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Experimental data are presented on the temperature response of a Rayleigh-Bénard system to
sinusoidal modulation of the heat current supplied to the lower plate near the onset of convection.
Quantitative results are obtained for the average convective current as a function of the average
Rayleigh number and of the amplitude and frequency of the modulation. Results are also presented
on the temporal behavior of the response, above the convective threshold. The data are interpreted

- in terms of a previously proposed model which is a generalization of the Lorenz equations to period-
ic external driving. An important effect included in the model is the dynamic thermal mismatch be-
tween the sidewalls and the fluid which leads to an imperfect bifurcation between the conductive
and convective states. As a result, the upward shift of the convective threshold caused by modula-
tion in the ideal system is masked by the presence of sidewalls. In our model, this effect is con-
trolled by a single adjustable parameter which turns out to agree in order of magnitude with previ-
ous experimental and theoretical estimates pertaining to a lower frequency range. The detailed com-
parison between experiment and theory shows good qualitative agreement, and some quantitative
discrepancies in the parameter range explored. Suggestions are made for additional experiments to
test a larger parameter range and in particular to minimize the sidewall effect in order to approxi-
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mate the ideal threshold behavior more closely.

I. INTRODUCTION

This paper presents experimental results on the
behavior of a Rayleigh-Bénard cell subjected to external
temporal modulation of the heat input, and compares
these results to the predictions of a model introduced in a
previous paper! (hereafter referred to as I). Interest in the
properties of externally modulated hydrodynamic systems
of this type was originally stimulated by the experimental
work of Donnelly et al.> on Couette-Taylor flow (see also
Donnelly®). A considerable body of theoretical literature
exists on this subject (see Davis,* Ahlers et al.,! and refer-
ences therein), but the only experiments so far are those of
Finucane and Kelly’> whose results are primarily qualita-
tive, and of Gollub and Benson® who operated far above
the convective threshold where no quantitative theory ex-
ists.

The experiments reported here consist of measurements
of the temperature response of a cylindrical Rayleigh-
Bénard cell, whose lower plate is subjected to a sinusoidal
heat current, and whose upper plate is kept at a fixed tem-
perature. Just as in the absence of modulation, the oc-
currence of convection at fixed external heat current is
signaled by a decrease in the average temperature differ-
ence between the lower and upper plate. This is because
convection carries additional heat away from the lower
plate and thus has a cooling effect. In the presence of
modulation, however, there is yet another experimental
signature of convection, which is absent for static heating:
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the temperature response to a harmonic heat current is it-
self anharmonic above the convective threshold. [Below
threshold the conductive response should be purely har-
monic if the experimental detection scheme is linear. This
linearity was indeed verified to rather good accuracy in
our experiments (see below).] The temporal harmonics
which appear in the temperature response above the con-
vective threshold contain detailed information about the
convective state and their prediction is an important re-
quirement for a successful theory.

Because our experimental setup involves external heat-
ing of the bottom plate only, rather than heating and/or
cooling of both upper and lower plates or direct control of
the temperature, there is an inherent limitation in the am-
plitude of the temperature modulation achievable in the
apparatus. This maximum amplitude is controlled by
changing the relative amplitude of the current modulation
(which is at most unity) as well as the frequency; the am-
plitude of the temperature modulation turns out to be
largest at low frequency for a fixed external current am-
plitude (a maximum relative temperature modulation of
50% was achieved in our work at a minimum dimension-
less frequency w=3.2).

In I we presented a theoretical model based on a mode
truncation of the Oberbeck-Boussinesq equations of hy-
drodynamics.”® Although this model involves drastic
simplifications of the original equations, it reproduces
quantitatively many central features of the full equations
and has the additional virtue that its predictions can be
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easily calculated and compared directly to the experimen-
tal data. The model, which is a generalization to the
modulated case of the well known model of Lorenz,’ con-
sists of three coupled ordinary differential equations
whose solution yields the convective current j"(¢) as a
function of the time-dependent temperature difference
(Rayleigh number) r(¢). The linear and nonlinear proper-
ties of the model near the convective threshold were stud-
ied in detail in I and were shown to agree well with the
corresponding properties calculated directly from the
Oberbeck-Boussinesq equations, in limits where the latter
are available. For example, at low modulation amplitudes
the convective threshold is shifted upward by modulation
(stabilization of conduction) in a manner which is quanti-
tatively reproduced by the Lorenz model for the ideal case
of a laterally infinite system.

In the present paper we wish to use the Lorenz model
to analyze real experiments which, of course, involve a
finite cell with sidewalls. It has been shown earlier that
near threshold the static effects of the finite geometry can
be taken into account with reasonable accuracy by chang-
ing the values of the constant coefficients in the ampli-
tude equation (see, e.g., Ahlers et al.!%). Since the Lorenz
model reduces to the amplitude equation in the static lim-
it, a similar adjustment is expected to take into account
the static effects of finite geometry for our problem. Of

the remaining dynamic effects, it was shown by Cross .

et al.'! for low frequencies, and by the present authors in
I for the Lorenz model, that the most important effect is
the appearance of horizontal currents. These currents are
caused by the dynamic mismatch which results from the
difference in thermal diffusivities between the fluid and
the sidewall. They vanish in the static case, but in the
presence of modulation they change the behavior com-
pared to the laterally unbounded system. In particular,
near the convective threshold of the ideal system the la-
teral currents can generate significant convective flow.
Their effect was included in the Lorenz model in I by
deriving the field £(¢) caused by the dynamic mismatch
which forces rolls parallel to the sidewall. The strength of
the sidewall forcing is measured by a (mismatch) parame-
ter f, which was calculated within a model with stress-
free horizontal boundaries by Cross et al.!! The same pa-
rameter had been introduced earlier'® to explain the onset
time of convection when the Rayleigh number is raised
from below to above R,. In the present work the
mismatch parameter f will be considered as an adjustable
constant and its value determined by a particular modula-
tion experiment. Once f has been fixed, the theory can be
compared to experimental data with no further adjustable
constants. This comparison between experiment and
theory involves the average of the Rayleigh number as
well as its time dependence, all considered as functions ‘of
the sinusoidally modulated external heat current.

An interesting effect observed in the experiment was an
abrupt jump in average convective current as a function of
the frequency (or amplitude) of the modulation. More-
over, at the transition point, anomalously long transients
were observed in the dynamics. These observations have
an explanation in terms of the Lorenz model in the pres-
ence of the forcing field. Indeed, the degeneracy between
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periodic states with opposite directions of rotation of the
convection rolls, which exists in the ideal model, is lifted
by the forcing field. Thus if the frequency (and with it
the amplitude) of the temperature modulation are varied
at fixed external heat current, a transition is observed in
the model from a state of higher convective current to one
of lower current. The similarity to the transition which
occurs in the experiment lends detailed confirmation to
the basic features of the model, in particular to the i lmpor-
tance of the sidewall forcing term.

The comparison between experiment and theory leads
to the following conclusions.

(i) The relation between the averages of the convective
current and of the Rayleigh number, on the one hand, and

. the amplitude and frequency of the modulation, on the

other hand, has been determined experimentally and
agrees satisfactorily with the theory, over the range
3.2<®w <20, and 0.5> A >0.1, where w is the modulation
frequency in units of the vertical diffusion time, and A is
the relative amplitude of the temperature variation.

(ii) The temporal behavior of the temperature response
has been measured directly and that of the convective
current has been determined indirectly. The harmonic
content of both quantities was found to be in good accord
with theoretical predictions.

(iii) Under the conditions of the experiments, the
dynamical sidewall forcing introduces significant round-
ing of the convective transition and almost completely
masks the upward threshold shift obtained from the equa-
tions for the ideal laterally infinite system.

(iv) The transition between two different periodic con-
vective states observed when the modulation frequency is
varied is in qualitative agreement with the predictions of
the model. In one state, the convection is enhanced and in
the other it is suppressed by the forcing.

The favorable comparison mentioned earlier between
the Lorenz model and results obtained from the full
Oberbeck-Boussinesq equations in special cases depends
on the assumption that the basic flow pattern is not
changed by modulation. This assumption was recently
shown by Roppo et al.!? to be false for an ideal laterally
infinite system. Instead, these authors found that modu-
lation near the convective onset leads to a subcritical bi-
furcation to a hexagonal pattern. However, this
phenomenon seems to be quite sensitive to sidewall forc-
ing. Indeed, a flow visualization experiment by Steinberg
et al.'® has shown that sidewall forcing favors a roll pat-
tern, so that the hexagonal solution is suppressed.

It should also be noted that the chaotic features of the
solutions of the model, which have been studied theoreti-
cally by many authors since the original work of Lorenz,’
are not relevant to our investigation since they occur far
above the convective threshold in a region which we did
not investigate experimentally. In any case, the Lorenz
truncation cannot be expected to reflect the behavior of a
real fluid in that parameter range.

In Sec. IT we introduce notations and definitions. Sec-
tion III describes the experimental apparatus and method,
and Sec. IV discusses the method of data analysis used for
both the time averages and the time dependence. The re-
sults are then presented in Sec. V, and Sec. VI concludes



with a brief discussion of future experimental work. Pre-
liminary reports of the present results were published ear-
lier.!41

II. NOTATION

In this section we define the various currents and tem-
perature response functions to be used later. (Unless oth-
erwise stated the notation is the same as that of our previ-
ous work!!> but we repeat the definitions here for com-
pleteness.) Throughout most of the paper we use dimen-
sionless units in which lengths, times, temperatures, and
pressures are scaled by d, d?/«, kv/agd®, and pKz/dz,
respectively. Here d is the plate separation, « the thermal
diffusivity of the fluid, v its kinematic viscosity, a its
thermal expansion coefficient, p its density, and g the ac-
celeration of gravity.

Let the dimensionless temperatures of the’ upper and
lower plates be T*t) and TX), respectively (¢ is the
time). Then the time-dependent Rayleigh number is

RW)=TX)—T%q) . (2.1)

In the absence of time dependence and for a Boussinesq
fluid, R (¢) reduces to the usual static Rayleigh number
whose critical value is RJ*™. The basic experimental input
is the vertical heat current J(¢) applied to the lower plate.
We define a reduced current

j()y=J(@) /R (2.2

by dividing J(¢) by the current J** =R35" at criticality in
the absence of time dependence. Similarly, the reduced
Rayleigh number is given by

r(t)=R (t)/RE* =[TXt)—T*t)] /AT . (2.3)

The total current j(¢) consists of a conductive part and a
convective part written as

J)=j"()+j™(z) . (2.4)

In the present experiments the temperature T“ was con-
stant. We used purely sinusoidal modulation of the input
current

j(8)=jo+7 sin(ewt) (2.5)

(in Ref. 15 the quantity fl was denoted a). We shall
study the response of the system to the modulation (2.5) in
a parameter region where in steady state all response func-
tions are periodic with the period 27/ of the driving. It
is then convenient to use the Fourier decomposition

A= 3 Aexp(—iov), (2.6)

V=—00

where A (t) is any of the real periodic functions appearing
in this work [e.g., r(2), j™(2), j*"4¢), etc.]. Note that
Ay is the time average of A(t) and reality of A4 (¢) re-
quires

A,=A*, . ' 2.7

For example, the sinusoidal input current (2.5) has aver-
age jo and coefficients
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J1=jZ 1—111/2 Jv=0, |v]|>2. (2.8)

As discussed in the Introduction, a sinusoidal input
current induces a temperature difference

r(t)=ro+2Re(rie =) - - (2.9)

where the ellipsis represents higher-harmonic terms. If
one ignores their contribution, which is in general quite
small, one may write 7 (¢) in the form

r(t)=roRe(1+Ae ) | (2.10)

This notation was introduced in I, and will be used here
also occasionally. Then

A=2r1/ro (2.11)

determines the relative amplitude of the temperature vari-
ation around the mean ry. In the purely conductive state
(j°"=0), we expect a linear relation between the heat
current and the temperature which may be expressed in
terms of the transfer function Z(wv) defined by

jM=r, /P (V) (2.12)

(see Appendix B). In the presence of convection, the con-
ductive part of the current is still related to the Rayleigh
number by Eq. (2.12) with the same function Z(wv) as in
the conductive state (but of course a different »,). Quite
generally, at zero frequency, we have Z(0)=1, so the
average Rayleigh number is equal to the average conduc-
tive current, i.e.,

cond .conv

Jo =ro=jo—Jjo (2.13)

III. EXPERIMENTAL APPARATUS AND METHOD

A. System properties

The apparatus used in this work was described in detail
by Behringer and Ahlers,'® hereafter referred to as BA.
For the present experiments, we used cell 4 of that refer-
ence. It was d=0.265 cm high, had an aspect ratio
D /2d=4.72 (D is the diameter), and was of cylindrical
symmetry. The fluid was liquid normal “He, and most
experiments were carried out at saturated vapor pressure
and at a top temperature of 2.1841 K, where the Prandtl
number is 0=0.78. Temperatures are measured on the
1958 *He vapor-pressure scale of temperatures.'” At that
temperature and pressure, the thermal conductivity K and
the thermal diffusivity « of the fluid were 1607
erg/scmK and 2.26 X 10~* cm?/s, respectively. The cor-
responding vertical thermal diffusion time t,=d?/k was
311 s. The temperature difference at the static convective
onset was 5.0X10~* K. For this case, the Oberbeck-
Boussinesq equations provide an accurate description of
the real system.!%18 ,

The cell walls were made of stainless steel, and, in the
absence of convection, they carried about 12% of the total
heat flux. The wall thickness was #,,=0.058 (in units of
d). The ratio of the fluid conductivity to the wall con-
ductivity was A,=0.17, and the corresponding ratio of the
thermal diffusivities was A;=6X 10~%.
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B. Procedure

In order to compare the data with the model described
in Sec. IV A below, it is necessary to know the initial slope
1/g of the Nusselt number under conditions of static heat-
ing (fl =0). Measurements by BA revealed that there ex-
ist two different convective states, corresponding to
1/§=0.56 and 0.83 (see Fig. 13 of BA). The state with
1/=0.56 was formed initially upon passing through the
convective threshold, but under static conditions it was
unstable and decayed to the other state for all 7o >1. We
found that modulation stabilized this state for
1.0<rp<1.1. For larger ry, it was unstable even in the
presence of modulation with the amplitudes and frequen-
cies employed in this work. In the analysis of the data,
we shall use whichever value of g is appropriate to the
particular value of 7 in each run [the choice is quite clear
on the basis of the experimental segments without modu-
lation (see below)].

The modulation experiments were conducted by apply-
ing a heat current j(¢) to the cell bottom while holding
constant the temperature T* at the top, and by measuring
the cell bottom temperature TXt). The current j(t) was
generated by a resistive heater and a voltage produced by
a computer and digital-to-analog converter (DAC). Dur-
ing periodic modulation, its value was updated 256 times
per cycle. The temperature TXt) was determined by
measuring the unbalance of an ac germanium-resistance
thermometer bridge using a 12-bit analog-to-digital con-
verter (ADC) and the computer (for details, see BA).
Measurements of Tt) were made 32 times per modula-
tion cycle. As mentioned above, we wused purely
sinusoidal modulation of j(¢), given by Eq. (2.5). Note
that this choice fixes the time origin of the measurement
sequence and thus determines the phase of the T%(z) mea-
surements. )

An experimental measurement sequence usually consist-
ed of several segments with different frequencies o but
the same amplitudes j, and 71. A few sequences at con-
stant @ with segments of different j, were also obtained.
Each segment consisted of n cycles (typically n=40) fol-
lowed by an equally long time period (i.e., 27n /w) with
the same j, but with 3\1 =0 (i.e,, the same mean current
but no modulation). The response of the temperature
difference to the applied current is shown in Fig. 1 for
part of a sequence. Concentrating on the data for ®=9.8,
one may note that there are transients during the early cy-
cles. The large peak associated with the first cycle is at-
tributable to the fast transients inherent in the establish-
ment of the periodically time-dependent conduction tem-
perature profile, and the lesser effect noticeable during the
first five cycles is associated with the slower process of
the convecting state adjusting to the modulation. That
same longer time scale is noticeable near the right edge of
the figure, where fl =0 and where the convecting state
once more undergoes adjustment. Data during these tran-
sient cycles were discarded.

In Figs. 2(a)—2(c), we show one cycle of the applied
current, and one cycle of the steady-state temperature
response to that current at two different frequencies. The
large phase shift of r(¢) relative to j(¢) is apparent and at-
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FIG. 1. Response of the vertical temperature difference
across the cell (divided by the critical value at onset of convec-
tion under static heating) to variation of the heat current applied
to the bottom plate as a function of time. In the two oscillatory
segments of the figure the current was sinusoidally modulated
with the same amplitude 7;=1.00 but different frequencies
(@=19.6 and 9.8, respectively) around a mean value j,=1.06.
Transients between static and periodic response (or vice versa) of
the temperature are caused by switching the current modulation
on (and off), keeping j, unaltered.

tributable primarily to the conductive response. Likewise,
the amplitude | r; | of » can be explained largely in terms
of j™ and Z(w) [Eq. (2.12)]. Although harmonic
distortion is not very obvious on the scale of Fig. 2, the
data contain significant information about the convective
contribution to r(#) which will have to be extracted by an
appropriate analysis (see Sec. IV below).

In the data analysis, the time origin for each segment
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FIG. 2. (a) Sinusoidally modulated heat current

Jj(1)=1.30+1.23sin(w?) and steady-state periodic temperature
response r(t) for modulation frequencies (b) @=9.79 and (c)
©=3.91 as a function of time during one period of the modula-
tion.



32 THERMAL CONVECTION UNDER EXTERNAL MODULATION ... . IL ...

was taken at the beginning of the ninth modulation cycle,
i.e., the first eight cycles were discarded to avoid transient
effects. This typically left 32 cycles, or 1024 data points,
for analysis. Measurements of 7' with zero applied
current were obtained only before and after the complete
sequence consisting of typically six segments. Since a se-
quence often extended over several days, the results for

Tt)—T* are subject to small systematic errors (a few

tenths of a percent of AT:™) associated with long-term
experimental drifts. For this reason, the most accurate in-
formation about the effect of modulation upon the mean
value rq of r(z) is obtained by comparing the subsegments
with f1=0 and }'\1 >0 within the same segment. The
Fourier components of r(t) are, of course, not influenced
significantly by the small long-term drift.

It should be remarked that our experimental procedure
implies that j(¢)>0 for all ¢ i.e., the bottom is always
heated and never cooled except by conduction through the
sample and sidewalls. This restricts the amplitudes |7 |
of r(¢) to values less than one-half the mean value ry/2 of
r. The largest possible temperature variation, which is ob-
tained for 7, =jo, is given by 7| =7 | @(w)}l |, where
Z(w) is considerably less than unity for our modulation
frequencies (cf. Fig. 4 below). As discussed in I, many in-
teresting phenomena due to modulation occur at larger
amplitudes and thus are not within the scope of the
present experimental investigation.

C. Properties of the conductive state

Since comparison of our experimental data with the
theoretical model of I involves identifying rather small de-
viations from linear relations between currents and tem-
perature differences, it is important to check that the
measuring apparatus does not introduce spurious non-
linear effects. This can be done most conveniently in the
conductive state, since there the relation between j, and
r, [see Eq. (2.12)] should be linear. Thus a set of experi-
ments was carried out at a top temperature of 2.1794 K
where the critical temperature difference is relatively large
because the expansion coefficient of liquid “He at vapor
pressure is small. In that case, a steady heat current
Jj=Jjo=0.678 was used and produced a temperature
difference about equal to the critical temperature differ-
ence at the normal operating temperature of 2.1871 K.
When a modulated current j(z), with j;=0.630,
Jjo=0.678, was used instead, essentially no convection oc-
curred. This is demonstrated by considering the ratio
70/ stat Ero(fﬁéO)/r'()(fl:O) of the average Rayleigh
number with and without modulation, at fixed average
current jo. The data are displayed in the second column
of Table I, and they show that modulation has altered 7,
by no more than 0.2%. As discussed in Sec. III B, an ef-
fect of this size may be attributable to long-term drifts of
the apparatus rather than to convection. If the modula-
tion had induced significant convection, then r, would
have been reduced, according to Eq. (2.13), by a larger
amount.

We searched further for any undesirable nonlinear ef-
fects in this run with jo<1 by examining the Fourier
coefficients of »(z). The third and fourth columns of
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Table I contain |r;| and |r,| (note that ro=j, for
Jjo=0.678 <1). The values of |r,| are established in
direct linear response to the driving current with ampli-
tude _/1'\1 [see Eq. (2.12)]. However, any significant contri-
bution to » from r, would be indicative of undesirable
nonlinear effects in the experiment. The values found for
|r,| are only about 0.2% of the corresponding |7 |.
Higher harmonics were not detectable at all. Thus, spuri-
ous nonlinear effects of experimental origin are quite
small.

IV. DATA-ANALYSIS METHODS

A. The Lorenz model

We shall analyze our data using the Lorenz model in-
troduced in I, which consists of three nonlinear equations
for the variables x(z) and y(z) representing the lowest
velocity and temperature modes, and for the variable z(z)
representing the spatial average of the temperature in the
horizontal plane. In deriving the Lorenz model in I, we
used the usual decomposition into spatial Fourier com-
ponents and retained a single horizontal wave number for
the velocity and temperature modes x (¢) and y(¢). Clear-
ly, this corresponds to a grossly oversimplified description
for a finite system, especially one with cylindrical symme-
try as is the case with the present experimental cell. On
the other hand, near threshold and in the absence of
modulation, the Lorenz model reduces to an amplitude
equation which is a generally valid description even for
finite systems (see Ahlers et al.!® and Cross et al.!'!). The
most important effects of geometry are taken into account
by a change in the constants appearing in the amplitude
equation, primarily in the coefficient g which relates the
convective current or Nusselt number to the Rayleigh
number. In applying the Lorenz model to our finite
cylindrical system, we shall similarly consider x(z) and
y(t) to be the amplitudes of the lowest spatial modes of
the velocity and temperature, respectively, in the finite
cell, and adjust the constant g to give the correct Nusselt
number near threshold in the absence of modulation.
Thus, it is only the difference between the behavior with
and without modulation which our theory attempts to cal-
culate, and it is hoped that most of the effects of finite

 geometry will be unimportant in evaluating this differ-

ence. One effect which we do take into account, however,
is the forcing of convection due to the time-dependent
sidewall heating, since this effect vanishes in the static
case and leads to convection even below the ideal thresh-
old in the presence of modulation.

The equations for our model are [see Egs. (2.8), (2.14),
(2.32), and (5.2) of 1]

TI%=—6'[x(t)—y(t)]+5§(t) : (4.12)
Tld—);=—y(t)+[?(t)—z(t)]x(t) , (4.1b)
dz
7'1-d—=—b[z(t)—x(t)y(t)] , (4.1¢)
t
n=r =027, (4.1d)
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5=5,=270/14, (4.1¢) . . . n
b=b,=2, 4.1 b i

9mq,
r,=r , 4.1g) 1072 -
"= 2 tan(g,/2)(m*—g2) 97 —g2) &
—(ira)172 1074+
q,=(iov)?, (4.1h) « 1 1 | [ I‘

where o is the Prandtl number of the fluid, and as ex- § T T T

plained in I, the difference between 7, and r, [Eq. (4.1g)]

arises because the conduction profile is not a linear func- - =

tion of the vertical coordinate x; when the temperature

across the cell is time dependent. 1072+ —

Within the model the convective current is given by |
. 104
jconv(t)":g_lz(t) s (4.1i) I 1 1 r
(6} 4 8 12 16 20

where § is the constant relating the Nusselt number
N=j,/je™ to the Rayleigh number in the absence of
modulation (7, =0, r =rg, j™ =7 ™). For this case we
have to first order in 7o —1,

(4.2)

In Egs. (2.31b) and (2.32d) of I the exact and approximate
theoretical values g=g, for a laterally infinite system

J& /ro=N—1=g “Hro—1)=g "'z, .

with rigid top and bottom plates were quoted, but we shall- .

use the experimental values for g obtained in the absence
of modulation by BA (see Sec. III B above). The differ-
ence between the experimental values and the value
g, =0.707 resulting from Eq. (2.31b) of I (for 0=0.78) is
attributable to the static effect of sidewalls which change
the flow pattern from the one assumed in I, i.e., parallel
rolls at the critical wave number.

The sidewall forcing function £(z) in Eq. (4.1a) has
Fourier coefficients given by [see Egs. (5.3) and (5.4) of I]

&,=—lovfr,lov) , (4.3)

where the function ¥ is such that ¥(0)=1 and (+ «)=0,
and the mismatch parameter f can either be calculated ap-
proximately!! or treated as an adjustable parameter which
is fitted to experiment.!® In Appendix A we quote the re-
sults for f and ¥ obtained in I from a calculation of
sidewall effects within the Lorenz truncation. For analyz-
ing the present experimental data we shall treat f as an
adjustable parameter and use the theoretical values for .
The parameter f is related to ! of Refs. 10 and 11 by
f=rn(1+5"hg!2fL

B. Spectral analysis

The comparison between the experimental data and
solutions of the model is best accomplished with the aid
of spectral analysis. The Fourier coefficients of the mea-
sured () and of the calculated z () were obtained with a
fast Fourier transform method, employing 32 data points
per cycle. The time series to be Fourier transformed con-
sisted of 32 cycles. Although the series were of finite
length, the Fourier spectra nevertheless consist of sharp
lines at the basic frequency w and its harmonics. This is
so because the time intervals At between the data points
were chosen to be commensurate with the period, i.e.,
32At =27/w. As an example we show in Fig. 3 the

FREQUENCY (27 k/d?)

FIG. 3. Power spectra of the temperature response r(¢)
shown-in Figs. 2(b) and 2(c). Upper figure is for ©=9.79 and
the lower figure for ©=3.91.

power spectrum of r(¢#) (which is proportional to the
square of the absolute value of the Fourier coefficients)
for two different driving frequencies @ =9.79 and 3.91,
but with the same j, and }'\1 in Eq. (2.5). For ©=9.79, the
harmonic generation at 2w =19.58, which is due to con-
vection, is quite weak, though it is significantly larger
than the value obtained in the absence of convection (see
Table I). At the lower driving frequency in Fig. 3,
0=3.91, there are many harmonics, and, even at a fre-
quency of 19.58, which corresponds to the fourth harmon-
ic of 3.91, the power is greater than it was at the first har-
monic of ®=9.79. Thus, it is seen that at constant j, and
:i\l the lower driving frequency [which yields a larger am-
plitude of r(z)] clearly influences the convecting state
more strongly.

C. The conductive transfer function Z(w)

Both the conductive current and the convective current
can be determined from the experimentally measured r(t)
if the transfer function Z(w) of the system is known.
The evaluation of j™™ =r,/Z (wv) [Eq. (2.12)] also gives
FM(2)=j(t)—j°™(¢) since the total current j(¢) is exter-
nally controlled in our experiments.

For idealized geometries the function & can be calcu-

TABLE 1. Magnitudes of Fourier coefficients of the tem-
perature response in the conductive regime. Driving current

was sinusoidally modulated (with amplitude }'\1 =0.630) around a -
subcritical mean (j,=0.678). Second column shows that modu-
lation has altered the mean reduced Rayleigh number by less

than 0.2% compared to the static driving (7; =0).

@ 70/ Tstat | 7] 103|’2|
9.77 0.9981 0.078 0.16
6.51 0.9984 0.105 0.25
4.88 0.9987 0.130 0.35
391 0.9994 0.154 0.47
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lated. For example, in the absence of lateral boundaries,
and for a lower plate with nonzero heat capacity and a
conductivity which is much larger than that of the fluid,
we have

tan(q,)/q,

Z(ov)= (4.4)

1—AJq,tan(g,)

Here g, =(iov)!”? and A3 is the ratio of thermal masses of
the lower plate and the fluid.. A derivation of this equa-
tion is given in Appendix B of this paper.

For our experimental system, Eq. (4.4) is not sufficient-
ly accurate, and it was necessary to measure & (w) experi-
mentally. This was done by driving the system at various
frequencies w under conditions where convection was ab-
sent. From the driving current j(t)=j°"%¢), and the
Fourier transform of the response r(t), the transfer func-
tion Z(w) was determined. Our experimental results for
the absolute value | 2 | and the phase ¢4 are compared
with Eq. (4.4) in Figs. 4(a) and 4(b). The absolute value of
Z agrees well with the data if A;=0.35 is used, but the
phase does not fit well for any value of A;. Introducing a
finite ratio of the conductivity of the fluid to that of the
lower plate does not improve the fit of the phase data, and
in any event a finite ratio is unrealistic in view of the large
conductivity of copper of which the lower plate was
made. Presumably, the deviation of ¢4 from the predic-
tion in Eq. (4.4) is due to the lateral boundaries which

make the heat-flow problem two dimensional. In any
1.0 T T T T
a
o8I (a) -
__ost .
S
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FIG. 4. Modulus | Z(w)| (a) and phase ¢z (b) of the con-
ductive transfer function [defined by Z(wv)=r,/j"] vs fre-
quency w. Lines represent the analytical result (4.4) obtained for
an idealized system (cf. Sec. IVC and Appendix B) with three
different ratios A3 of thermal masses of the lower plate and the
fluid. Solid circles show experimentally determined values for
our system. See Sec. IV C for more details.

case, for comparison of the data with the model, we used

the experimental values of Z to determine j<°™ from r,.

D. Inversion of the model

The solution of the differential equations (4.1) defining
our model gives the convective current j*°"(¢)=z(¢)/g as
a function of r(?), i.e., z,=2z,({r,}). On the other hand,
in the experiments, r(¢) was measured for given total
current j(¢). In order to compare the measurements with
our model, we inverted the relations

(4.5a)
(4.5b)

jconv(t)zj(t)_jcond(t) ’

g lz,({r,N=j,—r,/P(ev)
to find r, and with it 7(¢) as a function of j(¢). The im-
plicit equations (4.5) for r, were solved numerically by an
iteration method described in detail in Appendix C. The
essence of this procedure is to start with a trial set {r,}
and evaluate the convective current z, /g from the model
equations (4.1). From this a revised set of »,’s can be cal-
culated, given by r, =(j,—z,/8)?(wv), as follows from
(4.5b). The procedure is then repeated until 7, ceases to
change with each iteration. Note that this solution
method involves repeated integration of the differential
equations (4.1) to find a stationary periodic state.

V. RESULTS

The results we present below consist mostly of steady-
state data for the temperature response r(¢), with various
values of the applied current j(t), Eq. (2.5), i.e., with dif-
ferent values of jg, fl, and . Since in steady state the
response is a periodic function of time, we can summarize
the results by discussing the average value 7, on the one
hand (part A), and the strength of various harmonics of r
(part B), on the other. As explained earlier, comparison
with the Lorenz model of Sec. IV involves the single ad-
justable parameter f in Eq. (4.3), which measures the
strength of the sidewall forcing field. This parameter af-
fects the results most strongly near the convective thresh-
old, so we first discuss data in this region and then turn to
the behavior above threshold.

A. Mean values

1. Field effects near the convective threshold

The mean value ji™" of the convective current is ob-

tained from the imposed mean current j, and the mea-
sured Rayleigh number r, via Eq. (2.13). We determined
the mismatch parameter f of Eq. (4.3) by fitting the
Lorenz model to experimental data near the ideal thresh-
old, i.e., with jg close to unity. This is where the effect of
the forcing on the convective heat transport is largest so
that f can be determined most accurately. Measurements
were made for several closely spaced values of jj,, with
71=jo—0.066. The fit yielded f=0.005 for w=3.26.
[Note that only the absolute value of f is significant; its
sign is arbitrary since the model (4.1) is invariant under
the transformation (x,y,f)— —(x,y,f).] The value
f=0.005, which will be retained throughout the



3526

remainder of the analysis, corresponds to f !=0.044, and
is about a factor of 3 larger than that found earlier from a
fit to onset time experiments by Ahlers et @l.'° and from
the model calculation by Cross et al.!! (the two earlier
determinations agreed with each other). In view of the
rather large difference between the frequency ranges of
the present work and the earlier investigations, we do not
expect better than order of magnitude agreement in the
values obtained for f in the two cases.

The data on the average convective current ji" versus
the average reduced Rayleigh number 7, are shown in
Fig. 5 for the two frequencies w=3.26 (solid circles) and
©=6.51 (open circles), both with j;=j,—0.066 and j,
varied in small steps. It is important to note that for the
same values of j, and fl the temperature response r(z) in
the presence of convection is quite different for the two
frequencies shown. For the mean values, we have rg~j,
in both cases, but r; depends upon w. In particular, at the
lower frequency (w=3.26) A=0.50, and at the higher fre-
quency A=0.29. Thus an effective method of changing
the amplitude A of the ftemperature variation in the
present experiment is to change the frequency of the ap-
plied sinusoidal current.

In Fig. 5 we also show as solid lines the predictions of
the Lorenz model for the conditions of the experiment.
Overall agreement with the w=3.26 data is good because
those data were used to fix the value of f. Nonetheless,
the detailed agreement in the ry dependence between
model and data is significant. The w=6.51 data show
only a very small j§™", but within the experimental uncer-
tainty of about 103 in both 7y and j&™ they also agree
with the model. The strong dependence of ji™' on the
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FIG. 5. Average convective current j§™ vs average reduced

Rayleigh number r, resulting from a total heat current
j()=jo+71sin(wt) with amplitude 7, =j,—0.066, frequencies
©=13.26 (solid circles) and w=6.51 (open circles), and different
mean values jo=~1. Solid curves show the corresponding results
of the Lorenz model with sidewall forcing (f=0.005). In the ab-
sence of sidewall forcing (f=0), the Lorenz model yields the
short-dashed curve for w=6.51 and the dot-dashed curve for

©=3.26. Dotted line shows the relation between ji™" and r,

when modulation and sidewall forcing are absent (f =f1 =0).
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temperature amplitude A and the frequency o is con-
sistently reflected in both the model (solid lines) and the
data. The perfect bifurcation of the unmodulated ideal
system is shown in Fig. 5 as a dotted line. The perfect bi-
furcations in the modulated ideal system (f =0), which
exhibit the stabilization of the conductive state by modu-
lation, are shown as dashed lines. It is clear that the
sidewall forcing represented by f has a strong effect upon
Jj&™. For both of the experimental frequencies, the field f
largely masks the stabilization effects inherent in the ideal
model near threshold.

In a separate experiment, we obtained ji*' at constant
Jjo=1.005 and }‘\1 =0.94, for several w. The data are
shown as solid circles in Fig. 6 together with the theoreti-
cal predictions for three different values of f. The figure
illustrates the sensitivity of the model in this region near
jo=ro=1 to varying the mismatch parameter f. The best
fit here also corresponds to f=0.005 (solid line) as in Fig.
5. This agreement in the frequency dependence is not au-
tomatic and can be considered a successful test of the
model. As mentioned above, the value f=0.0016 ob-
tained from previous experiments under very different
conditions'® and derived approximately from a theory of
the sidewall forcing'! would show a considerable deviation
from the data.

It is of some interest to ask how important the frequen-
cy dependence of the function ¢(wv) [see Appendix A and
Fig. 13 below] is in obtaining the fit in Fig. 6. We have
thus repeated the analysis setting ¥(w)=1 and obtained
the results in Fig. 7. The ensuing fit is somewhat worse
than before but the basic frequency dependence of jg™" is
still correctly given. This is gratifying since the specific
form of ¥(w) depends sensitively on the Lorenz truncation
and is thus on somewhat less firm footing than the other
terms in &,, Eq. (4.3), which are also present in the exact
low-frequency analysis of Cross et al.'!
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FIG. 6. Average convective current vs frequency for a total
current j(2)=1.00540.94sin(wt). Solid circles with error bars
represent experimental data. Lines show the predictions of the
Lorenz model in the presence of dynamical sidewall forcing of
different strengths f=0.005 (solid line), 0.0025 (long dashes),
and 0.0100 (short dashes).
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FIG. 7. Average convective current vs frequency for a total
current j(¢)=1.00540.94sin(wt) as in Fig. 6 but with a simpli-
fied sidewall forcing [¢=1 in Eq. (4.3)]. Solid circles represent
experimental data and the lines show predictions of the Lorenz
model in the presence of sidewall forcing of different strengths
f=0.005 (solid line), 0.0025 (long dashes), and 0.010 (short
dashes).

2. Results above threshold

An experiment was conducted at constant w=6.51 but
for several jo~j; > 1. It yielded the results shown as solid
circles in Fig. 8 for the modulated case. For the same j,

T T F
.
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0.01
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1.00 1.02 1.04 1.06

AVERAGE REDUCED RAYLEIGH NUMBER, r,

;conv

FIG. 8. Average convective current ji™" vs average reduced
Rayleigh number r, resulting from a current j(t)=j,
+Jsin(w?) with ©=6.51. Open circles show data in the ab-
sence of modulation (f; =0, jo=~1). Closed circles show data in
the modulated case (fl =jo—0.066). Mean current j, was the
same for each data pair connected by an arrow but varied from
pair to pair. Solid and dash-dotted lines show the predictions of
the Lorenz model (4.1)—(4.5) and correspond to the two dif-
ferent periodic attractors with convection enhanced and
depressed by dynamical sidewall forcing, respectively. In the
absence of sidewall forcing (f =0), the Lorenz model yields the
dashed line if the current is modulated (}'\17‘:0) and the dotted
line in the static case (j; =0).
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the unmodulated portion of the experiment gave the open
circles. The arrows indicate the change in j3®™ and rg
when the modulation is turned on. It is seen from Fig. 8
that the constant-frequency experiment with the smallest
value of ry shows an increase of convection, while modu-
lation at larger values of r, depresses the convection in
comparison with static driving. The fact that the unmo-
dulated data (open circles) coincide with the solution of
the model for static driving (dotted line) also implies that
the sidewall forcing is negligible in the static case (see also
Fig. 13 of BA). For the sake of completeness, we also
show (dashed line) the theoretical prediction for the mean
convective current in the presence of modulation, but for
the ideal situation without dynamical sidewall forcing
(f=0). ’ .

If the sidewall forcing is included, the model has two
different periodic solutions for a significant parameter
range, i.e., two stable periodic attractors, as discussed in
more detail in Sec. VC of I. Within the model, these
solutions describe fluid flow in two opposite directions.
Whereas for f=0 the physical properties of the solutions
are the same, this degeneracy is lifted by the dynamical
sidewall forcing. The mean convective currents corre-
sponding to the two attractors are shown in Fig. 8 as solid
and dot-dashed lines corresponding to enhanced and
depressed convection, respectively. The suppressed con-
vective state of the model (dot-dashed line), when it exists,
evolves from suitable negative initial conditions for x and
y with positive forcing f. The enhanced convective state
(solid line), on the other hand, results from appropriate
positive initial conditions for x and y.

For ry <1.03, only the upper branch exists and the left
most data point, as well as some of those in Figs. 5 and 6,
agree well with the calculation. The experimental result
for the largest r, in Fig. 8 lies very close to the lower
branch of the model, with suppressed convective currents.
However, for the two intermediate values close to
ro=1.04, the agreement is not good with either branch; of
course, it must be remembered that the differences are
only a few tenths of one percent.

In addition to our constant-frequency experiment, we
conducted two sequences each at constant jo, and }'\1 but
with varying @. Here it is worth remembering that at
constant j, and j, the size | ry| of the first Fourier coef-
ficient of the temperature difference across the cell is
strongly dependent upon . In the absence of convection,
| 1] is equal to |j; Z(w) |, and increasing o from four
to eight, for example, decreases 7 (w) by a factor of 2 [see
Fig. 4(a)], with a corresponding change in the value of
lri].

In order to minimize the effect of long-term experimen-
tal drift upon the results, we find it best to examine the
difference in the mean convective current in the presence
and absence of modulation. In Fig. 9(a) (j,=1.066,
7,=1.000) and Fig. 9(b) (jo=1.301, j; =1.235), we show
by dots the experimental data!® for j&™ —jsur, i.e., for
the excess convective current averaged over one cycle rela-

tive to its value jin; under static driving with the same

applied current j,. The corresponding jga Was obtained
during the time intervals of steady heating separating the

segments with the different modulation frequencies indi-
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FIG. 9. Excess convective current averaged over one modula-
tion cycle vs cycle number. Dots show the measured change of
the average convective current induced by modulation with a
fixed mean current (a) jo=1.066, (b) jo=1.301. Modulation am-
plitude fl was (a) 1.000 and (b) 1.235. The relative amplitude
|A| =2]|ry|/ro of the temperature difference increases from
left to right as the modulation frequency w decreases. Intervals
with static heating between data segments are not shown at their
full length. Corresponding results of the Lorenz model for the
periodic attractors with enhanced and suppressed convection are
shown (as far as they exist) by solid and dot-dashed horizontal
bars, respectively. They correspond to the solid and dot-dashed
lines in Fig. 8.

cated in Fig. 9. The data points, one for each cycle and

40 within each frequency segment, are shown as a func-
tion of cycle number, thus retaining the time sequence in
which they were taken but distorting the time scale of the
abcissa since the period increases from segment to seg-
ment as we move from left to right. Furthermore, the
time intervals between the data segments where the heat-
ing was unmodulated are not shown at their full length.
The values of A and  identifying each data segment are
included in Fig. 9.

The first three segments correspond to stationary
periodic states for which modulation inhibits convection,
ie, jo™ <jsar. The fourth segment in each case, but
most dramatically in Fig. 9(b), shows transient behavior
which we attribute to the process of switching from one
attractor (which is either unstable or has ceased to exist at
this point) to the other. The solid and dot-dashed hor-
izontal bars in the figures are the model predictions for
the attractors with enhanced and depressed convective
current, respectively. They correspond to the solid and
dot-dashed lines in Fig. 8. As stated before, the agree-
ment between experiment and theory is only semiquantita-
tive, especially at low frequencies, but the limit of ex-

istence at large A (small w) of the attractor with the
depressed convective current coincides extremely - well
with the experimentally observed transient behavior.

In Fig. 10(a) (jo=1.066, j;=1.000) and Fig. 10(b)
(jo=1.301, j;=1.235), we summarize the information on
the mean excess convective current, ji™ —jen , contained
in Figs. 9(a) and 9(b). Points denote averages over the 40
cycles contained in each data segment displayed in Fig. 9.
The thick vertical bars at ©w=4.9 correspond to the tran-
sient cases. They extend from the smallest to the largest
value observed at the corresponding current and frequen-
cy. The solid and dot-dashed lines are theoretical results
for the solutions with enhanced and suppressed current,
respectively, as in Figs. 8 and 9. The arrows indicate the
limits of existence in the model of the attractor with the
low convective current. For large o (small A) the data
provide evidence for inhibition of convection by modula-
tion which is of the same magnitude as that found in the
model. The switching in the experiment from the low to
the high current branch occurs almost precisely at the
value of w (and A) at which the suppressed-current attrac-
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FIG. 10. Mean excess convective current vs modulation fre-
quency [jo and J; as in Figs. 9(a) and 9(b)]. Solid circles denote
average over the 40 cycles in each data segment of Fig. 9. Thick
vertical bars at w=4.9 extend from the smallest to the largest
value observed in the transition (cf. Fig. 9) from a state with
J&™ < jsn to one with j&™ > jia’. Solid and dash-dotted lines
are the theoretical results for the attractors with enhanced and
suppressed convection, respectively, as in Figs. 8 and 9. When
the latter attractor ceases to exist, the model predicts a transi-
tion (marked by arrows) to the former.
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FIG. 11. Lorenz-model calculation of the transition to the
periodic attractor with enhanced convection for ro=1.0425,
r1=0.175 (A=0.336), ©=4.885, and 0=0.78. Quantities
shown are (a) j™(¢)=z(t)/g and (b) x(z). Dashed line in (a)
corresponds to jiat =Zga /g With §=1.78. At time ¢ =0, the
system starts near the solution with suppressed convection (see
Fig. 8), but the parameters are such that this solution no longer
_corresponds to a stable periodic attractor, so the system makes a
transition to the periodic solution with enhanced convection.

tor of the model (which is occupied at large ) ceases to
exist. We regard this switching phenomenon in the data
to be a dramatic confirmation of the applicability of the
model to the real system.

Finally, in Fig. 11, we show an example of the tran-
sients associated with the switching as calculated from the
model. In Fig: 11(a), we display the evolution of z(#)/g,
‘which is analogous to the experimental j°°™(¢). Figure
11(b) shows x(#) (y behaves similarly). The results were
obtained by starting the integration with negative initial
conditions for x and y. The attractor corresponding to a
negative x and y no longer exists for the value of @ and A
used in the calculation, and, after a number of cycles, the
system finds the only existing attractor, corresponding to
positive x and y. This phenomenon is qualitatively simi-
lar to that observed in the real system, although the time
scale of the transition is somewhat different.

B. Time dependence

So far we have compared only the mean value r, of
r(t) with the predictions of the model. A great deal of
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FIG. 12. Time dependence of the convective current over one
period. Solid lines are the experiment and dashed lines the cor-
responding results from the Lorenz model. Total current ap-
plied at the lower plate was j(t)=jo+/;sin(wt), with (a)
Jjo=1.066 and 7, =1.000 and (b) jo=1.301 and J; = 1.235.
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TABLE II. Amplitudes and phases of the Fourier coefficients »,= |, | exp(i¢,) of the Rayleigh number for various modulation
frequencies w. (a) The current applied to the lower plate is j(¢)=1.066+1.000sin(w?). For this case g=1.78. (b) The current to the

lower plate is j(#)=1.301+1.235sin(w?). For this case g=1.20.

(0] Fo |r1] ¢1 103|r2| ¢2 103|r3| ¢3 103|r4| ¢4 103|r5| ¢5
(a)
Expt. 19.57 1.038 0.0529 3.71
Theor. 19.57 1.042 0.0525 3.70
Expt. 9.79 1.044 0.1095 3.20
Theor. 9.79 1.045 0.1102 321
Expt. 6.50 1.046 0.1565 2.98 0.55 1.0 0.03 —0.4
Theor. 6.50 1.051 0.1528 2.99 0.27 2.5 0.03 1.6
Expt. 4.88% 1.044 0.1985 2.83 1.6 0.5 0.015 2.4 0.06 3.0
Theor. 4.88° 1.040 0.1992 2.83 1.7 1.0 0.35 5.7 0.06 3.9
Expt. 3.91 1.028 0.2375 2.70 4.0 —1.0 1.08 4.0 0.30 1.7 0.05 5.1
Theor. 3.91° 1.032 0.2362 2.71 3.9 0.3 1.20 4.6 0.30 2.4 0.08 6.4
(b)
Expt. 19.57 1.150 0.0654 3.71
Theor. 19.57 1.164 0.0648 3.71
Expt. 9.79 1.160 - 0.1405 3.18 0.72 1.2
Theor. 9.79 1.168 0.1434 3.22 0.68 2.8
Expt. 6.50 1.164 0.2042 2.92 4.26 0.3 0.8 4.3
Theor. 6.50 1.175 0.2075 2.97 3.86 1.4 0.7 6.0
Expt. 4.88* 1.158 0.2580 2.74 10.1 —0.4 2.8 3.5 0.8 0.8
Theor. 4.88 1.205 0.2639 2.81 8.2 0.8 2.3 52 0.7 3.1
Expt. 391 1.140 0.2995 2.58 17.3 5.2 5.6 2.5 2.0 5.9 1.0 3.2
Theor. 3.91° 1.159 0.3084 2.71 17.1 5.6 6.1 2.8 2.2 6.1 1.0 3.1
*Transient.

YAfter switching attractors.

additional information is contained in the higher Fourier
components r,, v>0. In Table II we compare the magni-
tude |r,| and the phase ¢, of r, with the model predic-
tions for the two experimental sequences at constant jo,}'\l
and varying o (and thus A), which were already con-
sidered in Figs. 9 and 10. We have included all Fourier
components which were significantly larger than the ex-
perimental background and for which wv<19.57 [for
larger wv the transfer function Z(wv) had not been mea-
sured and a comparison is thus not possible]. It is worth
noting that the values of 7y, | 7, |, and ¢, are determined
primarily by the conductive current. Their values will
thus be close to the theoretical prediction if the transfer
function Z(wv) is known well enough. On the other
hand, the applied current contained only v=0 and v=1
components, and thus the entire values of | 7, | and ¢, for
v>2 are determined by the nonlinear convective process.
Thus it is gratifying that the experimental amplitudes for
v>2 are generally within 20% or so of the model predic-
tions. The phases are typically within one or two radians.
We believe that this comparison of the high Fourier com-
ponents provides a nontrivial test of the validity of the
mode truncation inherent in the model for the parameter
range of the present experiments.

An alternative way of comparing the finite-frequency
response of the real system with the model is to recon-
struct the convective current j°°™(¢) from the measured
r(¢). We do this by subtracting the conductive current
7°"(¢), obtained from its components j<™ =r, /2 (wv),

from the total current j(t) [cf. Eq. (4.5)]. The result is
compared in Fig. 12 with the model prediction
Jj©™(t)=z(t)/g for the two experimental sequences. A
similar comparison for one of them [Fig. 12(b)] was
shown already in Fig. 2 of Ref. 15, but it was based on a
slightly different theoretical model. The change in the
model has had only very little influence on the relation-
ship between the experimental and theoretical results.
When looking at the comparison in Fig. 12, one should
consider that j°°" is dominated by the contribution from
J©™™. Any small discrepancy between theory and experi-
ment for r(¢) is therefore greatly magnified in j°" be-
cause j{*" is the small difference between j, and r /2,
both of which are of order unity in our experiment. The
agreement between theory and experiment in the wave
shape of j°°™(¢) is clearly quite good, except perhaps for
the case @=6.5 in Fig. 12(a). The discrepancy seen there
comes primarily from the small differences between ex-
periment and theory for |r;| and |r,| which can be
found in Table II(a) for »=6.50.

VI. CONCLUSION

We conclude by discussing possible future experiments
designed to test our model in more detail and to explore a
broader range of physical parameters. The most basic
qualitative test of the model involves flow visualization
techniques to verify the assumption that the roll state per-
sists under modulation. As mentioned in the Introduc-
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tion, this assumption is not generally correct in a laterally
infinite system,'? so its justification depends on the ex-
istence of the sidewall forcing. A preliminary experiment
by Steinberg et al.!*> has shown that under conditions
similar to the ones of the experiments reported here, the
pattern does remain roll-like in the presence of modula-
tion. Presumably, as the sidewall forcing becomes weaker,
either by increasing the aspect ratio or by appropriate
thermal matching of the sidewalls and the fluid, the con-
vective pattern will begin to show the predicted hexagonal
behavior of the ideal system. In any case, it is important
to understand more precisely, both from experiment and
from theory, under what conditions one or the other pat-
tern will be seen.

Another desirable extension of the experiments is to-
ward larger values of the modulation amplitude A. This
can most conveniently be achieved by controlling the tem-
perature of the plates directly, rather than the heat
current. With values of A on the order of 1—3 (rather
than A <0.6), one can hope to test more of the predictions
made in I. Examples are the threshold shift due to modu-
lation, the onset of convection at twice the driving period
for A>2, and the variation with A of the initial slope of
the mean convective current versus Rayleigh number. Of
course, for all of the above properties, which involve the
behavior near threshold, it is important to minimize the
sidewall forcing, since the properties in question are those
of the ideal system. With judicious choices of materials
and of geometry, it seems likely that one will be able to
reduce the sidewall forcing by at least an order of magni-
tude.

Finally, we may mention the possibility of more ad-
vanced experiments involving modulation with two or
more frequencies,’’ or modulation of more complicated
systems such as fluid mixtures near higher-codimension

Sy(1,0,1) .
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bifurcations?! where periodic modulation might induce
nonperiodic response even near the convective threshold.??
In all of these cases, external control of some of the fluid
variables provides a convenient probe to study the dynam-
ical behavior of the system.
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APPENDIX A: THE SIDEWALL
FORCING FUNCTION

In Appendix D of I we derived the sidewall forcing
&(¢), which couples to the (1,0,1) velocity mode retained in
the Lorenz model. The calculation was performed for
stress-free horizontal boundaries, but the general form of
the result should be the same for the rigid case. The forc-
ing function was written in the form

E(=V378,(1,0,1;0) /RS . (A1)

The physical origin of this forcing is that in the presence
of modulation the sidewalls generate “heat waves” enter-
ing the fluid laterally and thereby induce convective flow.
For stress-free horizontal boundaries tl/l\e frequency

Fourier components of the forcing function S, are

(w/V2)sin(wL /V'2)+ Q,cos(wL /V'2)tanh(Q, L)

=lwvr
RS v 7LOX(Q1+72/2)

with
Q, tanh(Q,L) |~
¢>v=<1—kl)-_’i2 1 dy ey O]
Q5 - Q, tanh(Q,z,)

Q=r—iov, Ql=m?—iovi,.

) (A3)

(A4)
Here

)\.1=Kf/Kw, 7\.2=Kf/Kw (A5)

denote ratios of thermal diffusivities and conductivities,
respectively, of the fluid and the sidewalls (for our cell
A =6Xx10"% A,=0.17). The lateral width of the fluid
layer is 2L (2L =D /d=9.44) and the wall thickness is
denoted by ¢, (z,,=0.058).

For the geometry of our cell and our modulation fre-
quencies, (A2) and (A3) simplify somewhat: since
Re(Q, L) >>1, we may replace tanh(Q, L) by 1. Further-

by ‘ ‘ (A2)

more, since A; is so small that wvA,/7* <<1 for all our
modulation frequencies and Fourier indices v, we obtain
tanh(Q, t,,)~tanh(wt,) which itself may be replaced by
mt,, because of the small wall thickness #,,. Therefore, ¢,
simplifies in our system to

Sy=(1—A(14+2,Q,/7%,) "1 . (A6)
Then the Fourier coefficients &, of the forcing function
are given by

E,=iovr,f(ov) , (A7)
V3 (m/V2)sin(wL /V2)+Q,cos(mL /V2)
L Q%Q2+72/2)

0, 7!
X 1+—2';'— .

Ywv)=

(A8)
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In I we have defined the mismatch parameter

f=9%0), (A92)
which may be rewritten as

f=V2(1—A)cosa)[mL(1+ Ay /7t,)] 7}, (A9b)
in terms of the phase angle

a=nL/V2—cot~'(V2). (A9¢)
Then £, may be expressed in the form

E,=iovr,flwv) (A10)
with

Plov)=9(ov) /P(0) . (A11)

The factor cosa in (A9b) depends sensitively on the as-
sumed roll pattern and is not to be considered as reliably
calculated. In any case, in this work we determined f ex-
perimentally and used (A10) as the forcing function with
PYlwv) [Eq. (A11)] being determined by (A8) and (All).
In Fig. 13 we show the amplitude and phase of ¥(w) for
the parameters of our system.

Lastly, we mention that £, [Eq. (A10)] generalizes to
the formula ’

E,=iov(TL+T)(RE™) ™ fh(wv)

given in Eq. (5.3) of I when the temperature T* of the
upper plate also varies in time.

(A12)

Oo.lr- .

0] 1 1 1
o] 5 10 15 20

FREQUENCY (27rk /d?)

FIG. 13. Amplitude and phase of the function ¥(w) defined
. in Egs. (A2)—(A6). This function contributes to the frequency
dependence of the sidewall forcing &(w).
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APPENDIX B: THE CONDUCTIVE
TRANSFER FUNCTION

Here we evaluate the conductive transfer function for a
laterally infinite system consisting of a fluid layer above a
solid lower plate of thickness d; as shown schematically
in Fig. 14. For such a system, Behringer et al.?> have
determined the relation between the temperature in the
fluid at x3=0 (i.e., at the top of the lower plate) and that

at x3=—d; (i.e., at the bottom of the lower plate) when
the heat flux at x;= —d, is constant. For the situation
with fixed temperature at x;=—d, they compared the
current entering the fluid at x; =0 with that entering the
bottom plate at x;=—d;. Here we let the temperatures
at the top of the fluid,

T(x3=1,8)=T%1), (B1)

and at the bottom of the lower plate,
T(x3=—d;, )=T1), (B2)
be periodic in time with period 27m/w. Then the conduc-
tive temperature profile is periodic as well,
T(X3,t): 2 Tv(x3)e—i“’" N (B3)
V=100

and its spatial dependence is determined in both media by
a sum of two exponentials

Avelqvxs'*'Bve—lqvxsy 0 <x3< 1

T,(x3)= g s (B4)
AL e 1 Be W _dy<x3<0.
Here -
g,=(ion'? ql=q,(k;/k)"?, (BS)

where ks and «; are the thermal diffusivities of the fluid
and the lower plate, respectively. The four amplitudes
entering (B4) are determined by the temperatures (B1) and
(B2) and the fact that the temperature and the heat
current must be continuous at the interface x;=0. A
straightforward calculation then yields the Fourier ampli-
tudes j< of the conductive current at the bottom of the
lower plate, as a function of the amplitudes T", and T of

the temperatures at x3 = —d; and x; =1, respectively:
Xz
|
FLUID
0]
-d ¢ :

FIG. 14. Schematic diagram showing the fluid of depth
dy=1 and the lower plate of thickness d;.
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A A(1+23)g
:cond p stat _ 1{_23 T > . (B6
v Rc TV 1 A.4 tan(qv Jtan( )\vS}%qv) v COS( qv)COS( 7\'37\'4qv) )bgtan(qv)+ Mtan( }"3}\'4qv) )
I
Her introduced the constants tan(q,,)/.
ere we introduc t Plov)= qv)/qy (B12)

)‘%:dlplcl /prf (B7)

for the ratio of thermal masses of the lower plate and of
the fluid (p denotes the density and ¢ the specific heat),
and

AMi=d\K,/K; , (B8)

which is determined by the ratio of the thermal conduc-
tivities (K =pck) of the fluid and the lower plate.

The reduced current j°*%¢) and the reduced vertical
temperature difference r(z) across the system are normal-
ized such that their averages are equal [see Eq. (2.13)],

jemd =y, . (B9)

Higher Fourier amplitudes j°® depend in general not

only on the temperature difference but on T, and Ty
separately. If, however, the temperature at the upper
fluid surface is constant, i.e.,

Ty=T"8,,, (B10)
as in our experimental setup, then the quotient
jcond 1
v —_—
ry  Plov)
3 A(1+ADg,
"~ Astan(g,)+Agtan(Azhag,,)
Az
X |1——tan(g,)tan(A;A,4q,) (B11)

Ay

is temperature independent, and thus gives the inverse of
the conductive heat transfer function of the idealized sys-
tem.
In the limit A,—O where the conductivity of the lower
plate is much larger than that of the fluid, the formula for
Z simplifies [as in Eq. (4.4)]:

1—A2g,tan(q,)

Both formulas (B11) and (B12) have been compared with
the experimentally determined transfer function of our
system as discussed in Sec. IV C.

APPENDIX C: ITERATIVE INVERSION
OF THE MODEL

In this appendix we discuss in more detail the iterative
procedure used to solve Egs. (4.5) for r(t) subject to the
condition that the total current j(¢) is given. Our solution
method consists of the following steps. (i) Integration of
the model differential equations (4.1) to obtain z(z) with
an initial r(z) which is specified below. The integrations
were performed using a fourth-order Runge-Kutta pro-
cedure. The initial conditions were taken in general to be
the fixed-point ‘solutions in the absence of modulation.
The time steps for the integration  were
At <min{0.02,7/16w}. (ii) Fourier analysis of z(#) to
determine the coefficients z,. This was done with a fast
Fourier transform. The first several cycles of z(z) were
discarded to avoid transients. (iii) Evaluation of the tem-
perature Fourier coefficients according to Eq. (4.5b):

rv=0y—2z,/8)Z(0v) . (&)

These coefficients determine the function r(¢). The result
(C1) was used as input for (i) when it was necessary to
perform another iteration of steps (i)—(iii).

The iteration could be started with the approximation
that the total im%)osed current j(¢) is carried by conduc-
tion alone, i.e., z(©(¢)=0, so that the Fourier coefficients
of r°(z) in step (i) would be r\” =j,Z(wv). Then steps
(i)—(ii) give »'!(z), and so on. A starting approximation
which is somewhat better than neglecting convection alto-
gether (by setting z'\>’=0), is to use for the convective
current the stationary value it would have in the absence
of modulation, i.e.,

TABLE III. Amplitudes and phases of the Fourier coefficients 7, = | r, | exp(i¢,) occurring in the
iterative solution of Eqs. (4.5) starting with 7§’ =(gjo+1)/(1+8), r{¥ =j,(#)Z(w). The parameters

were g=1.78, jo=1.0657, | ji | =], /2=0.500.

Iteration 7o | 7] & 10%| 7, | ' &2
0=9.77
0 1.0425 0.2190 3.200 0
1 1.0435 0.2213 3.206 1.6 3.19
4 1.0431 0.2213 3.206 1.7 3.20
10 1.0431 0.2213 3.206 1.7 3.20
0=3.91
0 1.0425 0.4519 2.743 0
1 1.0302 0.4735 2.715 77.1 0.353
4 1.0320 0.4725 2.714 78.2 0.311
10 1.0320 0.4725 2.714 78.3 0.310
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20 /8=(Go—1)/(148); 29=0 for |v|>1. (C2a)
Then

r0=(j,—2z\9/8) 2 (wv) (C2b)

is the initial input for step (i).
We found that both starting approximations led to the
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same r(t), with the second procedure converging slightly
more rapidly. Some typical results, using the second pro-
cedure, are given in Table III for the first, fourth, and
tenth iteration. In this case it is apparent that four itera-
tions are sufficiently close to the final answer for compar-
ison with experiment, but in general we used the results of
ten iterations since we found this to be necessary in some
cases.
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