to investigate the electrostatic
stability properties of nonrelativistic non-neutral electron
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flow in a planar diode. As illustrated in Fig. 1, the
cathode is located at x =0 and the anode is located at
x =d. Moreover, the electron layer is immersed in a uni-
form applied magnetic field By€,, and the equilibrium
electron flow velocity Vy,(x) is in the y direction. The
basic -assumptions and Kkinetic equilibrium model are
described in Sec. II, and detailed equilibrium properties
are calculated for the specific choice of self-consistent
Vlasov  equilibrium  f5(H,P,)=(Ry /2mm)3(H)3(P,).
Here, H=(2m)‘1(p,f+p,?+p,2)—e¢o(x) is the electron
energy, P, =p, —ma.x is the canonical momentum in the
y direction, ¢o(x) is the equilibrium electrostatic potential,
and w,=eBy/mc is the electron cyclotron frequency.
This choice of ff,’(H,Py) leads to a uniform density pro-
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FIG. 1. Planar diode configuration and Cartesian coordinate
system.
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file ng(x)=A,=const over the interval 0<x <x,
= —2¢eE,/mwo;, [Eq. (19) and Fig. 2], and a parabolic tem-
perature profile T),(x) that assumes its maximum value
f‘lb=(m /8)wixf at x =xp =x, /2 [Eq. (25) and Fig. 2].
Here, E,=—(3¢¢/0x),—o is the electric field at the
cathode; w?=w? —cof,b (assumed positive) is the square of
the frequency of oscillations in the (x',y’) orbits including
the influence of the self-electrlc field EQ(x)e, and applied
magnetic field By€,; and & pb _41rn,,e2/m is the plasma
frequency squared.

In Sec. III, the linearized Vlasov-Poisson equations are
used to investigate electrostatic stability properties for
flute perturbations (3/3z =0) about the general class of
self-consistent planar Vlasov equilibria f3(H, P,). This
leads to the eigenyalue equation for the perturbed poten-
tial amplitude 8¢k(x) given in Eq. (38). The particle
trajectories (x’,y’) are then calculated for the spec1ﬁc
choice of equilibrium distribution function f£(H, pPy)
=(fy /2rm)8(H)8(P,) in Eq. (14) and the correspondmg
rectangular density profﬂe in Eq. (19). For this choice of
fb, the exact eigenvalue equation (38) reduces to Eq. (54).

In Sec. IV, the eigenvalue equation (54) is simplified
and solved analytically for Ilow-frequency, long-
wavelength perturbations satisfying |w —kV; | <<w,, and
kxp <<1. Here Vy= Vf,’b(xM)=wcxM, where x;;=x;/2.
Since w2 =w?— c’o‘,z,,, >0 is assumed, the present stability
analysm is restricted to densities below Brillouin flow (i.e.,
o ,, <w?). We adopt a model in which all oscillatory con-
tnbutlons to the orbits x¢ and yg in Egs. (55) and (56) are
neglected [see Egs. (51) and (52)]. These terms generally
give rise to harmonic contributions to the exponent in the
orbit integral (55) of the form w—kV,; —nw, for ns£0, as
well as a modification of the amplitude of the n =0 term
in the orbit integral proportional to (w—kV;)~!. Specifi-
cally, in order to investigate the qualitative features of sta-
bility properties for |w—kV; | <<w, and kxp <<1, the
model approximates yo=y +V;7, Xo=Xp, 8¢k(x0)
=8¢y (xy), and (3/3x )8y (xp)=[08¢x(x)/dx]y
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FIG. 2. Equilibrium density profile n2(x) [Eq. (19)] and tem-
perature profile T9,(x) [Eq. (25)] for the choice of distribution
function f3 in Eq. (14).
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Egs. (55) and (56). This gives the approximate eigenvalue
equation (65). In Sec. IV C, the eigenvalue equation (65) is
solved exactly for long-wavelength perturbations with
kxpr << 1, and it is shown that the resulting dispersion re-
lation for the complex eigenfrequency w is given by [Eq.
(77)]
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where the geometric factor g is defined by g =d /(d —x,).
The necessary and sufficient condition for instability
(Imw > 0) is given by

1 (0+pu+g)u+g)
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Moreover, in the unstable region of (u,g) parameter space,
the growth rate Imw can be expressed as [Eq. (83)]
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where kV; >0 is assumed. It is found that the maximum
growth rate for the instability can be substantial. For ex-
ample, for d =2x, and g =2, maximum growth occurs
for u~2.3, with (Im@) 5., ~0.5kV;=0.5(kxp )0,

Finally, the present analysis has important implications
for stable diode operation, at least with regard to the low-
frequency, long-wavelength flute perturbations considered
here. These implications are discussed in Sec. V.

II. ASSUMPTIONS AND KINETIC
EQUILIBRIUM MODEL

A. Assumptions

In the present analysis we make use of the Vlasov-
Poisson equations to investigate the electrostatic stability
properties of nonrelativistic non-neutral electron flow in a
planar diode. The diode configuration is illustrated in
Fig. 1 where the cathode is located at x =0 and the anode
at x =d. The non-neutral electron plasma is immersed in
a uniform applied magnetic field By€,, and the average
electron flow is in the y direction. To make the analysis
tractable, the following simplifying assumptions are
made.

(a) Perturbations are about a quasisteady equilibrium
(3/3t =0) with no spatial variation in the y and z direc-
tions, i.e., 3/3y =0=3/0z. However, equilibrium quanti-
ties are allowed to vary in the x direction with d/3x40.

(b) We denote the equ111br1um electric field by
Eo(x)=E2(x)e,, where EJ(x)= —3¢o(x)/dx and do(x) is
the electrostatic potential. The boundary conditions on
¢o(x) are

¢o(x =0)=0 and ¢o(x =d)=V, (1)

where V is the applied voltage. In general, it is assumed
that the equilibrium electric field at the cathode,
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3o |
x x=o’ )

E =— (2)
is nonzero. The hmmng case E,=0 corresponds to
space-charge-limited flow.*¢
(¢) For nonrelativistic electron flow, with eV /mc? <<1,
the equlhbnum electron current in the y direction,
f d’pu, fe(x,p), is sufficiently low that the induced
ax1a1 self-magnetlc field BY,(x)e, is negligibly small in

comparison with the externally applied magnetic field
B8, 2h22

0€z.

(d) For present purposes, perturbed quantities are as-
sumed to be independent of z(d/3z=0) and spatially
periodic in the y direction with periodicity length L. Per-
turbed quantities 8v¥(x,y,t) are expressed as

89(x,y, 1) =89 |
= 8% (x)expliky —iwt) , . (3)
k

x,y)exp( —iwt)

where Imw>0 corresponds to instability. Here,
k =2mn/L, n is an integer, and the summation zk ex-
tends from #n =—o0 to n =+ . The boundary condi-
tions on the perturbed electrostatic potential at the
cathode and the anode are

8b1(x =0)=0=5¢; (x =d) , @

which corresponds = to zero tangential electric field,
8E, = —(3/0y)8¢=0 at x =0 and at x =d.

B. General equilibrium properties

Any distribution function fg(x,p) that is a function
only of the single-particle constants of the motion in the
equilibrium field configuration is a solution to the
steady-state (/3¢ =0) Vlasov  equation.!® For
Eo(x)=—€,0d0(x)/0x and By(x)=By€,, the single-
particle constants of the motion consistent with the as-

sumptions in Sec. I A are the axial momentum p, =muv,,
the canonical momentum in the y direction
Py=p,—mw.x , (5)
and the particle energy
2
H=2_ _ )
om edo(x) / (6)

Here, — e is the electron charge, m is the electron mass,

w.=eBy/mc is the electron cyclotron fre{iluency, p=mv
is the mechanical momentum, and p*=p; +py +pz For
present purposes, we consider the class of self-consistent
Vlasov equilibria!®!?

f5(x,p)=f5(H,P,) @

that depend explicitly on H and P, but not on axial
momentum p,.

For specified f£(H, Py), the equilibrium electron density
ng(x) is defined by
n§x)= [ dp f(H,P,), (8)

and the electrostatic potential @g(x) is determined self-
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consistently from Poisson’s equation

%2-¢0(x)=41ren£(x)

=4me [ d'p fY(H,P,) . O)

Since H depends on ¢y(x), it is evident that Eq. (9) is gen-
erally a nonlinear equation for the electrostatic potential
do(x). Making use of the boundary conditions in Egs. (1)
and (2), Poisson’s equation (9) can be integrated to give

golx)=—Ex+ame ["dx" [ dx'nix) (10

in the diode region 0 <x <d. Enforcing ¢o(x =d)=V, the
applied voltage V is related to E and the equilibrium
density profile nJ(x) by

V=—E.d+ame [ dx" [ dxndx) . (an

For specified f7 (H,P,), other equilibrium properties are
also readily calculated. For example, since H is an even
function of p, and p,, the average flow velocities in the x
and z directions are trivially zero, i.e.,

()= [dpusy/ [ & =0
(u,)= fd3pv,f£/fd3pf,,=o

On the other hand, since f,?(H,Py) depends explicitly on
P, the average flow velocity in the y direction is general-
ly nonzero. Denoting

Va=(o,) = [ dpus ) [ s,

the equilibrium flux of particles in the y direction is given
by

nfx)WV(x)= [ d’pu,f3(H,P,) . (12)

In a similar manner we can define an effective tempera-
ture T9,(x) perpendicular to the equilibrium flow direc-
tion by

x+ z
2T = [ d*p? Bt oy p). (13)

C. Equilibrium model

For purposes of the stability analysis in Secs. III and
IV, we consider electrostatic perturbations about the
specific choice of equilibrium distribution function!”-1%:20

FO(x,p)= ;T—bmS(H)B(Py) ) (14)

where P,=p, —mow.x, H= 2/2m —edy(x), and 7, is a
constant. The choice of f, in Eq. (14) corresponds to
emission of electrons from the cathode with zero kinetic
energy, ie., (2m)~YpZ+p}+p2)=0 at x =0. It neces-
sarily follows that p,, p,, and p, are separately equal to
zero at the cathode (x =0). Substituting Eq. (14) into Eq.
(8) and integrating over p,, the electron density profile
nd(x) can be expressed as

ngx)=2fy [ dpip,8(p} —plo(x)), (15)
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where p? =p2+p2, and plo(x)=[2medo(x)—pilp, —o is
defined by
pfo(x)=2me¢0(x)—m2w£x2 (16)

Carrying out the integration over p, in Eq. (15), we obtain
the rectangular density profile (Fig. 2)

Py 2
7, =const, (x)>0

nf,’(x)= b ) Piotx)2 (17)
0, pio(x)<O0.

That is, the boundary (x =xp) of the electron layer is
determined from p?,(x,)=0, or equivalently,

—edo(xp)+Tmaxt=0. (18)

Note that Eq. ( corresgonds to the envelope of turning
points for whlch p2+4p2=0. The equilibrium density
profile in Eq. (17) can be expressed in the equivalent form
(Fig. 2)

0 fiy =const, 0<x <x,
(x)= (19)

0, xp<x<d

where x; is determined self-consistently from Eq. (18).

Substituting Eq. (19) into the equilibrium Poisson equa-
tion (9), and enforcing the boundary conditions in Egs. (1)
and (2), we obtain

—E x +2mfizex?, 0<x <x,

dolx)= [ -
° V4 (4nftyexy, —E, )N(x —d), x, <x <d (20)

where E,=—0¢¢/0x | x—o. Note from Eq. (20) that
3¢/3dx is continuous at x =x,. The remaining boundary
condition, that the potential ¢y(x) is also continuous at
x =Xp, determines the voltage V self-consistently in terms
of other system parameters. This gives

V=—E.d+4mefyxy(d —x,/2) . 1)

Substituting Eq. (20) into Eq. (18), the location of the
layer boundary (x;) is determined from

. %m(wf——@f,,, xZ=—eE,x; , (22)
where &}, =4mAye?/m. The solution x, =0 to Eq. (22)
corresponds to the location of the cathode (x =0). The
remaining solution for x;, corresponds to the location of
the outer edge of the electron layer in Fig. 2, i.e.,

—2eE./m 23)
Xp=——
b a)2 A:b

For present purposes, we assume E <0 and densities
below or at Brillouin flow, i.e., & pb <a)§ This assures
xp >0 in Eq. (23) and Fig. 2. The condition Xp <d im-
poses the further restrlctlon —2eE /m < (0l —d2 pb)d.
For specified E, <0 and & p,, <w?, the boundary location
X, can be calculated self-consistently from Eq. (23). Note
from Eq (23) that the limiting case of Brillouin flow
(B pp /1) corresponds to E,—0 and w%—a);b —0

3557

with the ratio E, /(«w? —c’z)ﬁb) remaining finite.

For the choice of distribution function in Eq. (14), the
average flow velocity in the y direction defined in Eq. (12)
is readily shown to be

V,?b(x) =w.X (24)

in the region O0<x <x, where the electron density is
nonzero. On the other hand, from Eq (20), the equlllbrl-
um Ey X B, velocity, VE(x)——cE (x)/By, is glven by
Ve(x)=—cE, /Bo—HaJpl,/a)c )x. The fact that Vyb(x)
and Vg(x) are genera]ly different is a reflection that the
dlstnbutlon function f5(x,p) in Eq. (14) has nonzero tem-
perature T9,(x) and there is a corresponding pressure-
gradient force on an electron fluid element Making use
of Egs. (13), (14), and (23), we find that T9,(x) can be ex-
pressed as

(/\2 2

O pp — )x2

T (x)=—eE,x +— )

=—'§—(w§—cﬁgb)(xx,,-x2)
L 2
m A b Xb
=7 (@i —0p) 7]“"‘7} 23
for 0<x <xp. Note from Eq. (25) that

T (x =0)=0=TY%(x x,,) and that le(x) assumes its

maximum value

x =xp=x,/2 (Fig. 2).
As a further point, it is readily verified that the equili-

brium profiles in Egs. (19), (20), (24), and (25) are con-

sistent with equilibrium force balance on an electron fluid

element, i.e.,

le—(m/S)(a)c——wpb)xb, at

0

| 2
)T (x)]= —nl(x)e ,?(x)+—cl”—Bo . (26)

a_[nb

as expected.

In conclusion, an attractive feature of the choice of
equilibrium distribution function fg(x,p) in Eq. (14) is
that the corresponding (self-consistent) density profile has
the simple rectangular form in Eq. (19) and that other .
equilibrium properties are equally tractable analytically
[see Egs. (20), (24), and (25)]. Although Eq. (14) neces-
sarily implies that p, =p,=p,=0 at the cathode (x =0),
we note that p2+p?=p?o(x) is generally nonzero except
at x =0 and x =x;. The exceptlon 1s the limit of Bril-
loum flow (E —0 and @& ,,/cuc—>1) where
plo(x)=0=2mT?%(x), and the electron flow is laminar
over the entire interval 0 <x <x,.

As is often the case, depending on the application, there
is some degree of latitude in the specific choice of Vlasov
equilibrium f£(x,p). For example, an alternate choice of
equilibrium  distribution function consistent with
Px=py,=p,=0 at the cathode (x=0) would be
SB(x,p)=const X 8(H)8(P,)8(p,). For this choice of dis-
tribution function, however, the correspondmg self-
consistent density profile ng(x)= f dp f(x,p) is singu-
lar both at x=0 and at x=x; [where
plolxp)=2med(x,) —m2wixZ=0], and the express1on
for n(x) no longer has the simple rectangular form in
Eq. (19).
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III. ELECTROSTATIC STABILITY PROPERTIES

A. Linearized Vlasov-Poisson equations

Making use of the assumptions outlined in Sec. I A, we
investigate linear stability properties for electrostatic per-
turbations about the class of self-consistent Vlasov equili-
bria fy(x,p)=f5(H,P,). For two-dimensional spatial
variations, the perturbed distribution function and electro-
static potential are expressed as'®

8fp(x,p,1)

8¢(x,t)=8$(x,y)exp(—iwt) ,

where Imow >0 corresponds to instability. The perturbed
electric field is given by SE(x,?)= —V&¢(x,?), and the po-
tential amplitude 8¢(x y) satisfies the llnearlzed Poisson
equation

32 32
e tay

=8fb(x;y,P)CXp(——iwt) . )
27

8(x,y)=4me [ d’p 8fy(x.y,p) . (28)

Making use of the method of characteristics, we integrate
the linearized Vlasov equation from t'=—c to t'=t.
Neglecting initial perturbations, the formal solution for

A
87, can be expressed as!’

Sfb(x,y,p)ze f:w dt'exp[ —iw(t'—1)]

x 8E(x’)-

9 .o
- f5(x,p) ] ’
ap (x',p’)
(29)

where

875 (x,y,p)= —e—— f dt'exp[ —io(t’ —t)]
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8B(x')= —8,(3/0x")88(x",y") —&,(3/3y" )84 (x",y")

In Eq. (29), x'(¢') and p’(¢') are the particle trajectories in
the equilibrium field configuration that pass through the
phase-space point (x,p) at time ¢'=¢. That is, x'(¢') and
p'(t')=mv'(¢') satisfy

’(t’)XB Az
m—‘-i-,—v’(t )= —eEJ(x')e, —eM ,
dt c

J (30)
—x'(t')=v'(t'

oy x'(t)=v'(¢"),

subject to the “initial” conditions
x'(t'=t)=x,
(31

v(it'=t)=v

These trajectories are determined in closed form in Sec.
IIIB for the choice of equilibrium distribution function
fb(HP in Eq. (14).
Continuing with the formal simplification of Egs. (28)
and (29), we note that
0
3 0 p s
—fo(H,P))="*+——— .
apfb( ) ' OH +€ yaP (32)
Making use of
v'-8B(x') = —v'(3/3x")8(x")
—(d/dt")8$(x')

and the fact that 3fy/0H and 9fy /0P, are constant (in-
dependent of ¢’) along a particle trajectory, Eq. (29) can be
expressed in the equivalent form

af
8¢(x,y >—e—f dtexp[—ta)t—t)] -84(x",y") . (33)

In Eq. (33), we Fourier decompose with respect to the y dependence [Eq. (3)], and integrate by parts the contribution pro-

portional to (d /dt’ )84) This gives

fb 3fp

8fbk(x,p)=—e O k—*

afd A
S OPk(x)—ei

for the kth Fourier amplitude. Here 7=t'—t, and

Sfbk(x,p) is related self-consistently to 8$k(x) by the
linearized Poisson equation
i 28¢k(x)—— 26¢k x)=4e fdp&fbk x,p)
(35)

Substituting Eq. (34) into Eq. (35) then gives a closed
eigenvalue equation that can be used to determine the
eigenfunction 8¢, (x) and complex eigenfrequency  for
electrostatic perturbatlons about the general equ111br1um
dlstnbutlon function fb (H,P,). We note that the orbit in-
tegral!”

I= f_t_wdt’exp[—iwr+ik(y’—y)]8$k(x’) (36)

f dt'expl —ioT+ik(y' —p)]0fx(x’) (34)

[

occurs in Eq. (34), where x'(¢’) and y'(¢') are the particle
orbits in the equilibrium field configuration [Egs. (30) and
(3D)].

In Sec. IV, Egs. (34)—(36) are analyzed for the spec1flc
choice of equilibrium distribution function fg(H, P,) in

Eq. (14). In this regard, it is useful to further s1mp11fy
Egs. (34) and (35) making use of the identity
oI s . dfp
= (Ir% = 0_ I o
(fb) =fp + ap, 3P T 3H 37

where 0H /9p, =p,/m =v,. We substitute Eq. (34) into
Eq. (35) and make use of Eq (37) to eliminate 19f¢ /3P,.
Integrating by parts with respect to Py, Poisson’s equatlon
(35) can then be expressed in the equivalent form'”
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0
3% o~ 2¢ % 2 3 0., o1 . af B ~ af b
—a;"z"&ﬁk(x)——k 8¢ék(x)=4ﬂe f d°p fblkgp’;— —ilw—kv, )ITH- —5¢k(x)3'1—1‘ (38)
T

where the orbit integral I is defined in Eq. (36). As indi- and
cated earlier, in Sec. IV the eigenvalue equation (38) is P
analyzed in circumstances where the equilibrium distribu- v, =008, T) —w, |X —Xp+ Del'y sin(w,7) ,
tion function is specified by fi ,?(H,Py) mao?
=(fy /2mm)8(H)S(P,). 46)

B. Particle trajectories in the equilibrium fields

In this section, we determine the particle trajectories
x'(¢') and v'(¢’) in the equilibrium field configuration cor-
responding to the rectangular density profile in Eq. (19)
and Fig. 2 and the choice of equilibrium distribution
function in Eq. (14). From Eq. (200 and
E2(x)= —d¢¢(x)/3x, the equilibrium electric field within
the electron layer is given by EX(x)=E, —(m /e)& f,,,x for
0<x <x,. Eliminating E, by means of Eq. (22), we ob-
tain

Ex)=— 7@} =& 3 Jxp — -0 ppx (39)

for 0<x <x;. From Eq. (30), the axial motion is free-
streaming with v, =v, and z'=z +v,7. Making use of
Egs. (30) and (39), the (x',y') motion is determined from

’
dv, 1, 2 :

ar =—2-(wc——a’3;b)xb +a’312,bx’—wcv): (40)
and

dv, ,

W:wcvx 41)

within the electron layer (0<x <x;). Equation (41) can
be integrated to give

Uy —@eXx'=v, —w.x =P,/m=const, (42)
where use has been made of the boundary conditions
vy (t'=t)=v, and x'(t'=t)=x. Eliminating v, in Eq.
(40) by means of Eq. (42), we obtain the oscillator equa-
tion for x'(¢')

2

d
dtlz

2 1,2
X' +(0; =& pp)x"' =5 (o —0/321, Ixp — @ (vy —@ex) .

(43)

Equation (43) is solved subject to the boundary conditions
x'(t'=t)=x and vy (t'=t)=(dx'/dt')y~,=v,. Defining
the betatron frequency o, (including self-field effects) by

w2 =w? —-a’),z,b , (44)
we obtain
’ (l)ch
x'=x+4 [x—xp+ 5 |[cos(ew,T)—1]
mo;
vx .
+ —sin(w,7) , (45)

@y

where x3r=x;,/2. From Egs. (42) and (45), the y’ motion
is given by vy, =w,x'+P,/m, i.e.,

/ P, @ P,
Uy = |0 X+~ |+, [x—xp+ > |[cos(w,7)—1]
m mo,
@V
+—sin(w,T) 47)
@y
and
A2
, '@ o5 P, ()]
V'=y+ |0xy——25 [ 1—cos(w,7)]
m v v

P,
X —Xp+ 2
may,

D¢
+_
[0

v

sin(w,7) . (48)

For future purposes of evaluating the 31/dp, term in
the eigenvalue equation (38), we make use of Egs. (45) and
(48) to calculate dx’/dp, and dy’/3p,. This gives

' )
-g—;—c—-= mac)z [cos(w,7)—1], (49)
y v
A2 2
' )
& R P in(w,r) . (50)
ap, mo; mo,

Moreover, for electrons with P, =0, the orbits (x,vy0)
and (yg,0y0) can be expressed as

vx .
X0 =X +(x —xp)cos(w,7) + ——sin(w,7) ,
- wl)

(51)
Vx0 =UxCOS8(@,7) — @, (X —x3)sin(ew,7) ,
and
, 2 WUy )
Yo=Y+ /0y +©XpT——5—cos(w,T)
v
mc .
+ —(x —xpp)sin(w, 1) ,
Wy
(52)
’ DUy
Vyo =0 Xpr +0c (X —Xp)co8(@,T)+ > sin(w,7) .
v

From Eq. (52), we note that the average (nonoscillatory)
drift velocity in the y direction is given by
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Vi=wXp =cocx1,/2

w.eE,

=, (53)
ma?

where use has been made of Eq. (22) to eliminate x,.
That is, the average y velocity is U,0=V,, where the
overbar denotes average over the o, oscﬂlatlons in
Eq. (52). Similarly, 7¢=y +o.v,/0>+V;r, and
(X 0,0 x0) =(xp7,0). Note that the average orbit for x os-
cillates about x,s =x,/2, which is the midway point be-
tween the cathode (x =0) and the boundary of the elec-
tron layer (x =x,).

/\

» 2880~ k6B (x)=dme? [ dpodp, =
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IV. ELECTROSTATIC EIGENVALUE EQUATION

A. Exact eigenvalue equation

In this section, we simplify the electrostatic eigenvalue
equation (38) for the choice of equilibrium distribution
function in Eq. (14) and rectangular density profile in Eq.
(19) and Fig. 2. The corresponding particle trajectories
(x’,y), required in evaluating the orbit integral I in Eq.
(36), are defined in Eqs. (45) and (48). Substituting Eq.
(14) into Eq. (38) and integrating over p,, Poisson’s equa-
tion can be expressed as

[S(Ho)lk [—l —[ilwo— kaX)Io+8¢k(x ] S(Ho) (54)

where Hy=[H ]Py,__0=(pf +p2)/2m —plo(x)/2m, the effective perpendicular momentum po(x) is defined in Eq. (16),

and I, and (31 /dp, ), are defined by

I0=‘[I]Py=o== fiw dt'exp[ —iowT+ik(yg —~y)]8$k(x¢'3)

and

oL
9py

or

apy P,=0

0

In Egs. (55) and (56), (xq,yq) are the P, =0 trajectories
defined in Egs. (51) and (52), and use has been made of
Egs. (49) and (50) in deriving Eq. (56).

The eigenvalue equation (54) and supporting definitions
in Egs. (51), (52), (55), and (56) constitute an exact

description of the linear stability properties for electro--

static perturbations about the self-consistent Kkinetic
equilibrium in Eq. (14). Equation (54) can, in principle,
be simplified and analyzed in several parameter regimes
of physical interest.

B. Approximate eigenvalue equation for o ~kVy,

For present purposes, we assume a’?f,b <w3 and 0,0
and consider perturbations with frequency w and wave
number k satisfying!’

|o—kVy | <o, . (57)

That is, the wave perturbation has phase velocity w/k
nearly synchronous with the average particle drift velocity
V4 in the y direction. Moreover, the Doppler-shifted fre-
quency w—kV, is far removed from resonance with the
betatron frequency w, defined in Eq. (44). In addition, it
is assumed that the perturbation wavelength in the y
direction is long with!”

- f:mdt'exp[—iw7+ik(yb——y)]

(55)
A2 2
ik [— T+ 3 sin(w,7) }Sgbk(xo)
mao? w3
(2 9 n »
+ 5 [cos(w,T) —1]1—8¢x(x¢) (56)
mao, axo
M
kxpy <<1, , (58)

and that the x variation of the eigenfunction 8$k(x) is
sufficiently slow that |x,3/0x | <1. In the present
analysis, we adopt a model in which all oscillatory contri-
bution to x, and y, in Egs. (55) ‘and (56) are neglected
[see Egs. (51) and (52)]. These terms generally give rise to
harmonic contributions to the exponent in the orbit in-
tegral (55) of the form w —kV;—nw, for ns£0, as well as
a modification of the amplitude of the n =0 term in the
orbit integral proportional to (w —k¥V;)~!. Specifically, in
order to investigate the qualitative features of stability
properties for |w kVy4| <Ky and kxy <<1, the model
approximates yo=y + V37, X0 =X, Odr(xg )—8¢k(xM)
and

(8/8x )8k (x)=[06¢(x)/dx],
in Eqgs. (55) and (56). This gives

=Xps

8k (xar)

Iy= f dr’ exp(—twr+1kaT)8¢k(xM)—z oKV,

(59

and
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aI t . . .L(ll__ A W, a A
| = dt'exp(— kVyr) | — ) - 2 5
a, |, f_w exp( —ioT+ikVyT) | —i o b (xar) T B dr(Xpr)
ik 8bk(xa)
_ikp 8k(xm i wcz 1 3 55, )
m (a)—ka) mao, (O—ka dx X =%,
In Eq. (60), we have introduced the quantity u defined by
2 A2
We a)p,,
: )

Note that M is a measure of the strength of the equlhbrxum self-electric field. For a) pb «<?, it follows that
) p,, /w? << 1, corresponding to weak self-electric field. On the other hand, for & b/wc =0.5 (say), it follows that
p=1, and the self-electric field is much stronger than for the case of a tenuous electron layer

Substituting the approximate expressions (59) and (60) into Eq. (54), the eigenvalue equation becomes

Y 282 oy _~2 |2 OBkCx) wc I dp,dp,
a2 PRI —RB =g | K St T kv, |35 0% |, ] 2 8HO
w—ko dp.d,
—5% ——a¢k<xM)+s¢k | [ p;‘ P 513—5(110). 62)

Parallelmg the evaluation of the equilibrium density pro-
file n(x) in Sec. IIC, it is straightforward to show that
the contribution in Eq. (62) proportional to
Qmm)~! f dp,dp,8(H,) corresponds to a body-charge per-

f

for x >0. Here, U(x, —x) is the Heaviside step function
defined by U(x,—x)=+1 for x <x; and U(x, —x)=0
for x >x,. Similarly, it is readily shown that

turbation extending from x =0 to x =x,, whereas the dp,.d ®
term proportional to (217)_1fdp,,dpz(8/aH0 )8(H ) corre- f p;ﬂpz —I?{——S(Ho)=2m2 fo dpiga—zS(Pi —plo)
sponds to a surface-charge perturbatxon at x -x,, Mak- 0 Pl
mg use of 2mH,=p? —ply(x), where p? =p2+p? and 2
Po(x)=m2wx (x5 —x), we obtain =——08(x —Xp) . (64)
dp dp WyXp
X Z
f 27m 8(Ho)= f dp18(pl—plo) Substituting Egs. (63) and (64) into Eq. (62), the eigen-

=U(xp —x) (63) value equation becomes (for 0 <x <d)

81 (xae) o k. [a
2 2 _ — —_
o 28¢k(x 8¢k(x)— p,, k p( kv, +— ol o kV 3% 8¢ sy U(xp—x)
£ sk (x)— 8 ( ‘) Ms’\ (xar) |8 ) (65)
+ Xas [ ¢k xX)— ¢k xp)]+ w_ka dr xM. X —Xp),

where use has been made of x; =x; /2, u= copb /o, and Vy=w.Xxy.
The simplified eigenvalue equation (65) can be solved exactly (Sec. IV C) for the elgenfunctlon 5¢k(x) and complex
eigenfrequency w. Keep in mind that Eq. (65) is valid for |w—kV, |2 <«<o? and kx;, <<1 [Egs. (57) and (58)].

C. Solution to approximate eigenvalue equation

Within the electron layer (0 <x <Xx), only the body-charge perturbation proportional to U(x,; —x) contributes on the
right-hand side of Eq. (65). On the other hand, in the region x, <x <d, Eq. (65) reduces to the vacuum eigenvalue equa-
tion (62/8x2)8¢k—— 28¢k.—0 Therefore, the solution to Eq. (65) that satisfies 8¢k(x =0)=0= 8¢k(x =d) can be ex-
pressed as
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A sinh(kx)+B[cosh(kx)—1], 0<x <x;

¢ . (66)
8¢y (x)= 1 [A4 sinh(kx,)+B[cosh(kx;,)—1] |
sinh[k (x, —d)] sinh[k (x —d)], xp <x <d

where we have enforced continuity of 8$k(x) at x =x;. Substituting Eq. (66) into Eq. (65), the coefficient B is given by

A2 N
8¢k(xM) wc k ) ~
B— @ pb 2 —38 (67)
k? r (0— kV )2 v — kV ox ¢k x=xy
Moreover, integrating Eq. (65) across the surface of the electron layer at x =x;, we find
9 -2 = - —— 68
Egl’(l;:' % 6¢k xpte % 8¢k xb—e] [8¢k(xb) 8¢k(xM)]+ Cz)—ka 8¢k(xM) (68)
where use has been made of w.(x, —x3;)=w.x3; = V4. Substituting Eq. (66) into Eq. (68) gives
K [ 4 cosh(kx )+ B sinh(xy )] — K { A sinh(x, )+ Blcosh(hoxy ) — 17) Lk (65 = )]
[A cosh(kxy )+ B sinh(kx, )] —k { A sinh(kx, )+ B[cosh(kx,)—1]} sinh[k (xp —d)]
( ~ A ka A
= ;“; [[&pk(x,, )= 88k (xar) 1+ o 88k Gxan) (69)

which relates the discontinuity in perturbed electric field at x =x; to the perturbed surface-charge density.
From Eq. (66), we find that 8¢k(xM) 88¢k /%)y —x,,» and 8¢k(xb can be expressed in terms of A, B, kx,, and kx,,

by

881 (xpr)=A sinh(kxps)+B[cosh(kxy ) —17 , (70)
2 55, ] —kA cosh(kxp )+ KB sinh(kxy) , (71)
ox x=xp
and
8$k(xb)=A sinh(kxy )+ B[cosh(kx,)—1] . (72)
Substituting Egs. (70) and (71) into the definition of B in Eq. (67) gives
A2
—’f———smh(kxM)Jr,L—f’——cosh(kxM)
K o—kv, 2 (w—kVy)
/\2
Blu—2 [cosh(kxpy)—1]—1+p——t—sinh(kxy) | =0, (73)
+ (a) k 2 M w—ka M ’

which relates the coefficients 4 and B. The second independent relation between A4 and B is obtained by substituting
Egs. (70) and (72) on the right-hand side of Eq. (69). This gives

4 sinh(kx )

A kxMcosh(kxb)—sinh(kx,,){kxMcoth[k(xb—d)]——,u}—pw_T
- d

—2kV,
+ B | kxpssinh(kxp ) —[cosh(kxy ) — 1] {kxpscoth[ k (xp —d)]—p} —,um-d—[cosh(kxM)—— 1] (74)
—KVqg

The dispersion relation that determines the complex eigenfrequency @ in terms of equilibrium parameters and the wave
number k is obtained by setting the determinant of the coefficients of 4 and B in Egs. (73) and (74) equal to zero.

D. Analysis of electrostatic dispersion relation

We expand the coefficients of 4 and B in Egs. (73) and (74) for kx; << 1 [Eq. (58)]. Retaining leading-order terms and
setting the determinant of the coefficients of 4 and B in Egs. (73) and (74) equal to zero gives
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kY, bk kY, d 3 kVy
" d I;b d 1+ +—,u+fi———
a)—ka [ w—ka d—xb 2 2 a)—-ka
3% b2, kWi kY,
e [l B L 4 pip—=t |, 15
w—ka 2 [ (a)—ka) d—xb a)—ka

where use has been made of x, =2x;, and Vy=ow.xp.
Introducing the dimensionless frequency € defined by

(l)—ka
T kv

the dispersion relation (75) can be expressed in the
equivalent form

(76)

02214 0
—Ab

1@
+21+u

T+u+ =0, (77)

d—x,,

where use has been made of & /ot=p/(14p).

Equation (77) is the final dispersion relation within the
context of the present simplified model based on the as-
sumptions in Egs. (57) and (58). As such, no a priori ap-
proximation has been made that the electron density is
low (u <%, 1). Indeed Eq. (77) is valid even if the parame-
ter u=0ao pb /w? is of order unity or larger, as long as the
betatron frequency w, does not become so small that the
inequality in Eq. (57) is violated.

The quadratic dispersion relation (77) can be solved ex-
actly for the complex normalized eigenfrequency
Q=(w—kV,)/kV,. Introducing the geometric factor

__ d
g'—d'_xb ’

the necessary and sufficient condition for instability
(Imw > 0) obtained from Eq. (77) can be expressed as

1 O+4p+giu+g)
2 (14p)

Equivalently, since g =d /(d —x;) > 1, Eq. (79) gives

>(1+5p). (79)

g>[+(3+2u) 2+ tp2(1+p) 12— L1 +2u) (80)

as the necessary and sufficient condition for instability.
For the case of moderately low electron density satisfying
u<1,Eq. (80) can be approximated by

2
p(1+p)
g>1+ 83+20) (81)

When the inequality in Eq. (80) is satisfied, the real oscil-
lation frequency (Rew) and growth rate (Imw) determined
from Eq. (77) are given by (for kV; > 0)

Rew—kV;=—kV,—E— 1+1‘—‘—

82
(g +u) (82

and

(78)

[

Imo=kV,——
g+u
21172
= 1+—&—|_ 1+ &
(g+u) + Ttp +% ]

(83)

Eliminating u in favor of cﬁ;,, /w?, and introducing the
parameter h defined by

172
)2 &)\;b / (;)2

81— 2 /wl)?

(3— copb/a)c
4185 /0})?

EPTEPSIRIE (84)
2(1—& pp /)

the instability criterion in Eq. (80) can be expressed in the

equivalent form

X h-—1
d” n -
Stability boundaries in the parameter space (u,g) are il-
lustrated in Fig. 3. The solid curve corresponds to the
stability boundary (Imw=0) obtained from Eq. (80),
whereas the dashed curve corresponds to -the stability
boundary obtained from the approximate criterion in Eq.
(81). The region of (u,g) parameter space above the curve
corresponds to instability (Imw > 0), whereas the region of
parameter space below the curve corresponds to stable os-
cillations (Imw=0). As expected, the approximate insta-
bility criterion in Eq. (81) is quite accurate for moderately

(85)

UNSTABLE

FIG. 3. Stability boundary in (u,g) parameter space obtained
from Eq. (80) (solid curve) and from Eq. (81) (dashed curve).
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UNSTABLE
0.5+
STABLE
i
0 0.5 |
A2 2
Woh /wc

FIG. 4. Stability boundary in (&2 b /@l x, /d) parameter
space obtained from Eq. (85).

low electron density (1 <1). Shown in F1§ 4i 1s the stabili-
ty boundary in the parameter space (& /w2, Xy /d) ob-
tained from Eq. (85). We remind the reader that the sta-
bility analysis in Sec. IV has been restricted to low-
frequency perturbations satisfying |w0—kV,| <<,
=(02—06 ,,,,)1/ 2 [Eq. (57)]. In this regard, the stability
boundary obtamed from Eq. (85) and 111ustrated in Fig. 4
is not valid as & I,/ w? approaches unity.%

The norrnahzed growth rate (Imw)/kV,; and real oscil-

lation frequency (Rew—kV,)/kVy; have been obtained
from Eq. (77) for a broad range of system parameters u
and g. Shown in Fig. 5 are plots of the growth rate
(dashed curve) and real oscillation frequency (solid curve)
versus u for the case d =2x;, and g =2. Evidently, for
the choice of parameters in Fig. 5, the growth rate as-
sumes a maximum value of (IMmw)pya=~0.5kV, for ,u~2 3.

Note also from Eq. (83) and Fig. 5 that (Imw)/kVy in-
creases linearly with u for small u, i.e.,

Imw .& 1112 86
"V, [ >g(1+g)—1] (86)
for u << 1. As expected from Fig. 3, it is found that insta-

bility ceases (Imw =0) once u exceeds some critical value
(Fig. 5).

Imw /7kVy
N
v
(Rew-KVy) /kVy

FIG. 5. Plot of normalized growth rate and real oscillation
frequency vs u obtained from Eq. (77) for d =2x;, and g =2.
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To summarize, within the context of the assumptions of
low frequency [ |w—kVy| <<w, in Eq. (57)] and long
wavelength [kx,, <<1 in Eq. (58)], the kinetic stability
analysis in Secs. III and IV leads to the approximate
dispersion relation (77) for the complex eigenfrequency .
The necessary and sufficient condition for instability
(Imew > 0) is given in Eq. (80) and is illustrated in Figs. 3
and 4. It is clear that the maximum growth rate for insta-
bility can be substantial. For example, for the parameters
in Fig. 5, (Imw)y.x=~0.5kV;=(0.5)(kxp;)w., where
kxjs << 1 has been assumed in Eq. (58).

V. CONCLUSIONS

In this paper, we have made use of the linearized
Vlasov-Poisson equations to investigate the electrostatic
stability properties of nonrelativistic nonneutral electron
flow in a planar diode (Secs. II—-IV). The detailed stabili-
ty analysis has been carried out for flute perturbations
(8/3z =0) about the choice of equilibrium distribution
function f,,(HP )=(7y /27m)8(H)8(P,) in Eq. (14) with
correspondmg self-con51stent rectangular density profile
nb(x) in Eq. (19) and parabolic temperature profile
T?,(x) in Eq. (25) (see also Fig. 2). For low-frequency
[Eq. (57)], long-wavelength [Eq. (58)] perturbations, the
eigenvalue equation is approximated by Eq. (65), and the
corresponding dispersion relation for the complex eigen-
frequency w is given by Eq. (77). The detailed analysis of
Eq. (77) in Sec. IVD shows that instability exists
(Imw > 0) for the region of (u,g) parameter space defined
in Eq. (80) and illustrated in Fig. 3. Moreover, the
analysis indicates that the maximum growth rate of the
instability can be substantial, depending on the values of u
and g.

Finally, the analysis in Sec. IV D emphasizes stability
behavior in a parameter regime corresponding to instabili-
ty (Imw>0). A further important property readily fol-
lows from the analysis of the dispersion relation (77).
Namely, the inequality

u>pp(g) (87)

is a necessary and sufficient condition for stability, where
1 (g) is the solution to [see Eq. (83)]

1+ 52

4 (88)

(pr+8)X 1 +pup+8)=2(1+pp)

That is, Eq. (77) supports only purely oscillatory solutions
(Imw =0) when the mequahty in E% (87) is satisfied (Fig.
3). Making use of u=4& pb /(w2 —&2), Eq. (87) can be ex-
pressed in the equivalent form

A2
@ pb MM

> . (89)
w; ~ l4pm

That is, at sufﬁciently high density, the instability
described in Sec. IVD is completely stabilized (Fig. 4).
Since pps /(14pp) < 1, we note from Eq. (89) that stabili-
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zation occurs at densities below the condition for Bril-
louin flow. For example, for d =2x; and g =2, Eq. (89)
gives (312,,, /w%ZO.S as the condition for stability. This
may have important implications for stable diode opera-
tion. In particular, if the density buildup of the electron
layer is such that & ;,, /w? exceeds iy /(1+p1p) on a suffi-
ciently fast time scale, then the instability discussed in
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Sec. IVD need not have a deleterious effect on electron
layer stability and confinement.
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