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Thermal convection between horizontal plates is 'considered for a situation in which the driving
force varies periodically in time. This variation may come from changes in the temperature of the
plates or from a vertical oscillation of the cell, causing variation of the gravitational force. Trunca-
tion of the Boussinesq equations leads to a three-mode model which is a generalization of the
Lorenz model to the case of external modulation. Similar models have previously been introduced
by Finucane and Kelly for stress-free horizontal boundaries and by Gresho and Sani for the rigid-
boundary case. The threshold behavior is that of a parametrically driven damped oscillator, whose
bifurcations are studied numerically, as well as analytically in certain limits. It is found that in gen-
eral the modulation stabilizes the conducting state. For stress-free horizontal boundaries the thresh-
old shifts predicted by the model coincide with the results of Rosenblat and Herbert in the limit of
low frequency and agree well with Venezian's results for small modulation amplitude, both obtained
using the full Boussinesq equations. For rigid boundaries the results agree well with numerical cal-
culations of Rosenblat and Tanaka. The nonlinear behavior of the model is also studied, and the
convective contribution to the heat current evaluated. The Lorenz model is shown to reproduce, ei-
ther exactly or to a good approximation, most previous theoretical results on modulated convection,
and the model can be studied simply for a wide range of parameters. The above discussion refers to
a laterally infinite system. For a real finite system, sidewall effects are shown to cause a rounding of
the convective threshold in the presence of modulation, particularly at low frequencies. A calcula-
tion of these effects is carried out within the framework of the Lorenz truncation, and the resulting
imperfect bifurcation of the model is studied numerically. In a companion paper (immediately fol-
lowing this one} quantitative experimental results are presented and compared to the predictions of
the Lorenz model.

I. INTRODUCTION

The stability of periodic states of hydrodynamical sys-
tems is a subject of considerable interest. A particular
subclass of problems concerns systems under .periodic
external modulation, whose amplitude and frequency can
be varied independently. Interest in this field was origi-
nally stimulated by the experimental work of Donnelly,
Reif, and Suhl' on modulated Couette-Taylor flow (see
also Donnelly ). The present paper concerns itself with
the theory of Rayleigh-Benard convection, in which either
the temperature of the gravitational force is externally
modulated. A subsequent paper will describe quantita-
tive experiments and compare their results with the
theory.

The subject of modulated convection has received con-
siderable theoretical attention (for a review see Davis ),
but only little experimental interest. ' The theoretical
work deals mainly with the problem of stability, for

which various criteria have been proposed. The first is
"monotonic stability" which means that every disturbance
decays at all times. Secondly there is "transient stability"
in which disturbances experience net decay over a cycle,
but can grow during part of the cycle. A third form of
stability, determined by an amplitude criterion" requires
that disturbance amplitudes remain within a specified fac-
tor of their initial values. Most of the theoretical work
has involved the calculation of stability thresholds accord-
ing to these different criteria, for various forms of exter-
nal modulation and different values of the fluid parame-
ters. Very little work has been devoted to the behavior
above threshold, e.g., to a comparison of the heat trans-
port with and without modulation.

The main purpose of the present work is to derive a
model which is sufficiently accurate to reproduce the
main features of the full hydrodynamic problem, yet suf-
ficiently simple to allow detailed quantitative evaluation
and comparison with experiment. Our model is a general-
ization of the equations of Lorenz ' to situations with
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F(t) =a+5 cos(cot) . (1.2)

Here e is the relative deviation of the mean Rayleigh
number R from its critical value R,""in the absence of
modulation,

e=(R —R"")/Rs™ (1.3)

For stress-free horizontal boundaries I =4/9m o, and
I =3&(cr+1)/2, where cr is the Prandtl number, co the
modulation frequency, and 6 is determined by the ampli-
tude of external modulation. The stability threshold e,
for bifurcation from the conductive state x =0 to a
periodic solution x(t) can be evaluated numerically, and
analytically in certain limits (5~0 or co~0). If the
cosine is replaced by a step-function modulation, a general
analytic formula' exists for e, (5,co). The results show

external temperature or gravity modulation (the two cases
yield somewhat different equations) for both stress-free
and rigid horizontal boundary conditions. The model
therefore consists of three coupled ordinary differential
equations with time-dependent coefficients which depend
on the nature of the horizontal boundaries. These non-
linear equations can be solved numerically in a straight-
forward manner, and a number of properties at or near
threshold can be calculated analytically. A preliminary
account of the results was presented earlier. ' "

Since the Lorenz model is not exact above threshold
even in the absence of modulation it can hardly be expect-
ed to describe the behavior in the presence of modulation
with complete accuracy. We may note, however, that the
model does predict the exact value of the threshold, as
well as the exact slope of the Nusselt number above
threshold, for stress-free horizontal boundaries in the ab-
sence of modulation. Moreover, for R &2R, the model
yields qualitatively correct answers since the system is in a
state of steady convection in that case. It should also be
stated that our model as well as most earlier treatments
neglect the possibility of a change in horizontal wave vec-
tor, or in convection pattern, brought about by the modu-
lation. Recently, Roppo, Davis, and Rosenblat' have
predicted that for an ideal laterally infinite system, modu-
lation produces a subcritical bifurcation to a hexagon pat-
tern very near threshold. However, recent flow visualiza-
tion experiments' have shown that sidewall forcing
which occurs in real systems tends to favor a roll pattern
and to suppress the hexagon solution. This means that
the assumption of a convection pattern unchanged by the
modulation is a reasonable approximation in practice.
Nevertheless, in view of the above-mentioned limitations
of the Lorenz model we shall confine our investigation of
the modulated case to the region near the threshold. This
means in particular that we shall be well below the range
R/R, &20, where the model shows chaotic solutions in
the absence of modulation.

The threshold behavior of the model reduces to that of
a parametrically modulated damped oscillator represent-
ing the most unstable Fourier mode x(t) of the velocity
field,

mx+mI x e(t)x =0, —
where

that external modulation stabI', hzes the conductive state
(e, &0), unless 5 is quite large (5&3) at which point the
Lorenz truncation ceases to be a reasonable approxima-
tion. As explained in detail below, the threshold e, of Eq.
(1.1) coincides for co~0 with the result of Rosenblat and
Herbert and of Dowden, ' obtained for the full Bous-
sinesq equations with stress-free horizontal boundaries.
Furthermore, e, as a function of 0. and co agrees very well
for small modulation amplitude with the calculations of
Venezian' performed to second order, also for the full
Boussinesq equations with free boundaries. Similarly, the
generalization of (1.1) to rigid boundaries (see Csresho and
Sani' ) leads to excellent agreement with numerical results
of Rosenblat and Tanaka. ' We may therefore assert that
the Lorenz model yields a (transient) stability threshold
which reproduces all previous work, either exactly or to
good approximation.

The nonlinear behavior of the model is reasonably well
represented by the damped parametrically modulated
anharmonic oscillator (see Davis and Rosenblat' and
Gresho and Sani' )

mx+mI'x E(t)x—+x =0, (1.4)

where the convective current (normalized by R, ) is given
by

j """(t)=g 'x (t), (1.5)

ml x E(t)x+x =0,— (1.6)

obtained by neglecting the x term in (1.4), has a threshold
which vanishes identically for all co and 5. [Equations
(1.4) and (1.6) only agree in the limit o ~ oo. ] The am-
plitude equation (1.6) gives the correct initial slope of the
Nusselt number in the absence of modulation, and it de-
scribes the experimental behavior near threshold accurate-
ly in that case, as discussed for example by Ahlers et al. '

These authors showed that the time scale for the onset of
convection when the Rayleigh number is raised from
below to above R, could be accounted for by a small forc-
ing term on the right-hand side of Eq. (1.6). The physical
origin of this term was not completely elucidated by
Ahlers et al. ,

' but they suggested that possible contribu-
tions are sample imperfections, time-dependent sidewall
heating, and various noise and fluctuation effects in the
experiment (the contribution of microscopic thermal fluc-
tuations in the fluid was also considered and turned out to
be many times smaller than was needed to explain the ob-

with g '=2 for stress-free horizontal boundaries. For e
just above the threshold e„the solution of (1.4) can be ob-
tained by a perturbation theory, whose domain of validity
is shown to be e—e, «co, independent of co/5 (see Ap-
pendix C). The perturbation expansion allows us to give
analytic expressions for the slope of the average convec-
tive current (j""")versus e e„s—aa function of co and
Prandtl number o., to lowest order in the modulation am-
plitude 5. In addition, for low frequencies and sufficient-
ly far from threshold (e&5), one can carry out an adia-
batic expansion of (1.4) to obtain an expression for x (t) as
a power series in co. The threshold behavior, on the other
hand, does not simplify significantly at low frequencies.

The amplitude equation
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served onset times). In a subsequent paper Cross et al.
showed that a time-dependent Rayleigh number gives rise
to a term

g( t) =g,R (t) /R,"" (1.7)

added to the right-hand side (rhs) of Eq. (1.6), which de-
scribes a roll pattern parallel to the sidewall. The calcu-
lated strength gi and the frequency dependence of (1.7)
agreed remarkably well with the experimental results of
Ahlers et a/. ,

' with no adjustable parameters.
A calculation similar to that of Cross et a/. is carried

out here in the framework of the Lorenz truncation. It
yields a forcing term similar to (1.7) on the rhs of Eq.
(1.4). In the presence of this inhomogeneous term, the
nonlinear oscillator no longer has a sharp bifurcation [at
least for R(t)&0j. One can then define an effective
threshold by determining the value of e at which the re-
duced convective current averaged over a period reaches a
specified value (0.01, say). This threshold is analogous to
the one obtained from the amplitude criterion of Rosen-
blat and Herbert mentioned above, but its definition de-
pends on the physical processes responsible for the onset
of convection, rather than on some arbitrary choice of ini-
tial value. In particular, the calculation of Cross et a/.
predicts that if the top and bottom plates are modulated
out of phase, then gi in Eq. (1.7) vanishes, and the thresh-
old behavior will be drastically modified at low frequen-
cies.

The forcing g will lead to an onset time r,
„

for the
growth of the convecting state. In the modulation experi-
rnent this time will depend on co and 5, and the quantity
cow,„(o,co) will determine the importance of the forcing g.
At low frequencies, cow,„&1, convection has enough time
to grow to appreciable size during the supercritical part of
the period where R (t) &R,"". Thus, the stabilization of
conduction (e, &0) found for the ideal system will not
take place, since it depends on a delicate cancellation of
growth and decay during a period. This cancellation is
hindered by the forcing g which sets a lower limit on the
value of x during the cycle. For high frequencies,
co~,„&1,convection does not grow appreciably during a
period of oscillation unless one is above the threshold of
the ideal system, so the forcing is unimportant in deter-
mining the actual threshold. The two cases co~,„&1 and
cow,„&1 correspond roughly to the ranges of applicability
of the amplitude criterion and the transient stability cri-
terion, respectively. In any case, the precise definition of
a stability criterion is unnecessary, since the present
theory calculates the experimentally observed quantities
directly.

An interesting effect of the forcing is that it breaks the
symmetry between the two solutions +x(t) of Eq. (1.4),
and that it may muse transitions between them as the arn-
plitude or frequency of the forcing are varied, since the
solution with the proper phase relationship with g(t) is
favored. If the system starts out in the unfavored orbit, it
will eventually come close enough to x =0 so that even a
very small value of g will cause the transition. This effect
will be discussed below, and demonstrated experimentally
in paper II.

Another consequence of the forcing appears to be the

suppression of the subcritical bifurcation to a hexagon
pattern predicted recently by Roppo et al. ' for an ideal
system. Although we cannot demonstrate this effect
theoretically, flow visualization experiments by Steinberg
et al. ' show that for moderate aspect ratios (I.&7.5)
convection first appears in a roll pattern in the modulated
case. These findings seem to us to justify the use of the
Lorenz model (which assumes the same convection pat-
tern with and without modulation) to analyze experiments
in small systems.

For the case of Taylor-Couette flow a detailed theoreti-
cal treatment by Hall led to a destabilizing effect of
modulation (co&0). To linear order in the modulation
strength, Hall found an amplitude equation which is pre-
cisely (1.6), with zero threshold shift, but higher orders in
5 led to a negative shift. Such an effect could result from
a negative mass m in Eq. (1.4), but stability then requires
higher-order derivatives as well. It is therefore an in-
teresting open problem to find a truncated set of equations
which approximates the Taylor-Couette system under
modulation as well as the Lorenz model does for the con-
vection case.

Section II contains a derivation of the Lorenz model for
a laterally infinite system for both temperature and gravi-
ty modulation. The truncation of the Boussinesq equa-
tions to three modes is of course uncontrolled, but once
that approximation has been made the subsequent deriva-
tion follows exactly. Section III examines the threshold
for the ideal (laterally infinite) model, both analytically
and numerically, and compares the results to previous
work. In Sec. IV the nonlinear behavior immediately
above threshold is studied, analytically via perturbation
theory, as well as numerically. The effect of sidewalls is
considered in Sec. V, where it is shown that the time
dependence of the heating causes an inhomogeneous forc-
ing of the equations and leads to an imperfect bifurcation.
Many of the detailed calculations are given in the Appen-
dixes.

R (t) = [T'(t) T"(t)]g(t) 'd—a/~v (2.1)

be modulated periodically in time either by varying the
temperatures T (t) and T"(t) of the lower and the upper
plates plates, respectively, or by oscillating the whole cell
up and down, thus varying the acceleration g(t) around
its mean (g(t)) =g, the gravitational acceleration. In the
above formula d is the plate separation, a the thermal ex-
pansion coefficient, v the kinematic viscosity, and ~ the
thermal diffusivity of the fluid. In the following we shall
use dimensionless quantities obtained by scaling lengths,
times, temperatures, and pressures by d, d /~, av/agd,
and pa. /d, respectively, with p the mean fluid density.

The Oberbeck-Boussinesq equations for the system with
Prandtl number cr =v/a. are

II. THE MODEL

We consider a fluid placed between horizontal plates
extending laterally to infinity. The modifications to the
model introduced by the sidewalls will be considered in
Sec. V below. Let the Rayleigh number
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B,u;= —[(u V)u;+V;p]+oV u;

+&;,3~[g(t)/g](T"" +&),
a, e=V'e —(u V)(T-"'+e),
V.u=O,

(2.2a)

(2.2b)

(2.2c)

CT =CTf =ET
~

i=~i ——2/3 ',
where o.=v/a is the Prandtl number and

(2.8a)

(2.8b)

(2.9)

V2)Tcond(& t) 0 (2.3)

with boundary conditions

T "d(x, =O, t)=T'(t),
T""(x =1, t) =T"(t) .

(2.4a)

(2.4b)

A. Temperature modulation and stress-free
horizontal boundaries

where u(x, t) is the velocity field, p is the pressure, and the
dimensionless temperature T(x, t) =T"" (x, t)+8(x, t) is
expressed in terms of the conduction field T"" and the
contribution 0 due to convection. The position vector x
has components x1,xg x3.

The conduction profile T""(x, t) satisfies the heat dif-
fusion equation

r(t)=rf(t)=r(t) 2mS—(n3 ——2, t)!R,'" . (2.10)

In Eq. (2.10) there enter two driving mechanisms. First
and most importantly

r (t) =R (t)/R,"" (2.11)

r (t) =rpRe(1+ he '"')

around a mean

(2.12)

is the actual Rayleigh number (2.6), divided by the critical
value Rcs™for the onset of convection in the absence of
modulation. The other term is S "(n3 ——2, t), the n3 ——2
spatial Fourier mode of the nonlinear conductive tempera-
ture profile S (x3, t) [see Eqs. (A4) and (AS)]. For a
purely sinusoidal variation of the Rayleigh number

We first derive the Lorenz model for a fluid layer under
constant gravity, i.e., g(t)=g For a p. eriodic time varia-
tion of T (t) and/or T"(t), the heat equation (2.3) can be
solved exactly (cf. Appendixes A and D) to yield

(r(t)) =rp ——e+1,

one obtains (see Appendix A)

r(t) =rpRe[1+6(cp)e '"'],

(2.13)

(2.14)

T""'(x,t) —T"(t)=R (t)(1—x, )+S(x,t), (2.5) Q(tp) =bf(to) =4' b, /(4n it@) . — (2.15)

in terms of an instantaneous Rayleigh number

R (t) = T'(t) —T"(t) (2.6)

dX = —o fx (t) y(t)], —
dt

= —y(t)+ [r(t) —z(t)]x(t),dp

b[z(t) x(t)y (t)] .— —dz=
dt

(2.7a)

(2.7b)

(2.7c)

For the present case of stress-free horizontal boundaries
we have

multiplying a linear profile, and a deviation S(x,t). Note
that even in the absence of lateral sidewalls the conductive
temperature profile is nonlinear. The deviation S (x, t),
for the laterally infinite case, depends only on the vertical
coordinate x3 [see Eq. (A4)]; it describes temperature os-
cillations around the linear profile and is caused by heat
"waves. " The horizontal boundary conditions on the fluid
velocity are assumed to be stress free [Eq. (A15)]. In the
presence of convection the system (2.2) is of course highly
complicated, and we shall make a drastic simplification at
the outset. In Appendix A we expand Eq. (2.2) in a set of
normal modes compatible with the stress-free horizontal
boundary conditions, and in analogy to the derivation of
the standard Lorenz model ' we retain only one velocity
mode (x) and two convective temperature modes (y, z).
We thus arrive at the system of ordinary differential equa-
tions

Note however that our formalism is not restricted to pure-
ly harmonic modulation [cf. Appendixes A and D and pa-
per II (Ref. 3)).

Within the Lorenz model the convective contribution to
the vertical heat current at the lower plate averaged over
lateral dimensions and normalized by R,""is determined
by z(t) (see Appendix A),

j """(t)=g 'z(t),

where, again for stress-free boundaries,

(2.16)

(2.17)

In the absence of modulation we have r(t) =rp =const
(the conductive temperature profile is linear, i.e, S—=0)
and (2.7) reduces to the usual Lorenz model with a bifur-
cation at r p 1 from the c——onducting state (x =y =z =0)
to the convecting state with x =y = +v z = +Qr p

—1.
In the presence of periodic modulation the bifurcations
and temporal behavior will be quite different: The con-
ductive state x =y =z =0 bifurcates into a time-de-
pendent convective state where x (t),y ( t),z ( t) are periodic
functions of time. In particular the convective current
given in our model by Eq. (2.16), is periodically varying
above threshold. While the time averages (x (t) ) = (y (t) )
and (x (t)y(t) ) = (x (t) ) = (z (t) ) remain related to each
other in a way similar to the fixed-point relations in the
absence of modulation, the dependence on ro is changed
in general. Note that the mean convective current is al-
ways positive since (z(t)) =(x (t)).
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B. Mechanical analogue

The Lorenz model can be rewritten purely in terms of
x (t),

the amplitude equation (2.24) to

rox (t) e(t—}x(t)+x'(t) =0,
where

(2.29)

aU(x, t)mx+m1 x = — ' —xM [x],
Bx

(2.18) e( t) = r(t) 1—. (2.30)

and may then be interpreted as a mechanical system
describing the motion of a particle of mass

m =ri/cr

with friction

(2.19)

I =(o+1)lr,
in a parametrically modulated potential

U(x, t) = —,
' [1—r(t)]x + —,'x

(2.20)

(2.21)

z(t) =x'+M [x], (2.22)

The memory effect in the internally generated force
xM[x] arises from integrating out the z degree of free-
dom in (2.7):

As discussed in Sec. III, however, the threshold of (2.29)
is trivial (i.e., e, —:0) in contrast to the behavior of the
Lorenz model (2.7) or the Boussinesq equations (2.2).

D. Rigid horizontal boundaries

For the case of rigid horizontal boundaries a simple
mode truncation analogous to (2.7) is still possible (see for
example Gresho and Sani' ), though the convective
threshold and slope of the Nusselt number are not exact
even in the absence of modulation (see below). On the
other hand, an amplitude equation (2.24} can be derived
near threshold, giving the correct slow time dependence
and static properties in that case. ' ' ' The only differ-
ence with the free case is that the constants ~p and g are
now given by the values

M [x]= (b/wi)(1 b/2o )—
X I dt'exp( —bt'/ r)[ x(zt —t') —x2(t)] .

0

ro ——(rt),„=(o'+0.5117)/19.65o,

(g„),„=0.6994—0.0047cr +0.0083o

(2.31a}

(2.31b)

(2.23)

For the parameter values relevant to the experiments one
may verify numerically that close to the convective
threshold z(t)=x (t), so that M may be ignored. Unless
otherwise noted, however, our numerical results are based
on the full Lorenz model [Eqs. (2.7}or (2.18)].

C. Relation to amplitude equation

respectively. To derive the Lorenz model from a three-
mode truncation of the Galerkin expansion of Gresho and
Sani' valid for rigid boundaries, we may use the same
method as described in Appendix A for the case of stress-
free horizontal boundaries. The derivation will be given
explicitly for gravity modulation in Sec. II E below. For a
sinusoidal modulation of the temperature of the lower
plate one arrives precisely at the Lorenz model of (2.7),
(2.14), and (2.16) [or equivalently (2.18)—(2.23)], but with
parameters

In the absence of modulation and for Rayleigh numbers
near threshold (

~

r p
—1

~
&&1), the second derivative term

in (2.18) is negligible, as well as M[x] [Eq. (2.23)], and
the Lorenz model reduces to the amplitude equation

ri ——ri ——(2~ )

cr=cr, =27o/14,

(2.32a)

(2.32b)

vox(t) ex(t)+x —(t)=0,
with

rp mI =——[(cr+1)/cr]ri,

j"""(t)=g 'x'(t) .

For stress-free horizontal boundaries

(2.24)

(2.25)

(2.26)

b =b„=2,

g=gr=5 ~

b,(co) =b.„(co)=6 9~4@

Ztan(y/2)(n. —y)(9m. —y)

(2.32c)

(2.32d)

ro ——~o ——[(o+1)/o]ri ——2( r+c1)/3n o, '(2.27)

(X —1)R/R,""=(j"""(t))=gf '&+0(e2) . (2.28)

Thus, the Lorenz truncation incorporates the correct
modes of the Boussinesq equations (2.2) near threshold in
the absence of modulation.

For finite modulation amplitude one could generalize

g =gf is given by Eq. (2.17), and Eq. (2.24) is the exact
equation ' ' near threshold for states with wave vectork„leading to the correct slope of the Nusselt number N
for free horizontal boundary conditions and R & R,'",

(
~

)
1/2

(2.32e)

(2.32f)

The critical parameters of the three-mode truncation' are
k, =0.987m= 3.101 and R,'"=0.999 76m 243/128
=1824.7, in contrast to the exact values ' k, =3.117 and
R,""=1707.8. For numerical convenience we have used
k, =m and R,""=m 243/128=1825. 1.

The amplitude equation resulting from this rigid trun-
cation has the form (2.24) with g =g„given by (2.32d),
and
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rp ——Yp
——(1+o,)rj/o, =(o+0.52)/2n o . (2.32g)

Comparing Eqs. (2.31a) and (2.32g) we see that the damp-
ing constant rp ——ml of Eq. (2.18) is given to excellent ap-
proximation by the Lorenz truncation. The approximate
coupling constant g, in Eq. (2.32d) differs by about 15%
from the exact value (2.31b), except for very small Prandtl
numbers (cr & 0. 1) for which the difference becomes signi-
ficant.

E. Gravity modulation

Instead of varying the force which drives the convec-
tion by modulating the temperature difference across the
cell one can also vary the buoyancy force by modulating
the gravity restoring force. In this subsection we there-
fore consider constant temperatures at the top and bottom
plates but vary the Rayleigh number r(t)/rp g(t)/g —b—y
oscillating the cell up and down with an acceleration g (t)
around the gravitational acceleration g =(g(t)). Here
rp ——(r(t)) denotes as before the mean reduced Rayleigh
number. Again we 'decompose the temperature field
T(x, t) into the conducting profile (which is here linear
and time independent) and the deviation 8(x, t) due to con-
vection. The standard Lorenz truncation of the Bous-
sinesq equations in terms of one velocity mode, x (t), and
two temperature modes, y(t) and z(t), then leads to the
system

Y y, (—t) Y+y, (t) Y'=0,

yp
——

2 [E rpg (—t)] = —', [r (t) —1],
8 J2 (t)J3(t)r(t)

(2.35a)

(2.35b)

(2.35c)

J3(t)=r(t)J&(t), (2.35d)

J2(t)=exp t+3 f r(t')dt'—:exp[J4(t)],

where we have used Eq. (4.2) of Davis, and noted that
d=a. and r& —,

' i——n his units. We now let y =(V3/4)Y,
so that (2.35a) becomes

(2.35e)

H)y(t) —[r(t) —1]y(t)+y(t)r(t)y (t) =0,
y(t)=4J3(t)J~ (t),
+y(t) = —,

' Ir (t) ——,
' [1+3r(t)]y(t) I .

(2.36a)

(2.36b)

(2.36c)

The convective current at the bottom plate may be calcu-
lated using Eq. (A27) of Appendix A below and Eqs.
(3.3d), (4.6a), (4.6c), (4.2b), and (5.1b) of Davis,

involves the variable y and is quite different from (2.18)
(see Sec. IV).

It is interesting to compare Eq. (2.33) with the sys-
tematic analysis of Davis, valid near threshold in the
limit o.—+ oo. To carry out the comparison we write Eq.
(5.1) of Davis

x (t)= —ox (t)+or(t)y(t)/rp,d
'dt

y (t) = —y (t) + [rp z(t) ]x (t), —d
dt

z(t) = b[z(t) x(—t)y (t—)],
dt

(2.33a)

(2.33b)

(2.33c)

rpG ] (t)A (t)J2 (t)J3(t) =2rpy'(t)y(t)
(2.37)

Turning to the Lorenz model (2.33) in the limit o ~ ao, we
have

with r&, b, and o given by Eqs. (2.8) and (2.9) for stress-
free boundaries. Again the' time-dependent driving is
parametric; however, since gravity modulation affects pri-
marily the buoyancy, the parametric forcing appears in
the momentum balance equation (2.2a) and hence in the
first equation of the Lorenz model, (2.33a). Temperature
modulation, on the other hand, affects primarily the heat
balance (2.2b) thus entering the Lorenz model via the
equation for y.

Linearizing (2.33) around the conductive state x =y
=z =0, one obtains (see also Cxresho and Sani' )

x (t) =[r (t)/rp]y (t),
and setting

j """(t)=2z (t) —=2r,y'(t) y(t),
Eq. (2.33) reduces to (2.36a) with

~ly(t) = —, I r (t) ——„'[1+3r (t)]y(t) ]

+2r(t)[y (t)y (t)+ —,'(1—rp2)/'r2] .

(2.38)

(2.39)

(2.40)

my'+mI y' —[r(t) —1]y =0 . (2.34)

Hence the threshold for onset of convection would be the
same as for the temperature modulation (2.18)—(2.21)
were it not for the difference between r(t), (2.10), and
r (t), (2.11). This difference, being caused by the addition-
al driving due to the deviation S [Eq. (2.10)] of the con-
ductive temperature profile from linearity, vanishes only
in the limit co—+0 [see Eq. (A8)]. Thus for very slow
modulation r(t)~r(t), and the two driving mechanisms
have the same thresholds for onset of convection (see Secs.
IIIC and IIIF). On the other hand, the behavior above
threshold is different for the two driving mechanisms
even if one were to ignore the difference between r(t) and
r(t). For example, the mechanical analogue of Eq. (2.33) Ti ———(n +a )Ti +2v R 8ii Vi —2A ii j Vi Ti, (2 41a)

The difference between Eqs. (2.36) and (2.37) above de-
rived by Davis, and the Lorenz-model result (2.40) ob-
tained in the limit oooo, is in the last term in (2.40),
which only contributes toj ' ""(t)at order y or y (rp 1). —
We therefore see that in the order at which the analysis of
Davis is systematic near threshold (i.e., order y in
j """),it agrees with the Lorenz model, thus providing an
additional justification for the latter.

As mentioned above, for gravity modulation Gresho
and Sani' have treated the case of rigid horizontal
boundaries using a Galerkin expansion scheme. The
lowest-order truncation is given by retaining only the
i = 1 modes in their Eqs. (4), (5), and (7)—(10),
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Vi ———(crICii) IDii Vi+a v R [1+6cos(rot)]8ii Ti I,
(2.41b)

1 for 0&rot &m.
C Cot —1 for m. & rot & 2m.,

(3.4)

Ti ———4n Ti+A ii) Vi Ti, (2.41c) around a mean

j """=(N—1)R/R, =(2rrv R /R, )T, , (2.41d)

where we have changed i to (2i} in the linear term on
the rhs of their Eq. (8), in agreement with their Eq. (19),
and we have replaced their csin(rot) by our b. cos(cot). We
may evaluate the constants 8ii, Dii, Cii, and 2 iii from
the formulas in the Appendix of Gresho and Sani' and
we find 8ii —— 4/3n—, Dii ———27m /8, Cii ———7m /8,
and Xiii ————,, with a wave vector a=m for which

R,""=243m. /128. (Note that the expression for D;J in
the last equation of the Appendix of Gresho and Sani'7 is
incorrect, though the integral expression given earlier is
correct and yields our value. ) Let us set Vi ——(5m /4)x,
T, = (5R,'"—/3m. V R )y, Ti (5R,""——/6nV R )z, and r(t)
=ro[1+hcos(rot) j, ro R/R,'".——Then Eqs. (2.41) be-
come precisely Eqs. (2.33) and (2.16) above, with parame-
ter values given by Eqs. (2.32a)—(2.32d).

III. CONVECTIVE THRESHOLD: DAMPED
OSCILLATOR %'ITH PARAMETRIC MODULATION

At the convective threshold of the Lorenz model the
conductive solution x =y =z =0 becomes unstable
against infinitesimal perturbations. The stability
boundary is given by a hyperplane in parameter space at
which the solution of (2.7) or (2.18) when linearized
around the origin, i.e., of

e= ro 1—= (r (t) }—1=(r(t) ) —1 (3.5)

(see Appendix B}. We shall first treat the case- of
(2.12)—(2.15) of a sinusoidal temperature modulation,

r (t) =ro+ 5 cos(rot ),
with a real amplitude

5=ro/b, [
.

Then according to (2.14)

r( t) =ro+ 5 cos(cot),

(3.6a)

(3.6b)

(3.6c)

5=r
~

b.(co) ~, (3.6d)

with b, (co) given by Eq. (2.15) or (2.32e) for stress-free and
rigid boundaries, respectively. In the case of grauity
modulation discussed in Sec. IIIF below, only r(t) enters
Eqs. (2.33), so 5 is replaced by 5 in Eq. (3.2). In Fig. 1 we
show the threshold e(5,co) for harmonic and subharmon-
ic bifurcations as a function of 5 for cosine as well as step
modulation, and representative values of co and rr

(co=13.32, o =1, I /co=2. 222). These curves were ob-
tained numerically as described in Appendix B. There we
also include the stability charts for several other values of
the normalized damping I /ro in the parameter range of
interest to our~roblem.

For small 5 the bifurcation is harmonic. Only with
larger modulation amplitudes can one drive the system
into a subharmonic orbit (in the case treated in Fig. 1, for

mx+mI x e(t)x =0-,
e(t) =r(t) 1, —

(3.1a)

(3.1b)

is marginally stable. Beyond the stability boundary the
solution of (3.1) diverges, but the nonlinearities of (2.7)
provide growth limits. According to Floquet theory of
linear differential equations with periodically varying
coefficients, ' the trivial solution x =0 of (3.1}bifurcates
in a Hopf bifurcation,

'

harmonically into a periodic orbit
x (t) =x (t +r) with the same period ~- as the modulation,
or subharmonically such that x (t) = —x (t +r)

x (t +2r) has twice the periodicity of the driving. Note
that in the subharmonic case x (t) (i.e., the direction of the
fluid's motion in the rolls) has to change sign.

0.2

0.0

-0.2—

I ~' I
r

I
I
I

I

t

~~ F 0 ' ~0
~ ~ + ~ 0 Ot '+ +

I

A. Stability thresholds for harmonic and subh'armonie
bifurcations

with a cosine (damped Mathieu equation) modulation

c (cot) =cos(cot),

or a step modulation

(3.3)

We have studied the stability boundaries of the x =0
solution of Eq. (3.1) quantitatively for modulations

e(t}=e+ 5 c (cot) (3.2)

FIG. 1. Linear stability boundaries of the trivial solution
x =0 of (3.1) as a function of modulation amplitude 5, Eq. (3.6),
for can=1, m=13.32 (m =1.14&10, l /m=2. 222). Solid and
dashed lines denote harmonic bifurcation thresholds for cosine
[Eq. (3.3)] and step [Eq. (3.4)] modulations, respectively. Dotted
and dash-dotted lines represent the corresponding stability
boundaries for subharmonic Hopf bifurcations, with twice the
perIod.
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5&2.3). In general there is for increasing 5 a succession
of harmonic and subharmonic instabilities (cf. Appendix
B).

B. Dynamical stabilization of x =0 state
2E (k)

(4.12) of Rosenblat and Herbert ] which determines the
zero-frequency threshold e, =r, —1:

'2 t' 25+@, Z
~'+ (3.8a)

2 m 4

Note the general tendency for dynamical stabiliza-
tion' ' of the x =0 state by modulation with small am-
plitude, e, (5,co)&e,(5=0)=0. This feature cannot be
reproduced by the standard amplitude equation with
periodically modulated coefficients since Eq. (3.1) without
the second-order time derivative [e.g., Eq. (2.29)] has
e, =0. This result may be derived simply by dividing the
amplitude equation (2.29) by x and averaging over a
period. One thus obtains the relation

(x2(t)) =e, (3.7)

which implies e, =0. The physical reason for the lack of
stabilization in the amplitude equation is the absence of
inertia, an effect which enhances the basin of attraction of
the x =0 fixed point for small 5. Indeed, rolling down-
wards from the origin during those times where the poten-
tial of (3.1) is curved downwards [r(t) & 1] is delayed by
inertia (the particle spends more time in the vicinity of
x =0). Thus in a symmetric modulation around e=O the
particle moves closer inwards during the times when
r(t) &1 than it moves outwards when r(t) &1. Conse-
quently the stabilization is most pronounced for large
modulation periods, i.e., the second-derivative term in
(3.1) becomes more important than the first-derivative
rather than less important as ~—+0. Note, however, that
the above discussion excludes all additional forces, e.g.,
fluctuations or other inhomogeneities, which drive the
system away from its fixed point x =0 (cf. Sec. V below).

For large modulation amplitudes the situation is more
complicated. There stabilization, e, &0, as well as desta-
bilization, e, (0, occur depending on the sizes of rp 5,
and co (cf. Fig. 1 and Appendix B).

C. Low-frequency limit

For low frequencies 5 is replaced by 5 [cf. Eq. (3.6)],
and the threshold e, (5, co~0) of the Lorenz model coin-
cides for arbitrary 5 with that of the Boussinesq equations
with free boundary conditions as evaluated by Rosenblat
and Herbert and by Dowden. ' .The basic physical reason
is that x (t), the ni ——1 Fourier mode of the vertical velo-
city field, is the first one'to grow; when it becomes mar-
ginally stable the others are still damped as noted by
Rosenblat and Herbert. Moreover, these authors show
that the threshold e, (5, co~0) is determined solely by the
n3 ——1 mode (higher velocity modes n3&1 do not enter)
and that the critical wave number is m./~2 as for static
driving.

In fact the starting equation (2.15) of Rosenblat and
Herbert for the n3 ——1 modes reduces exactly to our Eq.
(3.1) if the coupling constants Pi to modes m & 1, which
do not enter anyhow, are set equal to zero. The
correspondence between the paper of Rosenblat and Her-
bert and our work is demonstrated by observing that
e~b, =5/ro, A, i(cr+1)~I', crki~l/m, Roa /A, i~r/m,
and Piie "+P»e "~Refb, (co)e "].

For the sake of completeness we give the formula [Eq.

where E (k) is the complete elliptic integral of the second
kind with

k 5
2

(3.8b)
5+e, +mI'/4

For graphs of e, (5,cr, co=0) we refer to Figs. 1 and 2 of
Rosenblat and Herbert.

The modes with n3) 1 enter into the low-frequency
correction to the threshold of the full Boussinesq equa-
tions. However, since the correction P(5) defined by

r, (5,co)/r, (5, co=0) = 1 +co P(5) (3.9)

was found to be very small, generally of the order of
10,we expect the Lorenz model to give a reasonable ap-
proximation for finite frequencies also.

Rosenblat and Herbert obtained the above results with a
WKB expansion which restricts the size of the modula-
tion amplitude, e.g, 5 & ro for cr = 1. Subsequently
Dowden' extended this analysis to arbitrary 5. Since the
deviation S (x3, t) (cf. Appendix A) of the conductive
temperature profile from a linear one vanishes for co~0
Dowden ignored S from the beginning. In that case dif-
ferent Fourier modes of the fields decouple in the linear-
ized Boussinesq equations. It follows that for the n3 ——1

velocity mode with (critical) wave number Vm/2 the
Boussinesq equations reduce exactly to the linearized
Lorenz model (3.1) with r(t) replaced by r (t), i.e., 5(co) re-
placed by 5=5(co=0) [cf. Eq. (6) of Dowden; for direct
comparison, note that his times are scaled by d /v while
ours are measured in units of d /Ic]. Dowden's stability
relations obtained from asymptotic solutions of the
Mathieu equations for co~0 confirm and extend the pre-
vious result of Rosenblat and Herbert. Again the least
stable mode is ni ——1 and V m. /2 is the critical wave num-
ber so that the threshold may be obtained from Eq. (3.1).

D. Small modulation amplitude

In Appendix B we expand e, (5,co) as well as the period-
ic orbit x (t) at threshold in powers of 5, and seek at each
order the marginally stable periodic solution of (3.1) and
(3.2). We obtain up to quadratic order in 5

e, (5,co) =

1 1
cosine modulation

1+(co/I')25
m I 2 tanh(m. I /2co)1—

ml /2co

(3.10a)

step modulation .

(3.10b)

Here we present an analytic expression for the harmon-
ic bifurcation threshold e, (5,co) at small 5 (i.e., 5«1) but
arbitrary cu, and compare the Lorenz model result with
the linear stability analysis' of the Boussinesq equations.

I. Bifurcation threshold of the modulated oscillator
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As noted already, the dynamic stabilization of the x =0
state induced by small-amplitude modulation is largest for
small co, and it decreases monotonically to zero with in-
creasing co. We may also note that for co—+0 Eq. (3.10a)
yields e, =5 /2mt, which agrees with the small-5 ex-
pansion of (3.8). For a light particle ( m ~0) moving with
finite friction (ml finite) the effect of dynamical stabili-
zation [(3.10a) and (3.10b)] vanishes linearly with m:
e, —m. The threshold shift at low frequencies
e, (5, to~0)/5 for a step is twice as big as for a cosine
modulation. The "effective, " mean-square modulation
amplitude of the latter is only one-half that of the former.

2. Convective threshold of the Lorenz model

For sinusoidal temperature modulations (2.12) we ob-
tain in the Lorenz model from (3.10a) and (3.6c)

+(5,~)=+(5,~=0)[1+~'~',/(~+ I)'] '
~

a(~)/Z
~

',

e, (5, co=0)=5
(cr+ 1)

(3.11a)

(3.11b)

as a function of the modulation amplitude 5=ro
~

6
~

. Ill
the above formulas we used Eqs. (2.19) and (2.20) and we
may insert the corresponding values of ri, o, and 6 for
free and rigid cases, respectively. It is intersting to note
that at low frequencies the shift (3.11) of the convective
threshold is largest for o =1, in which case the prefactor
in (3.11b) is —,'; this occurs for Prandtl numbers o =1 in
the free case and o.=—,

' in the rigid case [see Eqs. (2.8b)
and (2.32b)].

e, (5v, to)=e, (5,co)+5i g K(n3, co) .
7!3=2

(3.13)

with

5=ra
~

b, ~, for (i), (ii)
5V ——.

ro
~ kg ~

for (iii)

(3.14)

(3.15)

The n3 ——1 term

5 K(n3=1, co)=e, (5,co) (3.16)

a/2

Io+1 j

0.10

gives just the threshold (3.10a) of the Lorenz model.
In all three cases (3.12) the higher modes, n 3 & 2, do not

contribute to the low-frequency threshold shift since
K(n3 &2,to~0) =0, so the Lorenz model reproduces the
exact low-frequency convective threshold (cf. Sec. III C).
For the in-phase modulation (iii) 5=0 and hence e, =0
for all frequencies whereas (3.13) is finite due to contribu-
tions from higher modes. However, the threshold shift by
in-phase modulation is small for all values of o (cf. dots
in Fig. 2). In cases (i) and (ii) the Lorenz-model contribu-
tion is dominant at small o.. With increasing o. the n3 )2
contributions gain relative weight, but then the total size
of the threshold shift decreases as well. Figure 2 shows,

Tt(t)=T"+R Re(1+be '"') . (3.12a)

(ii) Out-of-phase modulation of top and bottom plate:

T'(t) =To+ ,' R Re(1+b,e '"'—). (3.12b)

(iii) In-phase modulation of top and bottom plate:

T (t) =T"(t)+R = To+ —,R Re(1+6 ye '"'), (3.12c)

with amplitude 4i. Note that for modulation (iii) the
temperature difference between bottom and top plate is
constant in time, R (t) =R.

In all three cases the threshold shifts turn out to be
given by a sum of contributions K(n3, co) from the vari-
ous field amplitudes, n3 ——1,2, . . . , arising in the Fourier
decomposition with respect to the vertical coordinate x3.
To make the comparison we write

3. Convective threshold of the Boussinesq equations:
stress-free boundaries

Venezian' has determined the convective threshold of
the full Boussinesq equations for small-amplitude
sinusoidal temperature modulation in a laterally infinite
system with stress-free boundary conditions at the top and
bottom plates. He considered three cases.

(i) Modulation of the temperature of the lower plate
only:

0.05
o/2

(g 1)2

0.00 --~~ ooo ~oo~ oo ~ ~ ooooo ~ ~ ~ ~ ~ o ~oooo ~ \ \ oo ~ oo o o o ~ o ~ ~ ~ oooo ~ ~ ~ oo ~ ~ oo ~ ~ ooN

~o ~ ~ ooo ~ ~ oo
~o ~ ~oo ~ o ~ o ~ ~ ~ ooo

ooooo ~ ~ ooooo ~ ~ oooooooooo ~ o

I I

10 20 30 40 ~ 50

FIG. 2. Frequency dependence of e, /5 where e, is the con-
vective threshold shift and 5 is the modulation amplitude de-
fined in Eq. (3.6a). Upper and (lower) solid curve denotes e, /5
obtained within the Lorenz model for o.=1 (o.=10) for (i) bot-
tom heating only and (ii) out-of-phase modulation of top and
bottom plate. In the Lorenz model (i) and (ii) yield the same
threshold. Upper dashed curve is the result obtained by Venezi-
an (Ref. 16) for the full Boussinesq equations with stress-free
boundaries expanded to second order in 5 for case (i) of bottom
heating and o.= 1 (the lower dashed curve is for o = 10).
Venezian s thresholds e, /6z for case (ii) are identical within the

.resolution of the figure to the Lorenz-model curves. Dots
denote the threshold shift e, /5y of the Boussinesq equations
(Ref. 16) for case (iii) of an in-phase temperature modulation of
both plates, such that the temperature difference is time in-

dependent, 5:—0. For this type of modulation the Lorenz model
yields e, =0.
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the good agreement of the Lorenz-model result with
Venezian's expression e, (5,co)/5 for the convective
threshold of the full Boussinesq equations, for Prandtl
numbers o = 1 and 10 and modulation according to (i) and
(ii). In fact for case (ii) Venezian's result is identical
within the resolution of Fig. 2 to the Lorenz-model
threshold.

0.2

O. I

E. Convective threshold for rigid boundaries

As mentioned in Sec. II, for this case we still use Eqs.
(2.7), (2.14), and (2.16) but with parameters given in Eq.
(2.32). The linear problem is then still given by (3.1), with

m =m„=o,'(Yj) =(air 54/7)

r=l „=(r+1)/+=2~'(1+27~/14) .

(3.17)

(3.18)

F. Convective threshold for gravity modulation

The threshold for the full Boussinesq equations with
rigid velocity boundary conditions has been evaluated nu-
merically by Rosenblat and Tanaka' using a Galerkin ex-
pansion. In Fig. 3 we show some of the results of their
calculation as open circles, and those obtained from the
Lorenz model as described in Appendix 8 as a solid line,
for the case 5=0.4 and o =1. Although there is no ex-
pansion in the amplitude 5=roh in the present case, we
still use the same representation as in Fig. 2, in terms of
e, /5, since it magnifies differences at small 5 (even so,
the discrepancies are insignificant). Similar results are
also obtained for b, = l. In Fig. 4 we plot the threshold
shift as a function of cr, at fixed b. = 1 and co= 1, and find
once again excellent agreement between our model and the
numerical work of Rosenblat and Tanaka. Note also that
the results for rigid boundaries do not differ much from
those for free boundaries shown in Figs. 1 and 2, once the
threshold is normalized by its value R.,'" in the absence of
modulation.

0
0 I 2 4

0
FIG. 4. Convective threshold e, for rigid horizontal

boundaries as a function of Prandtl number o., for fixed fre-
quency co=1 and relative modulation amplitude 6=1. Solid
line denotes the Lorenz model (as in Fig. 3) and the circles
represent the numerical calculation of Rosenblat and Tanaka,
obtained from Fig. 5 of Ref. 18.

spatial dependence into the linearized Boussinesq equa-
tions

[(8,—V )(8,—oV )V —oR(t)(V, +V )]u (x, t)=0.
(3.19)

In contrast to temperature modulation, different Fourier
modes in the vertical (x3) direction are linearly decoupled
and each has its own threshold determined by a Mathieu
equation with parameters, depending on n3 and the lateral
wave number. For the mode n3 ——l which grows first,
one obtains for the critical wave number Vrr/2, Eq.
(2.34), with the same values of m and I as in the Lorenz
model, Eqs. (2.19) and (2.20). Hence the linearized
Lorenz model (2.34) reproduces the convective threshold
of the Boussinesq equations for arbitrary sinusoidal gravi-
ty modulation and stress-free horizontal boundaries. For
small amplitude the result is

Since for gravity modulation the conductive tempera-
ture profile is linear in xi it does not introduce additional e, (co,5)=5 1+

(o+1)

2 —1

(3.20)

O. I 0

which differs from the corresponding result for tempera-
ture modulation, Eq. (3.11), due to the difference between
r (t), Eq. (2.12), and r(t), Eq. (2.14).

0.05

IV. NONLINEAR BEHAVIOR IN THE PRESENCE
OF MODULATION

In this section we discuss the effect of the nonlinearities
of our model on its behavior near threshold.

0
0 IO

I

20
I

50
I

40 50 A. Analytic theories

FIG. 3. Convective threshold e, /5 for rigid horizontal
boundaries as a function of co for a relative modulation ampli-
tude 5=0.4 and Prandtl number o =1. Solid line denotes the
Lorenz-model stability boundary for rigid boundaries. Circles
represent the result obtained from a Galerkin expansion of the
full Boussinesq equations; the values have been read as well as
possible from Fig. 1 of Ref. 18.

The nonlinear behavior of the modulated Lorenz model
is rather difficult to study analytically, even near thresh-
old, but we have found numerically that the memory term
M [x] in (2.18) does not contribute significantly in the pa-
rameter region of interest (ro (2,

~

b,
~

( 1). It is therefore
useful to study first the simpler case M=0 and then the
full Lorenz model.
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1. Anharmonic oscillator and amp/itude equation x,(t) =[a'(t)]' ', (4.4)

Setting M=0 in Eq. (2.18) one obtains the parametri-
cally modulated anharmonic oscillator

mx+ml x =[@+5cos(cot)]x —x =ex —x3 . (4.1)

This model was discussed by Davis and Rosenblat' and
by Lucke and Schank; the present discussion gives addi-
tional motivation for investigating (4.1) in the fluid-
dynamical context.

Near the (shifted) threshold x (t) is small and we can at-
tempt to calculate it analytically using perturbation
theory. The expansion parameter is the square root of
the distance e—e, (5,co) from the shifted threshold dis-
cussed in Sec. III. This expansion was discussed by Davis
and Rosenblat, ' who pointed out that the coefficients
diverge as co~0 at fixed 5, in which case the problem is
inherently nonlinear and no analytic expression is known.
Their argument is repeated in Appendix C, where it is ar-
gued, however, that the range of validity of perturbation
theory is in fact larger than stated by Davis and Rosen-
blat, though their basic point, that perturbation theory
breaks down for co sufficiently small, is still valid.
Indeed, the whole discussion can also be applied to the
simpler generalized amplitude equation

with corrections of relative order to/e (see Appendix C).
It is interesting to note that the adiabatic expansion

makes no specific reference to the particular form used
for e(t), so long as it has period 2~/co and average e. In
particular, for any e we show that for co-+0 we must have

e, (5, to~0) &5, (4.5)

g (J ""(t)) = (x2(t) ) = [~—~, (5,~)]s (»~)

+0((e ~, )'), (4.6a)

since otherwise we could choose 5 & e & @, and be below
threshold ((x ) =0), in violation of (4.4). The case of a
step-function modulation has the advantage that the
linear problem can be solved analytically (see Appendix
B), but the nonlinear analysis is somewhat simpler for the
cosine modulation.

In the perturbative regime (i) the expansion coefficients
of x (t) can be evaluated from the solutions of the linear
equation (3.1). These solutions can be obtained analytical-
ly within a small-5 expansion as shown in Appendix C.
The resulting average convective current is expressed in
the form

x —[e+5cos(cot)]x+x =0, (4.2)
s(5,co)=1—5 s' '(co)+O(5 ), (4.6b)

which follows from (4.1) in the limit m ~0, m I ~1. For
(4.2) the exact solution is known, and again one finds that
perturbation theory fails for cu~O at fixed 5 (for this case
e, =0). Both Eqs. (4.1) and (4.2) are discussed in Appen-
dix C where it is shown that near threshold there are two
regimes:

(i) Perturbative regime: e —e, « 1, e & 5, e—e, « co,
but co/5 arbitrary. In this region the perturbation theory
of Davis and Rosenblat' is valid, even when co/5 « 1, so
long as e—e, «co. In particular, it is not necessary that
the condition co/5&1 be satisfied, contrary to the state-
ment of Davis and Rosenblat. Our evidence for this as-
sertion is the exact solution of the amplitude equation
(4.2), and a numerical solution of the nonlinear oscillator
model which agrees rather well with the perturbative re-
sult for e—e', «co «5 (see Appendix C).

(ii) Nonperturbative regime: e —e, « 1, e & 5, co

«e —e, . In this region the solutions are not expandable
in powers of e e„dan—the problem is essentially non-
linear as stressed by Davis and Rosenblat. ' We have not
found the analytic form of the solution of Eq. (4.1) in this
regime, and even for the amplitude equation the exact
solution is rather complicated.

There is another parameter range where an analytic
solution is possible, namely the adiabatic regime, at low
frequencies and above threshold.

(iii) Adiabatic regime: m«5&@. In this case

with e, given by Eq. (3.10a) to O(5 ). The calculation of
Appendix C yields

( )(2 2 1

m 2 (~2+ P2)2

20 1

(o+1) 1+co r(/(a+1)

2

(4.7)

To compare the above results (4.6) and (4.7) for the anhar-
monic oscillator [M =0 in (2.18)] with those of the
Lorenz model (M&0) one has to use the fact that accord-
ing to (3.6) 5=

~

h(co)/b,
~

5 for a sinusoidal temperature
modulation r(t) = rp+5 cos(cot) with real amplitude
5=., ~~[.

2. Lorenz model

Let us now consider the full Lorenz model for a
sinusoidal temperature modulation (2.7) and for a
sinusoidal gravity modulation (2.33). The average convec-
tive current is given by an equation analogous to (4.6),

g(J (t)) =(z(t)) =[e'—e' (5 ~)]s(5 ~)
e(t):@+5cos(cot)— (4.3)

never falls below its threshold value in the absence of
modulation [e(t)=0], and the solutions may be systemati-
cally expanded at low frequencies around the quasistatic
solution of (4.1), or (4.2),

+&((~—e, )'),

s(5,co)=1—5 s' '(co)+O(5 ),
with coefficients calculated in Appendix C to be

(4.8a)

(4.8b)
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sT'(co)= [b(o —1)+2cr(o+1)+(cov)) ] ~

h(co)/b,
~

[1+co rf/(o+1) ] (1+co rf jb )b(o+1) (4.9)

so'(co)= {b(o—l)(cr +2o+3)—2(o+1)(o +1)+[(o—l)(b+cr —1)—o —1](cow~) I2b (cr+ 1)

X[1+co r(j(o+1. ) ] (1+co rf jb )
' cr(o—+1) [1+co r)j(o+1) ] (4.10)

where the subscripts T and 6 denote temperature and
gravity modulation respectively, and the corresponding
threshold shifts are given by (3.11) and (3.20). The coeffi-
cients b, o, r&, and

~

b, (co)jb
~

in the above equations are
given in Eqs. (2.8), (2.9), and (2.15} for free boundaries
and in Eq. (2.32) for rigid boundaries.

If we take the limit o o oo in Eqs. (4.9) and (4.10) we
find sT '~0, whereas so ' remains finite. These results
may be obtained directly from the starting equations by
noting that for o ~ oo Eqs. (2.7) reduce to

r~ =(r 1)y ——zy,

r&i= b(z —y —),
whereas Eqs. (2.33}yield

(4.11a)

(4.11b)

r~ =(r —1)y rzy /ro, —

r,z = b(z ry'—/r, ) . —
Thus for temperature modulation

r, (y/y) =(r —1 —z) =O=e —(z),
and

ST=1, ST =0 .{2)

For gravity modulation, on the other hand,

(z) =(ry')/ro~e,
and in general

so&1, sg '&0,
[cf. Eqs. (2.39) and (2.40)].

(4.12a)

(4.12b)

(4.13a)

(4.13b)

(4.14a)

(4.14b)

B. Numerical study

The full Lorenz model (2.7) may be simply integrated
numerically in order to check the various results and as-
sertions of the analytic study. In addition, the compar-
ison with experiment to be carried out in paper II will be
based entirely on the numerical results. In this section we
present some results of integrations of the Lorenz model
for rigid boundaries, given by Eqs. (2.7), (2.12)—(2.14),
and (2.16) with parameters (2.32a)—(2.32c) and (2.33e) (we
need not specify the value of g„in these calculations). In
the case of gravity modulation Eq. (2.7) is replaced by
(2.33) with

and (z(t) ) was calculated as a function of the average re-
duced Rayleigh number e=ra 1, for —various values of b, ,
co, and cr T.he threshold ec at which a finite (j""")first
appears is analogous to that shown in Fig. 1, where a
subharmonic bifurcation is found above a certain value of

In the present calculations we chose co=6, o.= 1 as an
example, and found subharmonic bifurcations for 6& hz
with h2 ——1.21 for temperature modulation and b,2 ——1.19
for gravity modulation. The variation of (j""")with e is
shown in Fig. 5(a) for temperature modulation with vari-
ous fixed values of b, . For b; )b,2 the convective current
seems to grow discontinuously as e crosses the threshold,
i.e., the subharmonic bifurcation appears to be inverted.
For 6 & 62, on the other hand, the current grows linearly
with e —e, (the harmonic bifurcation is supercritical).
The normalized slope at fixed b,

(Jconv)d
dE'

d(z)
e=e d& e=e

C C

(4.17)

resulting from Fig. 5(a) is plotted in Fig. 5(b), as a func-
tion of b, (solid curve). This slope becomes very small just
below 62, and it is strictly speaking undefined for b, & b, 2.
For 6) 1.3, however, Fig. 5(a) indicates that an effective
slope can be obtained from the data. This slope is also
shown in Fig. 5(b). The model has also been solved for
the case of gravity modulation. The corresponding slopes
are shown by the dashed curve of Fig. 5(b), which shows
significant differences with the case of temperature modu-
lation. The dependence of the slope S on co and o is illus-
trated in Figs. (5c) and (5d) for both temperature and
gravity modulation, and once again it shows interesting
differences between the two.

The above initial slope S of (z(t)) [Eq. (4.17)] is ob-
tained for fixed h. To compare with the analytical results
(4.8)—(4.10) one has to take into account that
5=(1+e)

~

6
~

depends on e, so that

S(b.,co) =s(5„co)+ a(z(t))
1+ac 85 6=6, 5=5,

(4.18)

with 5, =(1+e,)
~

b,
~

. To second order in b one obtains

S(b,,co)=1—
~

b,
~

[s' '(co)+2ec' '(co)]+O(b, ),
(4.19)

where s' '(co) is given by (4.9) or (4.10) and e'c '(co) is the
second-order coefficient of the threshold shift. We have
compared the small-6 numerical calculation with the
analytically evaluated slope S(b.,co) in (4.19), and the
agreement is excellent as indicated in Fig. 5(b).

r(t)=rag(t)/g =roRe(1+be '"') .

The average convective current is given by

(J (t) ) =g„(z(t))

(4.15)

(4.16)
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FIG. 5. (a) Average convective current (j""")vs average reduced Rayleigh number e—e, for temperature modulation at fixed fre-

quency co=6, Prandtl number o.=1, and for different values of the relative modulation amplitude h. The harmonic bifurcation for
6 & h2 ——1.21 (solid lines) is supercritijcal. The subharmonic bifurcation for b & b~ (dashed lines) appears to be subcritical. The scale
of the ordinate, g, (j "')=(z), is chosen so that in the absence of modulation (b =0, e, =o) the slope is unity ((z) =e). (b) Slope

S=g„d(j "")/de~, , =d(z)/de~, , plotted vs b, (upper scale) or bi (lower scale). The solid line, which is obtained from data
C 'c

similar to those in (a), is for temperature modulation, and the long-dashed line is for gravity modulation with the same co and o. The
corresponding small-5 analytic results of Eqs. (4.9), (4.10), and (4.19) are shown as short-dashed lines. Inset in the lower left-hand

corner shows on a more sensitive scale the consistency at small 6 between the analytic and numerical results for temperature modula-

tion, by plotting (S—1)/6 vs 5 . Error bars indicate the accuracy of our numerical results (solid circles), and the dashed horizontal
line is the analytic value. (c) Initial slope S plotted vs Prandtl number for fixed m=6 and 6=1, for temperature modulation (solid

line) and gravity modulation (dashed line). (d) Same plot as in (c) except vs frequency cu for fixed o.= 1.

The foregoing results are definite predictions of the
model which would be interesting to test experimentally.
Some of these tests do not appear easy to perform, howev-
er, for the following reasons. First, gravity modulation
seems difficult to realize experimentally with amplitudes
bigger than 6=10, say, so the interesting behavior is
not attainable in that case. Second, as discussed in Sec. V
below, the threshold behavior in real systems is signifi-
cantly perturbed by imperfections, the most important one
coming from sidewall heating. Thus the nonlinear
behavior of most real systems differs appreciably from
that of the ideal model studied in this section. It is possi-

ble, nevertheless, that future experiments might be
designed to minimize sidewall effects, in which case some
of the nonlinear features of the model displayed here
might be realized. In general, however, it is important to
take the sidewalls effects into account in the theory in or-
der to obtain realistic predictions which permit cornpar-
ison with experiment. This we have done in Sec. V below
and in paper II.

C. Comparison with previous authors

We have already seen that for the case of gravity modu-
lation the Lorenz model (2.33) agrees with the amplitude
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equation of Davis, Eq. (2.36) above, valid for o.~ 00, up
to terms of order y . Thus, the behavior near threshold,
and in particular the slope s(5,co) of Eq. (4.8), will be
identical.

Finucane and Kelly have also studied a truncated non-
linear model, which they obtained from "energy rela-
tions. " The results were then compared to experiment
and to other analytic results (termed "periodicity theory" )
which come from the linearized Boussinesq equation. In
fact, it appears to us that the difference between their
"periodicity" theory [Eq. (4.8) of Ref. 5] and their "ener-
gy" theory [Eqs. (4.25), (4.26), and (4.29)] is primarily that
between a linear and a nonlinear theory, but both ap-
proaches should yield essentially the same threshold
behavior. Indeed, from their definitions (4.24), the modes
A, 8, and C of Finucane and Kelly are seen to be propor-
tional to our x, y, and z, respectively. With the identifica-
tions a =m /2, x =2/(2vrV 3), y =Bron.V 3/4, and
z = Crom. , E—qs. (4.25), (4.26), and (4.29) of Finucane and
Kelly become

Hjx = cr(x——y), (4.20a)

riy = —y + [r (t) z]x, —
8ri z = ——,(z —xy),

(4.20b)

(4.20c)

i.e., the Lorenz model (2.7) with parameters appropriate to
free boundaries, except that r(t) is approximated by r(t)
(linear conduction profile). Note that the stability domain
of the conductive state, x =y =z =0, is enhanced,
r, (A, co) & 1, by small-amplitude modulation at low fre-
quencies irrespective whether r(t) or r (t) is used in (4.20b)
(cf., Appendix B). Hence the dashed theoretical curves in
Figs. 21 and 22 of Finucane and Kelly, showing "onset
of observable motion" for values of ro & 1, must refer en-
tirely to transient behavior. The transient convective
current predicted by (4.20) for ro & 1 depends sensitively
on the initial values chosen for the variables x,y, z. For
short times those play a role analogous to our forcing
function g (see Sec. V), but the initial values disappear
from the theory at long times where the ideal behavior is
recovered. Presumably, their experiments could be
analyzed in terms of our Eq. (5.2) below, in which the sys-
tern reaches a steady state independent of initial values
[see also the discussion below Eq. (26) of Gresho and
Sani' ].

V. EFFECT OF SIDEWALLS:
IMPERFECT BIFURCATION

In this section we investigate the effect of lateral walls
at x

&

——+I, for a system with stress-free horizontal
boundaries. The system is still taken to be infinite in the
x2 direction.

A. Derivation of the forcing term

As mentioned in the Introduction, Cross et al. studied
the effect of time-dependent sidewall heating on the am-
plitude equation, and found a forcing term given in Eq.
(1.7), whose strength agreed in order of magnitude with
the one inferred from the experiments on convective onset
times by Ahlers et ai 'The forcing. field g, when added

where g(cov) is a complicated but smooth function given
in Eq. (D18) and satisfying g(0) =1, $~0 for cov~ oo.
The constant ' f,

v 2(1 —A, i)cosaf (5.4a)
rr L [1+k,qcoth(mt~)]

is determined by the ratios

A, i a//~~, A,2 Kg /K——~, —— (5.4b)

of thermal diffusivities and conductivities of the fluid and
wall materials, respectively, the dimensionless wall thick-
ness t~, the lateral width of the layer 2L (the limit

to the amplitude equation (1.6), excites a convection pat-
tern x(t)=u, (1,0, 1) of rolls parallel to the xz axis, i.e.,
parallel to the sidewall. This correctly reproduces the ex-
perimental fact that the heat current caused by the
dynamic mismatch between the sidewall and the fluid has
a strong dependence on the coordinate x

&
perpendicular

to the sidewall, and depends only weakly on the coordi-
nate x2. For time-independent heating, on the other
hand, and for sidewalls which are thermally clamped to
the top and bottom plates, there is no such forcing term
and we expect rolls perpendicular to the sidewalls to be
favored, at least over a large portion of the cell. The ap-
plicability of our theory thus depends on the forcing term
(1.7) being sufficiently strong to suppress these perpendic-
ular rolls. Although we do not at present have an a priori
theoretical estimate for the strength of the required forc-
ing, there is recent experimental evidence' that modula-
tion indeed leads to concentric rolls in a cylindrical con-
tainer, in agreement with our assumption.

In order to adapt the calculation of Cross et al. to our
model we shall repeat their derivation, but retain only the
three modes x,y, z of the original model. For consistency
we shall therefore assume periodic velocity boundary
conditions at the sidewalls u(xi —— L, x2,x3—)
—ll(x i —L x 2 x 3 ) so that the previously defined Fourier
modes of u are still appropriate. The change in thermal
boundary condition leads to an additional (wall) contribu-
tion S~(xi,x3, t) to the conducting temperature profile in
the fluid (see Appendix D)

T' " (x, t)=R(t)(1 —x3)+S (x3,t)+S„(xipx3&t)

(5.1)
where S (x3,t) is the deviation from a linear profile in
the laterally infinite system [Eq. (A4)]. We may now in-
sert (5.1) into the Boussinesq equations (2.2) and once
again. project out the three Lorenz modes x,y, z. For
stress-free horizontal boundaries we then find (see Appen-
dix D) that the Fourier modes S~(ni, O, n3', t) of the wall
contribution modify the Lorenz equations additively as
well as multiplicatively. The most important effect (and
the only one we shall retain) is a change of Eq. (2.7a) to

r,x(t) = —o[x (t) y(t) ]+crg(t),— (5.2)

where g(t) has the same periodicity as the drive r(t). Its
Fourier coefficients are given by

T'.+T".
i covf „„—g(cov), (5.3)
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m.L ~&1 is assumed), and the phase angle

a=m.L/V 2 —cot '(V2) . (5.4c)

0.08

An interesting property of Eq. (5.3) is that g vanishes
for antisymmetric heating of the upper and lower plates
( T = '—T„"),a result which does not depend on the trun-
cation, but only on the Boussinesq approximation' (2.2).
In addition, f vanishes for A, i ——1, or A.2~ ca, or L~ co,
since there is no lateral heat flow in those cases. For
bottom-plate modulation only, the function g is propor-
tional to the time derivative r'(t), and an expression simi-
lar to that of Cross et al. is recovered. The differences
lie in the value of the constant f, and in the function
f(cov) which was set equal to unity by Cross et al. since
the calculation was for low frequencies.

It must be noted that our detailed expression for f is
not to be taken too seriously since the mode truncation we
use is a particularly poor approximation near the sidewall.
Indeed, the temperature profile S (xi,x3, t) is sufficiently
large to couple effectively to many velocity modes and
thus to generate velocity field excitations which are local-
ized near the sidewalls. Within our truncation scheme,
however, these modes which are not excited in the bulk
are discarded, and we therefore examine only the effe'ct of
S~ on the velocity mode x =ui(1,0, 1), Eq. (5.2). More-
over, we have not attempted to repeat the calculation of
Appendix D for rigid boundaries. In comparing our
theory with experiments we shall treat the constant f as
an adjustable parameter, which is either fixed to agree
with the theoretical value calculated by Cross et al. at
low frequencies, or taken from the experimental value ob-
tained by Ahlers et al. ' in the absence of modulation.
Alternatively, we can adjust f to fit modulation experi-
ments at one particular frequency and amplitude, and
then examine the frequency and amplitude dependence of
the data. " These various adjustments of the single con-
stant f involve relatively small changes about a common
value which gives semiquantitative agreement with experi-
ment.
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FIG. 6. Average normalized convective current g„(j""")
plotted vs average reduced Rayleigh number e, in the presence
of the forcing field g [Eqs. (5.3)—{5.5)], and fixed modulation
amplitude 5=roh=0. 5, frequency co=6, and Prandtl number
o =1. Solid curve is for a typical experimental forcing strengthf=4.0X10 ', the dashed curve is for f=1.3X10, the dot-
dashed curve is the ideal case f=0, while the dotted curve is the
unmodulated result (5=0).

B. Effects of the forcing: imperfect bifurcation

The behavior of the model of (2.7) and (2.32a)—(2.32c)
with (2.7a) replaced by

cr[x (t) y(t)]+op(t—), —dx
dt (5.5)

OJ
GQ

tO
I

O
n

N

+o

QI—

0—

—Q. I—
and g given in Eq. (5.3), is illustrated in Fig. 6 for various
values of the constant f and constant values of o, co, and
5=rpk It is se.en that the bifurcation at threshold goes
from being perfect for g=O (dot-dashed curve) to imper-
fect for g&0 (solid and dashed curves). This means that
there is no uniquely defined threshold for convection,
though one can introduce an apparent threshold e,' (zo),
defined as the value of e at which the normalized convec-
tive current (z ) =g„(j""')reaches the value zo [the ideal
threshold is e, =e,'rr(zc=O)]. In Fig. 7 we plot the ap-
parent thresholds E', (zc ——10 ) and e', (zo ——10 ) as a
function of frequency for fixed 5 and cr and various values
of g' (or f). It is seen that although the forcing g' becomes
small at low frequencies [cf. Eq. (5.3)] it has a large effect

—0.2
0 IQ

(b)

FIG. 7. Effective threshold e', (zo) (defined as the reduced
Rayleigh number e at which (z) =g, (j""")reaches the value
zo) plotted as a function of frequency ~ for various values of the
forcing parameter f, and fixed modulation amplitude 5=0.5
and Prandtl number o =1. Curves correspond to the same f
values as in Fig. 6, namely, solid curve, f=4.0&&10 3; dashed
curve, f= 1.3 && 10; dot-dashed curve, f=0. (a) is e',

( zo ——10 ) and (b) is e,' ( zo ——10 ). The ideal curve
e, =e,'zo ——0 for f=0 is indistinguishable from the dot-dashed
curve in (b).
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on the apparent threshold. This is because the convective
current remains above a minimum value set by g during
the subcritical part of each period, so that it has enough
time to build up to a macroscopic value' during the super-
critical part of the period. Figure 7 bears a certain resem-
blance to Fig. 1 of Davis, which summarizes the dif-
ferent criteria used to define stability of time-dependent
motion in the presence of fluctuations. Our parametriza-
tion of the problein in terms of a forcing field g seems to
us to be a physically appropriate description, even in cases
where the detailed theory we have developed for g is
inapplicable.

C. Transitions induced by the forcing

The Lorenz-model equations (2.7), as well as the anhar-
monic oscillator (4.1) have a symmetry x~—x, so that
each solution is doubly degenerate. This degeneracy is
lifted by the forcing g, and it is interesting to consider
transitions from one orbit to the other induced by g. For
a qualitative discussion let us consider the oscillator model

mx +mI x —[@+5 cos(cot) ]x +x =g(t)

with

g( t) = —fco5 sin(cot) =ft'(t),

(5.6)

(5.7)

which is a good approximation to the Lorenz model at
low frequencies. In the absence of modulation (5=0), the
degenerate fixed points are x+ ——+e' for e&0, and a
constant forcing go&0 would favor the fixed point x+.
Nevertheless, the fixed point x still has a sizeable basin
of attraction, so go would have to be larger than some fi-
nite threshold [which depends on e and the initial value
x (0)] in order to cause a transition from x to x+..

In the modulated case it turns out that a very small
forcing can already cause a transition from the x &0 orbit
to the x &0 orbit. This is because the oscillator can come
very close to x =0 at some time during its period,
at which point the restoring force 8 U/Bx
= —[@+icos(cot)]x+x is very small. Let us consider a
low-frequency situation (co/I «1), when our classical
particle moves quasiadiabatically with the potential U.
Then the points of closest approach to x =0 are near the
increasing zeros of the drive, cot*=3n~/2 (n an integer),
since immediately before t* the potential is upward
(t) U/Bx &0), while immediately after it is downward
(t) U/Bx &0). At cot =3nm. /2 the forcing g is maximal
(cf. the dash-dotted curve in Fig. 8) and the restoring
force minimal, so the former has its largest effect. If the
phase of g is such that g(t') &0, a crossing from the
x (t) to the x+(t) orbit is favored, say, whereas if
g(t*) &0, such a crossing is prevented. If for given pa-
rameter values the forcing is too small to cause crossing,
then its critical value can be reached by either of the fol-
lowing procedures: (i) increasing f or 5, (ii) decreasing e,
and (iii) decreasing co. Obviously (i) directly increases the
forcing while (ii) decreases the Rayleigh number and with
it the convective amplitude x so that x;„comescloser to
zero. Procedure (iii) is more subtle. While decreasing co

also decreases g there is the countereffect of decreasing
the distance e—e, (5,co) from the ideal threshold, thus
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FIG. 8. Effect of time-dependent sidewall heating on the
Lorenz model. . Thick lines represent x(t) obtained from in-

tegrating Eqs. (5.2), (2.7b), and (2.7c) numerically for o.=1,
ri =2/377, E = rp —1 =0.1, co =3 with a wall foi'ciilg g(t) =fr(t)
and f=0.005. Thin dash dotted lin-es represent 30$(t). Thin
dashed lines show the driving r(t) —I for modulation ampli-
tudes b =0.4 and 0.5 in the top and bottom halves, respectively.
The maxima of g(t) at cot/2rt=3n/4 (marked by arrows) are
very close to the increasing zeros of the driving, i.e., they occur
at times where the convective amplitudes are very small. The
effective forcing is too weak in the top panel {but strong enough
in the bottom) to induce a crossing from x ~0 to x &0. See text
for further details.

causing the amplitude
~
x;„~to become smaller.

Figure 8 demonstrates how a critical forcing is reached
by increasing 5. There the thick lines represent x(t) ob-
tained from integrating the Lorenz model, Eqs. (5.2),
(2.7b), and (2.7c), numerically for o = 1, 2i ——2/3m,
E=ro 1=—0. 1, and co=3 (co/I =0.1), with a forcing
given by Eq. (5.7) with f=0.005. The dashed thin lines
show the time variation of the external driving r(t) 1—
and the thin dash-dotted lines represent 30$(t). In the
upper part of Fig. 8 the relative modulation amplitude
6=5/ro ——0.4 entails a forcing g that is too small to in-
duce a crossing from the unfavored x orbit (lower thick
curve in the top half of Fig. 8) to the favored x+ orbit
(upper thick curve in the top half of Fig. 8) near the times
cot/2m=n 3./4 marked by arrows. Thus the x solution
is stable [Fig. 8 shows x~ (t) after 25 driving periods have
elapsed since starting the system from xo =yo =+0.3962,
zo=0. 157]. In the lower part of Fig. 8 (b, =0.5) the forc-
ing is sufficiently strong to induce a crossing from x to
x + 4

In a measurement one does not necessarily observe x (t)
directly but rather x (t). However, this quantity also de-
pends on the occurrence of a crossing. First, note that
just below the critical forcing the average over a period
(x+(t)) of the favored solution will be considerably

lardier
than (x (t)) (e.g. , in the top half of Fig. 8,

(x+ ) =2.2(x )). The reason is that the critical forcing
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strongly depresses x '" at t* thereby hindering the
growth of x to sizable amplitudes during times where
r(t) &1, while x+" is even enhanced by g at t* T. here-
fore, if x (t) is realized with a small (x (t)} for subcrit-
ical forcing, one will observe a large change in (x (t))
when increasing the forcing to a supercritical value (e.g.,
by increasing 6), as a result of the crossing from the then
unstable x orbit to the stable x+ solution. The change
in Fig. 8, e.g., is from (x ) =0.4X 10 for 6=0.4, to
(x+ ) = I )& 10 for b, =0.5. On the other hand, if x+ is
realized below the critical forcing threshold, one does not
observe such a change in (x (t) ) since. the favored solu-
tion is practically unaffected by slightly increasing the
forcing. For example, (x+(t) } in the top and bottom of
Fig. 8 differ by only 2%. Further evidence of the cross-
ing in the Lorenz model and comparison with experiment
are given in paper II.

VI. CONCLUSION

Let us summarize the main results of the present work.
(1) An approximation to the Boussinesq equations was

introduced to treat convection in the presence of external
modulation of the temperature or gravitational force.
This approximation, which consists in retaining only one
velocity mode and two temperature modes, is not sys-
tematic in the sense that the errors cannot be shown to be
small in any limit. On the other hand, the modes retained
are treated exactly in the presence of modulation and lead
to a generalization of the well known model of Lorenz,
for both stress-free and rigid horizontal boundaries.

(2) A linearization of the model for temperature and
gravity modulation yields the threshold shift e, for the
onset of convection as a function of the amplitude and
frequency of modulation. Comparison with exact calcula-
tions of e, using the linearized Boussinesq equations in
certain limits yields excellent agreement wherever the
threshold shift is appreciable.

(3) The nonlinear behavior of the model above threshold
can be studied analytically in certain limits, and numeri-
cally for all values of the parameters. Detailed predic-
tions are obtained for the convective current j ""(t).

(4) An important physical effect which must be taken
into account to interpret real experiments is the forcing of
convection brought about by time-dependent sidewall
heating. This effect is calculated exactly for stress-free
horizontal boundaries within our mode truncation, and
yields an imperfect bifurcation from conduction to con-
vection. The dependence of the sidewall forcing on exper-
imental parameters is investigated in detail. An interest-
ing effect of the forcing is to cause a transition from one
direction of flow to another as the amplitude of the
modulation is increased at fixed average Rayleigh num-
ber.

In a subsequent paper the foregoing theory is applied
to quantitative experiments in which the heat current
entering the bottom plate of a cylindrical cell was
sinusoidally modulated and the temperature difference be-
tween the two plates was measured as a function of time.

Let us conclude by listing possible extensions of the
theory.
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APPENDIX A: GENERALIZED LORENZ MODEL
FOR STRESS-FREE HORIZONTAL BOUNDARIES

Here we derive the generalized Lorenz model (2.7} from
the Boussinesq equations (2.2} for a laterally infinite fluid
layer with an externally imposed vertical temperature
difference varying periodically in time. Let the tempera-
tures of the upper and lower plates be general periodic
functions with period 2m. !co (not necessarily harmonic),

7 u(t) g Z ue icuvt— (A 1)

(A2)

1. Conductive state

The conductive temperature profile

T (x3pt) —T (t)+R (t)( 1 x3 )+S (x3yt) (A3)

resulting from the boundary conditions (2.4) in the ab-

(1) Clearly, to improve the theory from a fundamental
point of view more modes must be retained. For rigid
horizontal boundaries one could demand that enough.
modes be kept so that the slope of the Nusselt number
versus Rayleigh number be correctly given in the absence
of modulation (this is already the case for stress-free hor-
izontal boundaries in our model). More ambitiously, one
could demand that enough modes be retained to describe
the subcritical bifurcation to hexagons predicted by Rop-
po et al. ' in ideal systems.

(2) In view of the importance of sidewall forcing for
real modulation experiments it would be desirable to have
a more accurate representation of this effect than we have
used. In particular, the local nature of this forcing is lost
in our model since we only retain one spatial mode of
flow. An amplitude equation which involves the spatial
variation of the flow was discussed by Cross et al. , but
it has only a first time derivative and therefore would
show no threshold shift with modulation. A more ap-
propriate model would have both spatial variation and
higher time derivatives, but no such model has yet been
derived. An interesting possibility would be to incorpo-
rate the hexagonal convection pattern for ideal systems,
and to study how it is suppressed by forcing terms in the
presence of sidewalls. It seems likely that these effects
could be studied numerically on the basis of phenomeno-
logical models which are constructed to agree with more
exact theories in various limiting cases.
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sence of-. convection [u(x, t)—=0] is also periodic with
period 2ir/co. For the laterally infinite system it depends
only on the vertical coordinate, albeit nonlinearly via
S (x3, t) which is the instantaneous deviation from a
linear conduction profile. Its temporal Fourier coeffi-
cients are given by

S (x3)=8(x)=0 at x3 ——0, 1 (A14)

Bu, (X) Bu3(X) =0 at x3 ——0, 1
Bx 3 BX3

(A15)

imply that S (n3) and 8(n) are odd under n3~ 113.
The stress-free boundary condition of the velocity fields,

S„"(x3)=R sin[y (1—x3)] —(1—x3)
siny

sin(y~3)+sin[y (1—x3)]
+Tv

lnpv

(A4a)
k&niu &(n)+k2n2u2(n)u3(n)=—

Kn3
(A16)

implies that the velocity modes ui 3(n) are even under
n 3~—n 3. Due to 'the incompressibility constraint
q;u;(n) =0, the vertical component u3 can be expressed in
terms of u] 2,

y =(icov)'/

The conductive heat current at the lower plate

gcond( t ) Tcond(a
X3

(A4b)

(A5)

in general depends on both T" and T'. The relation be-
tween the corresponding harmonics is

Furthermore, the conductive temperature T„„ddrops out
of the momentum balance (2.2a) of the Boussinesq equa-
tions for the solenoidal velocity field, upon applying the
transversal projector PJ =5J q;q~/q —to 5~ 3T„„d(n3).
Finally, the pressure is given by a quadratic combination
of velocity components. Discarding all Fourier modes
other than u &(1,0, 1) (corresponding to straight rolls along
the x& direction) and 8(1,0, 1),8(0,0,2), the Boussinesq
equations (2.2) reduce to

Jcond v
& + Tg

tany. cospv
(A6)

In the relation for the v=0 component, i.e., the time aver-
ages,

(A7)

B,u i(1,0, 1)= —0(k i +a. )u i(1,0, 1)

—o.[k)~/(k i+~ )]8(1,0, 1),
8,8(1,0, 1)= —(k i +rt )8(1,0, 1)

—(ki/ir)ui(1, 0, 1)[R(t) 2mS—(2, t)

(A17a)

the temperature of the upper plate does not enter. For
later reference we give the n3 ——2 Fourier components of
S„(x3):

1

S„(n3——2) = — dx3S (X3)sin(2mx3) =
0 2m y —4~

(AS)

2. Derivation of the Lorenz model

(A17b)—2m8(0, 0,2)],
8,8(0,0,2) = 4' 8(0,0—,2) —4k u, (1,0, 1)8(1,0, 1) .

(A17c)

The fact that only the mode S (n3 ——2) of the nonlinear
conductive profile enters into (A17b) is not an additional
approximation but rather a consequence of the mode trun-
cation of u and 8. From Eq. (ASa) it is seen that this
coefficient is independent of T".

By introducing
As described in Sec. II we decompose the temperature

field into conducting and convecting parts

T(x, t) = T"" (x3,t)+8(x, t) . (A9)

P(x) = t g P(n)e'q' '" . (A10)

We then make a spatial Fourier series expansion of the
velocity fields u3 (x, t) and of the deviation S (x3, t)
+8(x,t) from the linear conduction profile, according to

2~ ui(1, 0, 1)
X = —2

(R stat) 1/2
C

3/2 m. 8( 1,0, 1 )

v b R""
C

8(0,0,2)
statRc

(A1Sa)

(A I Sb)

(A1Sc)

By symmetry we may choose real modes satisfying

P(n) = —P( —n),
with

n=(ni, nz, n3), n;=0, +1,+2, . . .

q(n)=(kini, k2nz, k3n3) k3 —17 .

The boundary conditions for the temperature fields

(A 1 1)

(A12)

(A13)

qdy R (t) 2mS (2,t)—= —g+dt R stat
—Z X

C

(A19b)

Here

b(z —xy) . —dz
dt

(A19c)

as variables, Eqs. (A17) take the form given in (2.7),

———o(x —y), (A19a)
dt
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(ki ~n )

k)

is the critical Rayleigh number for onset of convection
with wave number k& in the absence of modulation.
Equation (A20) leads to the exact critical Rayleigh num-
ber R,""=m 27/4, and the correct critical wave number
k; =m/v 2, for which

4m 8b= —+- (A21)
k]+m

y./2
(ir' —y')(9ir' —y'„) tan(y„/2)

(A30)

II D this yields

R(t) =R (t) —(3m./4) J dx3sin (nx3)B„,S (x3, t) . (A29)

Inserting (A4) into (A29) one obtains the temporal Fourier
coefficients for the rigid case

1 2
k i++ 3m.

(A22)
APPENDIX B: BIFURCATION THRESHOLDS

OF THE PERIODICALLY
MODULATED OSCILLATOR

[In contrast to McLaughlin and Martin we choose not to
rescale the time t, but keep it in units of the vertical dif-
fusion time, thus producing the factors Hi in (A19).
Furthermore, our variables x,y differ from those intro-
duced by Lorenz by a factor 1/V b. In that way the rela-
tion (z(t) ) = (x (t) ) holds exactly for the time averages. ]

The quantity

R(t)=R(t) 2~S "—(n, =2, t)

A4m —l COVEe
477 —E cov

replaces the Rayleigh number in the standard Lorenz
model. For a pure harmonic modulation

R (t) =RORe(1+ he '"')

one obtains

2

R(t)=RORe 1+6 e '"' =R,""r(t) .
O'll —t co

1. Numerical solution

The stability behavior of many parametrically modulat-
ed physical systems is that of the oscillator (3.1), which
we rewrite as

mx +m I x —[e+5c(cot) ]x =0, (81)

i.e., as Hill s equation with damping. Unfortunately, the
literature deals almost exclusively with the case of small
damping, I /co«1, whereas we are also interested in
large I'/co (in the experiments described in paper II, I /co
went up to 20). Since the bifurcation thresholds of (Bl}
are of sufficient general interest we felt it worthwhile to
investigate the stability behavior in some detail (see also
Gresho and Sani' ). We consider explicitly the case of a
cosine modulation, c (cot) =cos(cot), and a step modulation
c (cot) =sgn[cos(cot) ].

We first transform (81) using

(A25)

[In the main text of the paper we have used the usual
symbol R instead of Ro for the average Rayleigh number
(R(t) ).] Lastly we mention that the vertical heat current
averaged horizontally

J(x3 t) —(Q3(x, t)T(x, t) )„,„,— ( T(x, t) )„,a

x(t)=y(~}exp( —vl /co), %=orat/2.

into the standard form of a Mathieu or Hill equation
j

d2
+a —2qc (27) y (r) =0

d~2

with

a = —co (4e/m+1 ),

(82)

(83)

(84a)

(A26)

is determined at the lower plate x3 ——0 by the temperature
only. Hence the convective contribution to the current

J"""(t)=— (8(x,t) ~„,o)„,„

q =25/mto (84b)

For temperature modulation 5 is given by Eq. (3.6b),
while for gravity modulation 5 is replaced by the constant

We look for the stability boundaries between the solu-
tion x =0 and a periodic Floquet solution

=2m g n38(0, 0,n3, t) (A27) x (t) =e'" "'P(T ) . (85)

is given in the Lorenz model by the 8(0,0,2) mode:

Since P(7) =P(7+@) is periodic (with the. same period as
the modulation) the bifurcation threshold is determined
by the condition

j ""(t)—= (R,'"') 'J"""(t)=2z(t) . (A28)
Re@(a,q) =I /co, (86)

For rigid boundaries the effective driving (A25) can be
identified from the projection of the term —u3B„,T"" in

Eq. (2.2b) onto the modes retained in 8. For the three-
mode truncation of Gresho and Sani' discussed in Sec.

that the growth rate Rep of y (7)=exp(pr)P(7) should be
just compensated by the damping rate I /co. To evaluate
the characteristic Floquet exponent p(a, q) of the Mathieu
equation we integrated (83) from two different initial con-
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ditions at r=0 up to 7.=~/2, as described. by Abramowitz
and Stegun. The implicit equation (86) has in general
several solutions a, (q) for a fixed damping rate I /co.
Having found them, the stability boundaries are easily ex-
pressed with (84) in terms of, e.g., e and 5.

In Fig. 9 we show the thresholds for harmonic and
subharmonic bifurcations for various values of I /co in the
case of a cosine modulation. For co,m, r fixed one can
immediately translate the curves a, (q) of Fig. 9 into sta-
bility boundaries e, versus 5: the point —a, (q~O)
=I /co marks the zero of the e axis for a particular
damping I /co since q =0 implies 5=0=e, . Note, furth-
ermore, that small co causes a, q, and Re@(a,q) =I /co to
be large.

An analytic condition for the threshold in the limit
co~0 then follows from the WKB expansion technique of
Rosenblat and Herbert or from the generalized asymptot-
ic behavior of Mathieu functions used by Dowden. ' The
result is (see also Sec. III C)

10

-Q

-10
10 q 15

2n'f as
2 2& 0

e I 5+ — + coss
I?l 2 Pl

(87)

where 5=5(co=0)=rp
~

6
~

.

2. Analytic theory for small modulation amplitude

Here we derive an analytic expression for the harmonic
bifurcation threshold e, (5,co ) of (3.1) and (3.2) for
sinusoidal and step modulations with small amplitudes
5 « 1. To that end we expand

FIG. 9. Stability boundaries a, = —(4e, /m +I )/~' of the
parametrically modulated damped oscillator as a function of
q =25/mco. Parabolic curves in the upper left-hand part
denote thresholds for harmonic bifurcations for damping ratios
I /co increasing from 0.5 (bottom) to 3 (top) in steps of 0.5.
They intersect the a axis at —a, (q =0)=I /co . The adjacent
tongue-shaped curves denote thresholds for subharmonic bifur-
cations for damping ratios increasing from 0.5 (lower left} to 2.5
(upper right) in steps of 0.5. The next set of tongues are thresh-
olds for harmonic bifurcations for the same succession of damp-
ing ratios. Finally, the last three curves in the lower-right
corner are again subharmonic thresholds for I /ay=0. 5, 1.0, 1.5.
(Solid and dashed lines merely distinguish successive values of
r/~. )

e, (5,ar) =e,' '+5m,'"(co)+5 e,' '(co)+ (88)

as well as the periodic orbit

x(t)=x' '+5x'"(t)+5 ' '(t) (89)

Hence, e,' '=0 and x' '=const. The (solubility) condition
that the solutions x'"(t),x' '(t) are periodic requires the
integrals of (810b) and (810c) over a whole period T to
vanish. Therefore, e,'"=0 and

of Eq. (3.1) at threshold. The successive orders in 5 yield
the equations

T
e, (co)= —T ' J dtc(cot)x"'(t)/x' '. (813)

Lox' '(t) =0,

Lox"'(t) =[a,' '+c(cot)]x' '(t),

Lox' '(t)=[a,"'+c(cot)]x"'(t)+e,' 'x' '(t),

(810a)

(810b)

(810c) x"'(t)/x'"=—
l?l CO

—l Ci)fe
co+I I (814)

For the sinusoidal modulation (3.3) the solution of (810b)
1S

whose marginally stable (periodic) solutions we wish to
find. Here Lo is the operator

Lp=m 2
+I?ll E

(0) (811)

—r/2+(r'/4++ /I) &0 (812)

Marginal stability of the solution of (810a) implies the
following condition on the characteristic exponents:

For the step modulation x"'(t)/x' ' is a lengthly expres-
sion which we do not write down explicitly. The thresh-
old resulting from (813) is then as shown in Eq. (3.10) of
the text.

The precise domain of validity of these expressions is
not immediately clear from an examination of the lowest-
order expressions. One might think, for instance, that
since Eq. (814) behaves as co

' at cot=sr!2 for small co,
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the domain of validity of the expansion (88) and (89)
would be 5/co & 1 for (p && 1. It turns out, however, that
Eq. (3.10) is correct for 5«1, independent of 5/p). A
similar question arises in the nonlinear theory, as dis-
cussed in Appendix C.

3. Analytic theory for step modulation

The stability boundaries for the ste~ modulation can be
obtained analytically for arbitrary 5 as follows The
general solution of (83) for c (Zr) =sgn[cos(2r}] is

p cosh(n. l"/co ) =cos(~a /2) cos( m P/2)
—[(a +P )/2aP]

X sin(ma/2)sin(nP/2) . (817)

5 2(0
e, (5, co —+0) = 1+

m.I

2
mI
25

Here the solution of (817) with p=+ 1 (p= —1) deter-
mines the threshold for a harmonic (subharmonic) bifur-
cation.

It may be shown that in the limit p)~0 and for
5 & m I /2, Eq. (817) implies

y(r)= . A, e' '+Aze ' ', cos(2r) &0

A3e'~+A4e '~, cos(27) )0
(815)

&ln 1—
mI

2

(818)

with

a =V'a +2q, p =V'a —2q . (816)

Continuity and periodicity of x and x yield four relations
(i =1,2, 3,4) g ,cJA. J =0 between the amplitudes IAi I,
for which the solubility condition, detc;J =0, reads

which extends the result (3.10b) obtained from a small-5
expansion. The eigenfunctions of Eq. (Bl) may be calcu-
lated for p)~0 using a WKB approximation as noted by
Davis and Rosenblat. '9 Unfortunately, these authors did
not carry out a consistent calculation, so we list here the
full WKB answer, for m =1, I'=2, and for the step
modulation (3.4). The result is

T

e t(e(l+8/2)t—+ ) 5e —()+8/2)t) ()2x)(t)= .
e(2'/cu) t[(1+ ) 5—)e(1—8/2)(t 2n/cu) & 5e

——() 8/2)tq —~ r (2~2 2
'7T (CO 77 . (819)

1. Anharmonic oscillator

We consider Eq. (4.1), which reads

mx+m I x —ex +x =0,
e=e+5c(cot),

(Cl)

(C2)

where c((ot) is any periodic function with period 2m, aver-
age zero, and maximum value unity.

a. Perturbation theory near threshold

To determine the small-norm periodic solutions near
threshold we introduce an expansion parameter g [which
will turn out to be proportional to (e e}' ], and writ—e

x(r) =rix, (r)+ri'x, (r)+g'x, (r)+ ~ ~ ~,
e=e~(c0,5)+Y/e)(co, 5)+'g ep(c0, 5) + ' ' '

(C3)

(C4)

Inserting these expansions into (Cl) and equating like or-
ders in g we obtain

Wpxi =mx|+mI x& —[e,+5c(cot)]x) ——0,
Wpxp =e)x)

(C5a)

(Csb)

This function has discontinuities at both. p)t =0 and n, but
these are small, i.e., of relative order exp( —co ').

I

APPENDIX C: PERTURBATION EXPANSION

3Wpx3 = e2X) +e,x2 —X ) (C5c)

x =Y/x ) = [(e eq ) /e2] x ) +0 ( e—eq —) . (C7b)

Conditions for validity of the expansion are that rie3 ((e2,
or 'g x3 ((x&.2

Let us apply the above results to the step modulation
(3.4), for which the linear problem can be solved analyti-
cally for F0~0 and 5&ml /2. The result is Eq. (C7b)
with e, and x) as calculated in Eqs. (818) and (819),
respectively, and ez is a constant we shall not evaluate ex-
plicitly. We now wish to ask over what range of parame-

where W(1 is analogous to I.p, Eq. (Bll), except that in
(C5a), (e5, )p)is the exact threshold to all orders in 5.
The lowest-order equation is precisely Eq. (81), discussed
in Appendix B and the ensuing e, and xi can be obtained
in general, though analytic expressions are only available
for certain parameter regimes, such as 5 « 1, or (p~O, or
for certain functions c(r). To solve the subsequent equa-
tions we define the eigenfunction x ) of the adjoint opera-
tor Wp by

Wpx )
—=mx') —m I x ) —[e, +5 c (cot) ]x )

——0, (C6)

and take the scalar product of x) with (C5b) and (C5c)
over one period. We then find that x2 ——e&

——0 and

e2= (x )x ) }/(x')x) } (C7a)
I

leading to the solution
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ters the lowest-order solution (C7b) will be a good approx-
imation to the exact answer. Davis and Rosenblat' deter-
mine this range by examining the ratio

0.6—

04—
eq/e, ~ exp[(m5/co) —11 (C7c)

at fixed i1, and imply that the expansion (C3) and (C4)
breaks down for co «5 since ez/e, can become large. In
fact, however, the quantity e2 depends on the arbitrary
normalization chosen for the linear eigenfunctions x

&
and

xi, whereas the more appropriate quantity [see Eq. (5.8)
of Davis and Rosenblat' ]

0.2—

0.4

2'g 6'2=6' —E'~ (C7d) 0.3

x, (t;5)=1+5x',"(r)+5'xp'(r)+

x, (r;5)=1+5x,'"(t)+5'x,"'(t)+
(C9a)

(C9b)

e, (5)=5 e, +
Here we have used the fact that the dummy constants x'I '

and x i' ' drop out of (C8) and therefore may be set equal
to 1 for convenience. Inserting the small-5 expansion into
(C5a) one obtains the sequence (810) of linear equations
with constant coefficients and a similar sequence with I
replaced by —I' from (C6). These equations can be solved
for any modulation.

is independent of that normalization, and it does not
diverge when co «5. By analogy to the case of the ampli-
tude equation studied below, we conjecture that the limi-
tation on the validity of the expansion does not come
from Eq. (C4) for e, but rather from Eq. (C3) for the
function x(t). This then suggests that Eq. (C7b) is a good
approximation so long as e e, «—co, independent of co/5.
To test our conjecture we have integrated Eq. (Cl) numer-
ically with the step modulation (3.4) for m =1, I =2, and
different values of e, co, and 5. In each case we have com-
pared the numerical results to Eqs. (C7b) and (820) ob-
tained using perturbation theory [since we did not evalu-
ate the constant e2 in Eq. (C7b) we have fitted it by nor-
malizing to the exact answer at cot =0.5. We are thus
testing only the shape of the solution and not its magni-
tude]. We consider three cases, the first two have
e e, &ro, and w—e expect perturbation theory to hold for
these, whereas case (c) has e—e, &co and perturbation
theory should break down. The results presented in Fi.g.
10 confirm our conjecture to reasonable accuracy. In par-
ticular, as long as e—e, & co, the two curves agree for both
co &5 [case (a)] and co &5 [case (b)]. This test shows that
the relevant parameter for the validity of the perturbation
expansion (C3) and (C4) is (e—e, )/ni and not 5/co, as im-
plied by Davis and Rosenblat. '

It has already been remarked that for an arbitrary, i.e.,
non-step-wise modulation analytic expressions for the
solutions xi and xi of Eqs. (C5a) and (C6) are not avail-
able. Such solutions would determine via (C7a) and (C7b)
the lowest-order bifurcating solution x (t) above threshold,

x (t)= [e—e, (5,co)]'~ f (t;5,ro), (CSa)

f(t;5,co) =x i (t)( (x,x, ) /(x, x, ) )'i (CSb)

If, however, 5«1 and 5/co «1 one can expand x&, x &,

ands, in 5,

l.2—

0.8—

04—

0
0.2 0.4 0.6 O.S

For a sinusoidal modulation, c (rot) =cos(cot), the
lowest-order result has been given in (814). The next or-
der reads

1

2

xI '(t)=
2m ' I 1

e
co + l I 2co + l I

(C10a)

and to obtain x &'"' one has to replace I by —I in x]"'.
Inserting the above results into (C8b) one obtains

Sco +If (t;5,co) = 1 —— +O(54)
4 m co (ni2+ I'2) 2

X[1+5x'i"(t)+5 xi (t)+O(53)] . (C10b)

It is now a simple rnatter to evaluate the slope s of Eq.
(4.6b) from (CS) and (C10b), and the result is given in Eq.
(4 7).

b. Adiabatic expansion above threshold

If the function e(t), Eq. (C2), remains positive for the
whole period (i.e., @~5), then there exists an adiabatic ex-
pansion for small co, which we now discuss. Let us divide
the time dependence of x(t) into a rapid variation with

T I ME /PER I QD

FIG. 10. Time dependence of solutions of the parametrically
modulated nonlinear oscillated (C1) with the step modulation
(3.4) for m =1, I =2, and various values of co, 5, and e. Solid
curves are numerical solutions of the nonlinear equation, and
the dashed curves are calculated from first-order perturbation
theory [Eqs. (819) and (820)]. Solutions are periodic in the in-
terval 0&cot/2m. &1, and the dashed curve was fitted to the
solid curve at cot/2n. =0.5. (a) co=0.2, 5=1, @=0.266 so
e—e, =0.03. (b) m=1, 5=0.5, @=0.144 so e—e, =0.1. (c)
co=0.05, 6=1, @=0.357, so e—e, =0.11.
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variable t& and a slow variation with variable ~=mt, com-
ing from the dependence on e(r). (In this appendix we
use the variable r =cot, as contrasted with r =(ot/2 used in
Appendix B.) Then the time derivatives in Eq. (Cl) be-
come

(Cl 1)

equation (4.2)

x(t) —e(t)x (t)+x'(t) =0, (C15)

where e is still given by (C2). This equation has the ad-
vantage that the periodic solutions can be written down in
quadratures as

and we shall expand the quantities in (Cl) in co, consider-
ing r derivatives to be of order unity. Let

x (t) =x' )(t),e7r))+cox'"(ti, e(r)) where

co [g(2m. )—1]g(r)
2 2~(g)+[y(2~) —1]f, q(r )dr

' (C16)

+a) x' )(t„e(r))+ (C12)

—ex(0)+(x(0))'=0,

ml B~' ' —ex"'+3(x' ') x"'=0,
m()2~(0)+ml Q+ 1 —ex(2)+3x(0)(x(1))2

(C13b)

+3(x' ') x' '=0, (C13c)

In steady state (i.e., t) —+Do) we can neglect the depen-
dence on ti. Inserting (C12) into the equation of motion
(Cl) we obtain equations in the variable r at each order in

r

P(r) =exp 2f e(r')dr' (C17a)

(P)=(2m) 'f g(r')dr'. (C17b)

We shall obtain solutions of (C15) by expansion tech-
niques and compare to the exact result (C16) in order to
determine the range of validity of the expansions.

a. Perturbation theory near threshold

The perturbation technique of Davis and Rosenblat' is
very simple to apply to the present equation (for which
e, —:0), and we find for a cosine modulation

leading to the adiabatic solution x (r) =e[Io(25/co)] 'exp[(25/co)sinr]+O(e ), (C18)

x (cot =r) =e — E'corn I
4~ 3/2

r

m(o 9ml (e ')
+ 1—

4~ 3/2 4e 2e

1 — e" +O((o ), (C14)
2E

where Io is a Bessel function. It is now interesting to in-
quire firstly whether the above expression is valid for all
co/5, and secondly what the form of the O(e ) corrections
is. Turning to the exact expression (C16) for a cosine
modulation, we note that for e/co « 1 with (o/5 arbitrary
we may write

P(r) =P(r)exp[(2e/co)r]

where the priine denotes differentiation with respect to r.

2. Amplitude equation
with

=P(r)(1+2erlco+2e~r /(o'+ ) (C19)

The perturbative techniques discussed in the previous
section may also be applied to the first-order amplitude

P(r) =exp[(25/o))sinr] .

Inserting this expansion into (C16) we find

x (r)=e'X(r) 1+(Ze'/(o) n+r (rX) —f X—(r')dr' +O(e /co ) (C21)

where X(r)=P(r)/(P). The first term on the rhs of
(C21) is precisely (C18), the perturbation result, and the
second term in the large square brackets clearly remains
bounded when 5/co —+Do, so that it represents a small
correction when e/co «1. [It is easy to verify that (C21)
is periodic in r, and that the sum rule (3.7) is exhausted by
the lowest term, i.e., that the O(e ) term integrates to
zero. ] The present calculation thus shows that perturba-
tion theory is valid in the range e«co «5, even though
the function (C18) has a very sharp peak. A similar dis-
cussion can be given for other functions c (r), for instance
for a step.

In the range cu«a&5 in which perturbation theory
breaks down, we have not found any significant simplifi-
cation of the exact expression (C16), valid uniformly over
the whole range of r.

~t
x(r)=e'

4~ 3/2
CO

8
—5/2

9(e')2
+O(co ),

(C22)

which agrees with (C14) in the limit m~0, m I ~1. We
may check the validity of this expansion by examining
Eq. (C16) for co «5 & e. Let us consider the cosine modu-
lation, for which the integral in (C16) can be evaluated by
a saddle-point method

b. Adiabatic expansion above thr eshold

For the case e&5 (e'&0) and co~0 the adiabatic expan-
sion can also be applied to Eq. (C15) and we find
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T

J P(r')d~'=P(r)exp(2Er/~)
2E/co

N ((5((E .

Inserting this expression into (C16), we find

x (r)=e(r)[1+0(co/E)],

(C23)

(C24)

in agreement with (C22). Note, however, that there
are also nonanalytic corrections containing factors
exp( —2erlco) which are missed in the adiabatic expansion
(C22).

3. Lorenz model

Here we shall outline the perturbation theory for the bi-
furcating solution

X(t)= (x (t),y (t),z (t) ) (C25)

of the Lorenz model (2.7) immediately above the thresh-
old e, . With the expansion

X(t)=qX, (t)+g'X, (t)+
6 —6~ ='gE']+'l7 62+ ' ' '2

(C26)

(C27)

the nonlinear system of differential equations (2.7) is
transformed into a sequence of linear problems. For tem-
perature as well as for gravity modulation one finds from
the first order in g that

z, (r) =O=z, (t), (C28)

while x~,y~, x &,y &
are all finite. To second order in g one

obtains

(~,B,+b)z, (t) =bx, (t}y,(t), (C29)

e) ——0, (C30)

and the third-order equation yields e2 in terms of x ~ and
x).

While the above equations (C25)—(C30) hold for tem-
perature and gravity modulation, the functions X~(t) and
X&(t) given below and the thresholds e, are different for
the two modulation procedures. The bifurcating solution
z(t) which determines the convective current is given in
each case to lowest order in e—e, by

yi(t) = [(rI/cr)B, +1]x&(t),

[mi},—ml'i}, e,—(5,co) —5cos(cot)]yt(t) =0,
xt(t)=iT '(1 —r)B, )yi(t) .

(C33b)

(C33c)

(C33d)

Here m =(r~) /0, (2.19); I =(cr+1)/wi, (2.20);
5=5

~

5/b, ~, (3.6); and e, (5,co) is given up to second or-
der in 5 in (3.11). The solvability condition in order g
yields

(y lx lz2 &/&y i~ i & (C34)

In this case, [Eq. (2.33)] the first-order equations read

[mi},+ml i},—e, (5,co) —5cos(cot)]y)(t) =0, (C35a)

[1+@,(5,co)]x&(t)=(1+r~B,)y~(t), (C35b)

[mB, ml cl, ——e, (5,co)—5cos(cot)]x )(t)=0,
y&(t) =(o.—~if, )~, (t), (C35d)

with e, (5,co) given up to second order in 5 by (3.20). The
solvability condition yields

~2 (y1+lz2 & (yi& i
—x i [(iT+'rii} }~ —~y ] &

' . (C36)

(C35c)

Using (C35b) one finds for the growth coefficient (C32b)

sG(5, co) = (y )x ) —o 5[1+@,(5,co)] 'x ) y, cos(cot) &

X (Z2 & /(y 1X lz2 & (C37)

which can be evaluated in the same way as for tempera-
ture modulation, and the result is given in Eq. (4.10).

For small-modulation amplitude one may solve (C33)
analytically via a 5 expansion (cf. Sec. 1 of this Appen-
dix). Having determined x&,y&,y~ and with it also z2,
(C29), one has all the necessary ingredients to evaluate the
bifurcating solution z(t) in (C31) for small 5. The calcu-
lation is straightforward but somewhat cumbersome.
Since the small-5 solution of (C33a) and (C33c} has been
given already in Sec. 1 of this Appendix we do not write
down z(t) explicitly. We only remark that to evaluate the
growth coefficient (C32b) of (z(t) & up to second order in
5 one needs x~, y&, and y~ to first order only. The result
is given in Eq. (4.9)

b. Gravity modulation

z(t) =rj z2(t) =(e e, )Z2(t)/ez . —
Its mean may thus be written as

(C31) APPENDIX D: EFFECT OF SIDEWALLS

1. Conductive temperature profile
(z(t) & =(E e, ) , s—

with a slope

s = (z, &/e2 .

(C32a)

(C32b)

a. Temperature modulation

For temperature modulation the first order in g yields
in addition to (C28) the following four equations for the
functions x &,y],x &,y &.

. Tu(r) g Tue icuvt— (Dl)

Here we solve the heat conduction equation for the
fluid layer described in Sec. I, but with the addition of
lateral sidewalls perpendicular to the x& direction. The
walls extend from x& ——+L to x~ ——+(L +t ) where t is
the wall thickness (in units of d). As in Appendix A we
consider the general case in which periodically varying
temperatures are imposed at the top, x3 ——1,

[mB, +mrs, —e, (5,co) —5 cos(cot)]x, (t) =0, (C33a) and at the bottom, x3 ——0, according to
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T'(t) T—"(t) =R (t)= g R„e (D2) Q~(n3) =n 371 —tcov . (D7)

We write the resulting temperature field

T""(x),x3, t) = T"(t)+R (t)(1—x3)+S(x&,x3yt)

(D3)
1+[1—( —1) ']T"„/R„

S„(n3)= ice—vR„
mn3Q„(n3)

(Dg)

Note that the modulation frequency co is measured in
units of the vertical diffusion time of the fluid. In Eq.
(D6)

as a linear profile plus a deviation

S(x~,x3,t)= g S„(x~,x3)e (D4)

cosh[Q„(n3)x & ]S„(x(,n3)=S" (n3) 1 —P„(n3)
cosh Q„(n3)L

(D6)

with

depending here also on x~ due to the presence of the
sidewalls. Obviously 5 =0 at x3 ——0, 1. In addition we re-
quire the following boundary conditions for S: (i) no heat
current leaves the system through the outer wall boun-
daries at x& ——+(L +t ) (this condition is very well real-
ized in the experimental setup of paper II); (ii) S is con-
tinuous across the inner wall boundary at x~ ——+L; (iii)
the horizontal heat current across x ~

——+L is continuous.
It is convenient to solve the heat equation in terms of

the modes
1

S„(x~,n3) = —I dx3S„(x~,x3)sin(n37TX3),

entering the Fourier series expansion of S with respect to
the x3 direction. A straightforward, somewhat lengthy,
calculation yields for the deviation from the linear profile
in the fluid ( L&x, & L—)

is the solution in the absence of sidewalls, L =+ 00. One
can easily verify that (Dg) is the Fourier transform of
S„(x3),Eq. (A4). The quantity

p„(n3)=(1—A, , )
Q„(n3)

Q (n3) tanh[Q„(n3)L]
X 1+k2 (D9)

Q„(n3) tanh[Q„(n3)t„]

involves the ratios A,
&

and A2 defined in Eq. (5.4b), and

2 =22Q„(n3)=~n3 icos,—) .

The change

S„(x~, n3) =S„(x&, n3 ) —S„"(n3)

(D10)

cosh[Q„(n3)x,]= —S„(n3 )p„(n3 ) (D 1 1)
cosh Q~ n3 L

of the temperature profile in the fluid caused by the pres-
ence of the walls is of relative size P(n—3) at x~ ——+L,
and decays inwards towards x ~

——0 to the value
P„( n)/3—c sho[Q„( n)L3] with a decay length

1/Re[Q (n3)] describing the penetration depth of heat
"waves" entering the fluid from the sidewalls. This
penetration depth is for all frequencies less than (nn3)

For the subsequent analysis we need the Fourier mode

I.
S "(n &, O, n3 ) = dx)e ' ' 'S„(x),n3)

2L

k&n&sm(k~n~L)+Q„(n3)cos(k~n ~L)tanh[Q„(n3)L]= —S,"(n3)p (n3)— 2 2 2L k (n (+Q,(n3)

(D12)

(D13)

at the critical wave number k
&

——k, (which for free
boundary conditions is k, =v m /2). Note that for
Re[Q (n3)]L » 1, tanh[Q„(n3)L j may be replaced by 1.

B,8(0,0,2) = —4m 8(0,0,2)
—4k i u, (1,0, 1)[8(1,0, 1)+ S~(1,0, 1)j,

(D14c)

2. Sidewall forcing

The above modes (D13) modify the Lorenz truncation
(A17) of the Boussinesq equations as follows:

B,u )(1,0, 1)= cr(k )+m. )u )—(1,0, 1)

—cr[k)n. /(k )+n. )][8(1,0, 1)+S~(1,0, 1)],
(D14a)

(j,8(1,0, 1)= —(k f +~ )8(1,0, 1)

—(k, /m)u )(1,0, 1)[R —2~S (2)—2m8(0, 0,2)

—2~S~(0,0,2)j, (D14b)

where we have suppressed the time variable in all quanti-
ties. In case of an out-of-phase modulation of the tem-
peratures of the top and bottom plates according to
T"„=——,'R (v& 1) the wall contribution S~ vanishes for
all odd n3 due to Eqs. (Dg), (Dl), and (D2). Therefore
the sidewall effect enters into the Lorenz model in that
case .only multiplicatively via S~(0,0,2) in (D14b). If,
however, only the bottom temperature is modulated,
T„"=0(v& 1), the sidewall terms S~ modify the Lorenz
model additively as well as multiplicatively.

Equations (D14) are now written in the form (2.7),
where we retain S~ only in (D14a) where it appears as an
additive contribution which modifies (2.7a) to (5.2). [We
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neglect the multiplicative effects of S„in (D14b) and
(D14c)]. The forcing term is

g(t) =~3+S„(1,0, 1;t)/R,'" . (D15)

Its Fourier amplitudes

T~+ T„
(D16)

C

may be written according to (D8), (D12), and (D13) in
terms of the function

g(cov) =f(cov)/P(0) . (D18)

Another form for g at finite frequency is suggested by
the analysis in Eqs. (32) and (33) of Cross et al. , which
is consistent with the amplitude equation, namely

where Q„=Q„(n3——1). The quantity f (5.4) is just the
zero-frequency limit of (D17), f =tb(0), which may be
verified with the help of (D7), (D9), and (D10). Thus
(D16) has the form (5.3) with

~3 k, sin(k, L)+A~os(k, L)
Q(cov) = —

2 2 2 p (n3 ——1),
Q',(0'.+k,')

(D17)

g(t) =fr'(t) I 1+a, '[tr(t) 1]I—,

e, =g, tt /4L =2/3L2 .

(D19)

(D20)
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