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Application of an electronic wave-packet formalism to local-operator equations
of motion for semiconductor lasers
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We develop a quantum mechanical formalism which facilitates the study of interactions locally in
semiconductors. It is based on the operators gt(m, x, k, t) and g(m, x, k, t) which are defined so as to
create and destroy electronic wave-packet states having well-defined position x and crystal momen-
tum Ak in a given energy band I of a crystal. We apply the formalism to develop local-operator
equations of motion for semiconductor lasers.

I. INTRODUCTION

In studying lasers, it is often necessary to consider in-
teractions between the lasing modes and the active medi-
um locally (i.e., local material equations of motion) rather
than in a spatially averaged fashion. Examples of this can
be found in a myriad of topics which include intermodal
beating, spatial hole burning, and diffusion damping of
relaxation oscillations. In most laser systems the develop-
ment of local equations of motion to study these effects is
greatly facilitated by the atomic nature of the active medi-
um. In such cases the individual components of the sys-
tem, by their spatial smallness, conveniently sample the
electron-radiation interaction locally and lead naturally to
local rate equations. Exhaustive treatments by Lamb' and
by Haken can be cited which elegantly illustrate this ap-
proach. Unfortunately, there do exist laser systems which
do not fall within the scope of these local treatments;
these are systems having delocalized eigenstates. A very
important example is the semiconductor-laser (SL) system
in which the preferred state space for all quantum treat-
ments to date has been the electronic Bloch-state space
(see, for example, Refs. 3—6). This space leads to con-
venient selection rules for electron-radiation-induced tran-
sitions, but is an extremely awkward' space to use for
treating local phenomena.

Despite the difficulties involved in formulating a set of
local rate equations for SL's from first principles, a large
number of treatments do exist which have successfully ac-
counted for many aspects of local phenomena in SL's.
These seem to fall into two categories: those which
directly apply rate equations derived for gas lasers to the
SL case and thus assume forms a priori for electron-
radiation interaction terms in local rate equations; and
those in which a classical electric field interacts with an
active layer crystal sliced into small local systems, each
quantized with its own Bloch-state space. The latter ap-
proach, albeit more rigorous than the first, is somewhat
artificial and must still treat interactions between local
cubical systems in a heuristic fashion. Even with the suc-
cess of the above methods, one is led to wonder what phe-
nomena are overlooked through their simplicity; a glaring
example is their inability to account for quantum fluctua-
tion phenomena.

One goal of this paper is then to derive from first prin-
ciples a set of local quantum-mechanical equations of
motion for a SL. To do this we will work in a space of
electronic wave-packet states. These wave packets have
well-defined position and crystal momentum, and are
often used as a conceptual tool to justify the tenets of
semiclassical solid-state theory in which electrons and
holes are treated in a classical fashion through the use of
concepts such as effective mass, crystal momentum, etc.
In this treatment we will define operators which create
and destroy electronic wave packets within semiclassical
phase spaces associated with each energy band of the crys-
tal. The operators so defined will serve as the dynamic
variables characterizing the active medium. An exact
treatment based on these operators offers no advantage
over a treatment based on Bloch states. We will show,
however, that for certain classes of quantum interaction
potentials, the electron-radiation interaction being one, a
perturbation expansion of both ma'trix elements and

, operator anticommutators is possible. The approximation
here requires that the system Hamiltonian and the dynam-
ic variables vary slowly in comparison to the extent of an
electronic wave packet. (This approximation is satisfied
by a variety of interaction potentials and is not restricted
to electronic wave packets; recently, Cilushko has em-
ployed the approximation in a treatment of exciton-
phonon interactions based on an exciton wave-packet
state. ) We will derive operator equations of motion
correct to first order in this approximation; higher-order
corrections will also be discussed.

As a quantum analog of classical phase-space dynamics
the electronic wave-packet approach is in direct competi-
tion with certain well established techniques in quantum
kinetic theory. ' ' Of these methods the wave-packet
approach is most closely related to the method of second
quantization in phase space introduced by Klimonto-
vich. " In that method the dynamic variables are quan-
tum fields in phase space whose quantum averages are
Wigner distribution functions. ' ' In the present method
it will be seen that certain operator pairs can be interpret-
ed as density operators whose quantum average resembles
a first-order distribution function (higher-order functions
are also possible by taking groups of operator pairs, but
these will not be discussed). We intend to contrast these
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methods elsewhere. ' Very briefly, however, the method
of second quantization in phase space has the advantage
of leading naturally to representations which are diagonal
in x and p. The wave-packet approach, as a result of the
overcompleteness of the electronic wave-packet states,
suffers from representations which are diagonal only to
first order in the approximation discussed above. In
many cases this is a serious disadvantage. %'hen the ap-
proximation can be invoked, however, the wave-packet
approach can become the preferable method. In the case
considered here of electronic motion in a crystal with cou-
pling to the radiation field this is especially true Un. der
these circumstances the Bloch-like character of the elec-
tronic wave-packet states makes them approximate eigen-
states of the crystal, thus simplifying treatment of both
the electron-lattice interaction and the electron-radiation
interaction. The second goal of this paper then is to serve
as a pedagogic example of the application of this wave-
packet formalism to the specific case of the electron-
radiation interaction.

II. WAVE-PACKET OPERATORS
AND THE SYSTEM HAMILTONIAN

(T+&)g (j,x)=e (j)q„(j,x), (2.1)

where T is the kinetic energy operator and V describes
only the crystal potential (both operators in the x repre-

In this section we define the field operators of the ma-
terial and the lasing optical modes, and then write the sys-
tem Hamiltonian in terms of these operators. The field
operators of this analysis distinguish it from previous
quantum treatments of the SL, giving a local description
of the active medium and thus facilitating the treatment
of multimode effects as well as transport phenomena. To
illustrate some of the difficulties normally encountered in
modeling a multimode SL quantum mechanically (besides
the obvious problems involving electronic transport) we
will first review an approach frequently employed, this be-

ing a nonlocal description based on Bloch states. Follow-
ing this discussion we introduce the field operators of this
analysis and their associated anticommutation relations.
These operators will be seen to create and destroy elec-
tronic wave packets having well-defined position and
crystal momentum, in the same sense as the electronic
wave packets which make up the semiclassical picture of
the Bloch electron. Finally, we will derive anticomrnuta-
tion relations and a system Hamiltonian, both correct to
first order in the approximation discussed above. During
the course of the derivation the limitations of this approx-
irnation are discussed and it is also shown how higher-
order corrections to the Hamiltonian can be calculated.

A common approach to a quantum description of the
electronic system of a semiconductor is to assume a mul-
tielectron wave function given by a symmetrized product
of single-electron wave functions; as, for instance, can be
accomplished using a Slater determinant. Most often the
single-electron states are taken as Bloch states &p (j,x)
(i.e., band index m and crystal momentum wave vector j;
spin is neglected throughout this treatment) which satisfy
the single-electron Schrodinger equation,

sentation). Using the basis set of symmetrized Bloch
functions, annihilation and creation operators for these
electronic states are defined. These operators obey the
fermion anticommutation relations,

I a (j,t)a,„(k,t) I =5 „D(j k—), (2.2)

I a (j,t),a„(k,t) J =0,
I a (j,t),a„(k,t) I =0,

(2.3)

(2.4)

where t, I represents the operation of anticommutation,
5 „ is the Kronecker delta, and D (j—k) is the Dirac del-
ta function (i.e., we assume the crystal is large enough to
justify treating the crystal momentum as a continuous
quantity). The system Hamiltonian is then expressed in
terms of these operators; a simple example being the un-

perturbed Bloch electron system,

H= g J djdk(mj
~

H
~

nk)a (j,t)a„(k, t)
m, n

= g f dje~(j)a (j,t)a~(j, t), (2.5)

which is the familiar sum of number operators over all
states weighted by the energy of each state. Then, with
Hamiltonian and anticommutation relations in hand, the
Heisenberg equations of motion can be written for a par-
ticular set of self-consistent operators. The final step is to
solve these equations of motion.

Several aspects of the above approach make it unsuit-
able for our purposes. First consider the electron-
radiation interaction matrix element,

(mj(Hr (nkj=(mj . A(r, t) p nk) . (2.6)

In particular, the treatment of the vector potential A(r, t)
spatial dependence in this matrix element. For an atomic
system this spatial dependence can be approximated by
the vector potential's value at the atom's position (as
given, say, by its nucleus), because the atomic wave states
involved in the transition are highly localized in cornpar-
ison to the scale of the optical wavelength. As such, the
resulting matrix element takes on a unique spatial depen-
dence characterized by the optical mode. It is this spatial
dependence which leads to spatial hole burning of a gas of
inverted atoms or molecules, and which is also of irnpor-
tance in multimode lasers where the spatial dependence of
the induced polarization determines, in part, mode cou-
pling. At the opposite extreme are the electronic Bloch
states. These states are delocalized, having the well-
known translational property

(j,x+R) =y (j,x)e"' (2.7)

y e'" "'RA(R) (m) i p i
nk) p, ,

m

(2.8)

where R is a lattice translation vector. Using this proper-
ty the matrix element (2.6) can be rewritten as follows:

~
~

e
mj — A(r) p nk)
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where the integration now takes place over a primitive cell
and, as with the atomic system, the slowly (over a unit
cell) varying vector potential has been removed from the
integral. This leaves only the evaluation of the sum over
crystal translation vectors. Assuming A(r) represents a
single longitudinal mode with wave vector k', it is clear
that the sum is strongly peaked for k —j= +k', which is
the selection rule describing a shift in crystal momentum
caused by the photon emission or absorption. This shift is
relatively small in comparison to the dimensions of the
Brillouin zone and therefore it is standard practice to
neglect it altogether, resulting in the "k-selection rule" for
direct optical transitions in a semiconductor. Unfor-
tunately, this rule altogether eliminates the spatial depen-
dence of the optical mode and therefore precludes the
study of multimode interactions and effects such as spa-
tial hole burning. If the k' dependence of the selection
rule is retained, then the resulting equations become rath-
er complicated, each mode coupling different pairs of
states. It is also obvious that the inclusion of transport
phenomena into the model is made very cumbersome by
this approach. The aforementioned difficulties have at
their root the delocalized nature of the chosen electronic
state space.

An inherently local description of the electronic system,
which successfully explains many aspects of electronic
transport, is semiclassical solid-state theory. In this ap-
proach electrons and holes in a crystal are ascribed prop-
erties characteristic of their free classical counterparts
(e.g., effective mass, momentum, position, etc.). Such no-
tions greatly simplify the study of transport, but being to
a certain extent classical they are either incapable of ac-
counting for certain quantum interactions (e.g., interband
transitions) or must be modified heuristically to do so; as,
for instance, is done in writing a local carrier-density rate
equation which includes electron-radiation stimulated
recombination terms. From a quantum-mechanical
viewpoint the semiclassical electron is a wave packet
whose spatial extent is macroscopically small, but micro-
scopically large enough to give the packet a well-defined
crystal momentum. Such a wave packet would encom-
pass several hundred lattice sites along a given direction,
thus having a breadth in k space much narrower than a
Brillouin zone (see Fig. 1). We now explore the use of
these quasiclassical wave packets as a basis set instead of
Bloch states. By themselves these new states will not im-
prove matters over an analysis based on Bloch states; in
fact, they will appear at first to be a complication. Com-
bined with an approximation, discussed later in the sec-
tion, however, a significant simplification of the problem
occurs. With the approximation, the wave-packet states
allow us to extend the semiclassical picture of the electron
to rigorously account for certain classes of perturbing po-
tentials while maintaining quantum-mechanical consisten-
cy.

The Bloch states and their respective annihilation and
creation operators will be used as a tool to develop the
quasiclassical wave-packet states and their respective an-
nihilation and creation operators. To begin we define a
quasiclassical wave packet localized about x and k in the
mth band as

FIG. 1. Projection of a single-particle wave-packet state onto
real

~

r) space (upper plot) and Bloch space
~

m, j) (lower plot).
The wave packet is macroscopically small so that it effectively
samples the vector potential A(r) locally, but is microscopically
large enough to retain "Bloch" character and have a well-
defined crystal momentum and energy.

i'(m, x,k))=—f djg(j, k)e '~"
i mj), (2.9)

y f dxdk
~
g(m, x,k))(g(m, x,k)

i

=g f dj~mj)(mj~ =I, (2.10)

where the integration is over the Brillouin zone and where
g(j, k) is a crystal momentum weighting function local-
ized on k; the exact nature of this weighting function is
unimportant for our purposes, so long as it leads to an
electronic wave packet in the sense discussed above. In
Fig. 1 we show the general shape of

=
i ( r

i g(m, x, k) ) i
. Both are localized functions in

comparison to variations of the Hamiltonian which in-
clude variations of the unperturbed Bloch energy function
e (j) and variations of the perturbation energy brought
about through the vector potential A(r). Expression (2.9)
transforms our picture from one based on the variable j
within a given band m to one based on the variables
(x,k)~ which represent the semiclassical "center-of-mass"
position (in real and crystal wave-vector space) of a wave
packet in band m. In this picture each band has associat-
ed with it a semiclassical phase space in which wave pack-
ets appear highly localized. Interband transitions
represent particle exchanges between the phase spaces. It
is straightforward to verify that the wave-packet states
satisfy the completeness relation,
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provided

(2~)' f dklg(jk)l'=1 (2.11)

Thus, wave packets in different bands are orthogonal, but
within a given band are not. It is obvious, however, that
packets sufficiently well separated in a given phase space
(x,k) are approximately orthogonal. As a specific case
consider a weighting function g(j, k) with a Gaussian
shape given by

3/2 2

g(j,k)= exp —
l )—k

l

~

(2~)'" 4
(2.13)

where o. has units of length in x space and will be seen
momentarily to give the approximate spatial breadth of a
wave packet. Equation (2.13) has been normalized in ac-
cordance with (2.11) and when substituted into (2.12)
yields

&y(m, x,k)
l
q(m, x', k') ) = .xp —(k+k') (x—x')1 l

(2m) 2

2

X exp —
l

k —k'
l8

Xexp —
l

x—x
l

1 2

20-2

where I is the identity operator. As is often true for
quasiclassical states in general, the wave-packet states are
not orthogonal; from (2.9) we calculate

(tP(m, x,k)
l P(n, x', k') ) =5 „ f dj g*(j,k')g(j, k)e"'"

(2.12)

We now return to a discussion of wave-packet states in
general and define field operators associated with these
states. These operators are given by

p(m, x, k, t)—= f djg'(j, k)e"'"a (j,t), (2.16)

gt(m, x, k, t)=—f djg(j, k)e '" "a'(j, t) (2.17)

with associated anticommutation relations

[g(m, x, k, t), g (n, x', k', t)I =6 „(g(m,x, k)
l g(m, x',k')),

tg(m, x, k, t), g(n, x', k', t) I =0,
Ig (m, x, k, t), g (n, x', k', t)I =0

(2.18)

(2.19)

(2.20)

which are easily verified using (2.2), (2.3), and (2.4); and
(2.12), (2.16), and (2.17). g (m, x, k, t) and P(m, x,k, t) can
be interpreted as operators which create and destroy a
wave packet l 1t (m, x,k) ), a simple test of which is to ap-
ply 1t (m, x, k, t) to the vacuum state

l
0). En addition, by

using (2.16) and (2.17), we can also show that

f dxdkg (m, x, k, t)g(m, x, k, t)= f dja (j,t)a (j,t)

(2.21)
from which P (m, x,k, t)tt(m, x,k, t) is interpreted as an
operator giving the number density of electrons at a point
(x,k) in the phase space associated with band m.

As is the case with a (j,t) and a (j,t), any operator
can be expressed in terms of g (m, x, k, t) and P(m, x, k, t).
Consider, for example, a one-body Hamiltonian. Using
completeness relation (2.10) twice we find

H = g f dxdx'dkdk'M~„(x, x', k, k')

(2.14) X p (m, x,k, t)f(n, x', k', t), (2.22)

where in calculating this expression we have extended the
limits of integration in (2.12) to infinity. Equation (2.14)
shows clearly that as wave packets of this prescribed form
become more separated within a given phase space, they
also appear to be more orthogonal. We can also use (2.13)
to calculate the approximate spatial dependence for such a
Gaussian wave packet. Using (2.9) we find the following:

(r, x,k)—= (r
l
1'(m, x,k))

3/4
2

exp
1

lr —xl —ik x
0-2

Xy (k r), (2.15)

where we have assumed that the lattice periodic part of
the Bloch state varies slowly with respect to k. This ex-
pression shows that the Gaussian wave packet exhibits a
Bloch-state spatial dependence weighted by a Gaussian
envelope function. This obvious result is in direct analogy
to the minimum-uncertainty wave-packet states which can
be easily derived for a free particle The reader is also
referred to a discussion of minimum-uncertainty packets
by Stoler. '

A(r, t)= g
I 2E

[b((t)+bt (t))uI(r), (2.27)

where a matrix element connecting points (x,k) and
(x', k')„ in phase spaces m and n has been defined as

M „(x,x', k, k')—:(f(m, x,k)
l
H

l
P(n, x', k')) . (2.23)

To conclude the definitions associated with the wave-
packet states we give the inverted forms of (2.9), (2.16),
and (2.17). They are

l
mj) = f dxdkg*(j, k)e"'"

l P(m, x,k)), (2.24)

a (j,t) = f dxdkg*(j, k)e" "gt(m, x,k, t)', (2.25)

a (j,t) = f dxdkg(j, k)e "'"1t(m,x, k, t) . (2.26)

In contrast to the electronic system, each lasing mode
will be treated using the standard delocalized annihilation
and creation operators which result from quantizing a
noninteracting optical mode (for an alternate approach re-
lated to the wave-packet formalism of this treatment, see
Ref. 17 which contains an interesting application of opti-
cal wave-packet operators). Proceeding in the normal
fashion we quantize the vector potential as

1/2
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where

(2.28)

[bi(t), b (t)]=0,
[b, (t),b (t)]=0,

(2.29)

(2.30)

(2.31)

and where [, ] signifies commutation. This simplified ap-
proach neglects any spatial modification of the mode
which results from its interaction with the gain medium.
For facet reflectivities greater than 30%, however, these
modifications are not severe. '

The model envisioned throughout this analysis is typi-
cal of state-of-the-art double heterostructure SL's. In it,
an active layer, having optical and carrier confining quali-
ties, has properties which are described in terms of the
electronic wave-packet operators discussed above. The
wave packets interact with the optical modes via dipole
transitions and also with bulk crystal wave packets, pho-
nons, crystal defects, and among themselves by various
scattering mechanisms which produce the observed trans-
port phenomena. The lasing modes, besides interacting
with the electronic wave packets in the crystal, also in-
teract with the free radiation modes since the resonator
has a finite Q. Even though nearly all of these aspects of
the model will eventually be accounted for in this treat-
ment, the "system" in our model consists only of the ac-
tive layer wave packets and the lasing optical modes. All
other interactions will be referred to as bath interactions;
and damping and fluctuations which result from these in-
teractions will be included by using the quantum-
mechanical fluctuation-dissipation theorem which is dis-
cussed in Sec. III. As such, the system Hamiltonian ac-
counts only for the noninteracting electronic wave pack-
ets, the lasing modes, and the mutual interaction between
these subsystems. Using the one-body representation
(2.22), this Hamiltonian is given by

~= g f dxdx'dkdk'M'„(x, x', k, k')
m, n

Xg (m, x,k, t)g(n, x', k', t)

+ g f dxdx'dkdk'M~„(x, x', k, k')
m, n

&& g (m, x,k, t)P(n, x', k', t)

that is, we assume the wave-packet states are approxi-
mately electronic eigenstates of the unperturbed crystal.
Such an assumption is justified provided the wave-packet
states span only a small volume in crystal momentum
space. For Mmn we write

M „(x,x', k, k', t)

e

m t 2 decor

(b(+bi )

X ui(x) (P(m, x, k) p ~
P(n, x', k')) (2.36)

= gh „(k)ui( )x(bl+bt )(0(m, x,k

(2.36')

where the vector nature of ui(x) has been absorbed into
h~„(k). In (2.36), the slowly varying spatial dependence
of the optical field in comparison to the electronic wave
packets has been used to remove the optical space varia-
tion u(r) outside the wave-packet bras and kets—the same
approximation which comprises the dipole approximation
in an atomic system. In (2.36'), the well-defined momen-
tum of the wave packets has been used again. Here we
approximate a "k"-conserving interband absorption or
emission of a photon as a transition (x,k) ~(x,k)„be-
tween phase spaces m and n which conserves the semi-

ig(xf, k)„

x;+ v«t

These matrix elements give transition amplitudes between
points (x,k) and (x', k')„ in the semiclassical phase
spaces. In their present form, however, they appear to
only complicate matters over a treatment based on Bloch
states. To benefit from this formalism two approxima-
tions must be made. Both take advantage of the localiza-
tion in I and k of the electronic wave-packet states. The
first is an approximation of the electronic matrix cle-
m.ents. For M'„we write

M'„(x,x', k„k')=e (k)(g(m, x,k)
~
g(m, x', k'))5 „,

(2.35)

+ g fm, [bt (t)bt(t)+ ,' ), —
I

where M~„ is the free-electron part,

(2.32)

M'„(x,x', k, k') —= (@(m,x,k)
i
(T+ I')

i
y(n»', k')),

(2.33)
v = —Qk (k)

k

and M „ is the electron-radiation interaction part,

M „(x,x', k, k')—:(g(m, x,k) — A(x) p g(x, x', k')) .

(2.34)

FIG. 2. Intuitive picture of photon absorption by a wave
packet propagating in band m with group velocity vg (k) re-
sulting in creation of a wave packet in band n having group
velocity v~„(k) (and annihilation of the wave packet in band m ).
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classical crystal momentum and in addition leaves the
electron position unchanged. That is, the wave packets
are assumed to have enough "Bloch" character, by virtue
of their microscopic largeness in x space, so that a @-

conserving transition between Bloch states remains ap-
proximately a k-conserving transition between wave-
packet states (see Fig. 2). To first order the quantities
e~(k) and h „(k) are, in fact, the quantities found using
the true Bloch eigenstates; the discrepancy becoming
smaller as the electronic wave packets encompass larger
volumes of the crystal. On the other hand, this volume
cannot become so large that optical mode features or
transport features become imperceptible. Thus, the spa-
tial breadth cr of the electronic wave packets must satisfy

a « o « min( k, kD ), (2.37)

where a is a typical lattice constant, k is the optical wave-
length in the crystal, and A,D is the diffusion length. This,
of course, is just the condition for wave-packet microscop-
ic largeness and macroscopic smallness which was dis-
cussed earlier. Higher-order corrections to the matrix ele-
ments can be calculated by using (2.9) combined with
Taylor-series expansion of the Hamiltonian about the
center-of-mass coordinates. As an example, the first two
terms in such an expansion of Eq. (2.33) are shown below

M'„(x,x', k, k') =5 „e (k)(g(m, x,k)
~
Q(m, x', k') )

+5 „e'"&[tI'ke (k) Vg]e

&(P(m, x, k)
~
f(m, x', k')), (2.38)

[p(m, x,k, t), p(n, x', k', t) I =(), (2.41)

where g—:x —x'.
Provided condition (2.37) holds, the wave-packet states

appear highly localized in the various phase spaces in
comparison to variations of the Hamiltonian. This also
implies that the dynamic variables will vary slowly, allow-
ing the following additional approximation to be made:

(~/J(m, x, k)
~
y(n, x', k')) ~M5 „D(x—x')D(k —k') .

(2.39)

Basically, this is a multipole expansion of
(f(m, x, k)

~
P(n, x', k') ) in which only the first term is re-

tained. The coefficient M is the monopole term in this
expansion and will depend on the specific form chosen for
the wave-packet states. For simplicity, we take M =1 in
this analysis. In retaining only the first term in the mu1-
tipole expansion, we are in a sense taking the analysis to
the semiclassical picture of the Bloch electron. Unlike the
semiclassical picture, however, we now have a means of
including interband transitions and other quantum transi-
tions satisfying condition (2.37) in a quantum-
mechanically rigorous fashion. In addition, the Pauli ex-
clusion principle is maintained through the anticommuta-
tion relations,

If(m, x, k, t), g (n, x', k', t)I =5~„D(x—x')D(k —k'),
(2.40)

y+y CONDUCTION
c c BAND

RFSONATOR

mode m

bm, bm

VALENCE
BAND

FIG. 3. System model for a semiconductor laser showing
components and dynamic variables. Bath interactions are not
included in the diagram.

Ig (m, x,k, t), gt(n, x', k', t)I=0, (2.42)

where the first relation is an approximation of (2.18) using
(2.39), but the latter two relations remain exact.

Using (2.35) and (2.36) in (2.32), and then simplifying
the result using (2.39) gives for the system Hamiltonian,

H= g f dxdke (k)g (m, x,k, t)II((m, x, k, t)

+ g fin)I[bI (t)bt(t)+ —,]

f dxdkh „(k)uI(x)[bI(t)+b, (t)]
f, m, n

&& P (m, x,k, t)g(n, x, k, t) . (2.43)

where coordinate and temporal dependences have been
suppressed in the dynamic variables.

III. EQUATIONS OF MOTION

The system Hamiltonian (2.44) includes the unper-
turbed energy terms of the Bloch electrons and the lasing
modes as well as their interaction energy. The time evolu-
tion predicted by this Hamiltonian represents a zeroth-
order description of the laser, which although able to ac-
count for stimulated emission and absorption is seriously
deficient in describing areas such as pumping and cavity
loss. The missing terms in the system Hamiltonian re-
sponsible for these effects and others come under the
heading of bath interactions: additional energy terms

We specialize this Hamiltonian to a two-band model (see
Fig. 3),

8= f dxdk[e, (k)P, g, +e, (k)g, P, ]

+ g fust(bt bt+ —,
'

)
1

+ g f d dxku ( I)(xb +Ib )[Ih(k)$, $, +h*(k)Q, Q, ],
I

(2.44)
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stemming from scattering of the system with other sys-
tems having a large number of degrees of freedom. The
complete time-evolution equation for an operator A could
thus be envisioned as

dA I,=—„[Ho+HI+Ha A]
dt A'

(3.1)

(3.3)

(3.4)

where Ho and HI are the unperturbed energy and interac-
tion energy terms in the system Hamiltonian (2.44) and
H~ comprises the various bath interactions. In this sec-
tion we will develop a set of operator equations of motion
governing lasing action and transport phenomena in SL's.
We incorporate bath interactions into these equations in a
standard way which is described below.

The concepts of system and bath are of profound im-
portance in thermodynamics and statistical mechanics.
The system lies at the focus of attention; its thermo-
dynamic state variables or dynamic variables, as the case
may be, are to be measured or calculated. The bath, on
the other. hand, has consequence only through changes it
causes in the system by interacting with it. It is normally
assumed to have a well-defined thermodynamic state,
which owing to its enormous size relative to the system, is
unaffected by interaction with the system. These defini-
tions put no restriction on the system so long as the bath
or baths it interacts with can be chosen to be much larger
than the system. In the present case, however, we assume
the label "system" to imply, in addition to the above prop-
erties, an analytically manageable set of dynamic vari-
ables; specifically, the operators g, g„g„g„g„g„[bIj,
and I bi j which under the system Hamiltonian (2.44) con-
stitute a self-consistent set. These operators interact with
three independent baths: the conduction band, valence
band, and free radiation baths. For the moment we con-
sider the effect of these bath interactions in the absence of
interactions between the components of the system [i.e.,
setting HI ——0 in (3.1)]. Without any interactions (i.e., set-
ting Hi =0 and Hz ——0), the system equations of motion
are

(3.2)

where t I; j are a set of transport functions which include
damping. The unaveraged form of (3.7) contains a fiuc-
tuation operator to account for the thermal nature of the
bath energy which couples into the system. Thus, the
unaveraged form of (3.7) appears as follows:

dA;

dt
=r;(IA, j)+f;(t), (3.8)

where, on account of (3.7), the fluctuation operator f;(t)
must vanish upon bath averaging,

(f, (t) & =0 . (3.9)
The stochastic operators If;(t) j are normally assumed to
be Gaussian, resulting from a central limit argument, and
in addition Markovian,

baths. Fluctuations, on the other hand, are the result of
bath energy which "couples into" or "pumps" the system.
The basic problem is to incorporate these two aspects of
the system-bath interaction into the equations of motion.
One approach to this problem is to consider the system-
bath interaction explicitly. It is clear, however, that in
most cases such an approach is prohibitively complicated.
Another approach, the one employed here, is to add
damping phenomenologically to the system equations of
motion and then 'to determine fluctuations with the
quantum-mechanical fluctuation-dissipation theorem. We
give only a basic outline of this theorem below, deferring
a more rigorous explanation to comprehensive treatments
of the subject by Lax' and Haken et al. Our particular
formulation follows Lax's treatment.

The fluctuation-dissipation theorem has both classical
and quantum forms. In both cases it accounts for fluc-
tuations caused by thermal energy coupling into a chosen
system from a bath. In the quantum case, however, it is
also essential to preserving the quantum-mechanical na-
ture of the damped'system by maintaining the canonical
commutation relations of the dynamic variables. The
theorem presumes that damping can be incorporated in
some way into the dynamic equations (normally
phenomenologically). The mean (i.e. quantum average
over all baths) motion of the dynamic variables IA; j is
then given by

d(A, ) =(r, (IA, j)), (3.7)

(f, (t+r)f, (t)) =W;,D(~), (3.10)

(3.5)

where

e, (k) —e, (k)
Q(k):— (3.6)

and where equations for bi and g„f, are merely the Her-
mitian adjoints of (3.2) and (3.3). Bath terms in the Ham-
iltonian affect these equations first by driving the equili-
bration or damping of the dynamic variables and second
by superimposing fluctuations on their damped motion.
Damping results from the enormous number of degrees of
freedom in the various baths, making it highly unlikely
that energy leaking out of the system will return from the

where the normalization coefficient 8'z is often referred
to as a generalized diffusion constant since it does, in fact,
so function in Einstein's model of Brownian motion.
(Note: in this analysis we will assume the fluctuation
operators are delta-correlated in phase space as well as in
time. ) The final and most important part of the
fluctuation-dissipation theorem is that this, diffusion con-
stant can be determined from knowledge of the transport
function in (3.7) by employing the generalized Einstein re-
lation,

—(r, (IA, j)A, &
—(A, r, (IA„j)),d(A, A, )

dt

(3.1 1)
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which can be derived quite readily from (3.8) and (3.10).
To recapitulate this approach consider the problem of

incorporating damping and fluctuations into the optical-
field equation (see also Ref. 2). Reasonable selections for
damped unpumped optical-field equations are

P

b t =

idiot

— b( +gt (t),1

2'
C

f, [1—(2m) f, ]D(x—x', k —k', w), (3.25)

( L„(x,k, t + r)L, (x', k', t) )

(b(x, k, t+r)b, (x',k', t))

=2yf, [1 (2—vr)'f„]D (x—x', k —k', r), (3.24)

(L,(x,k, t+r)L, (x', k', t) )

1
b, +g, (t),

7
(3.13) f„[1—(2m )'f, ]D (x—x', k —k', r),

7
(3.26)

where rt is the photon lifetime of lasing mode l in the un-
pumped cavity, and gt and gI are the fluctuation opera-
tors. To normalize these operators, the transport terms in
(3.12) and (3.13) are used in the generalized Einstein rela-
tion. In steady state the results are

(g, (t+r)g (t))=0,
(gt(t+r)g (t))=0,

(3.14)

(3.15)

(gt(t+~)g (t)) = (brb —)D(r)= D(r)ot
+I +I

(3.16)

( g~(t+ ~)g (t) ) = (btb )—D (r) =
+I

nI+1
D(r)&(

(3.17)

1

%))/k~ T~e
(3.18)

Ttt here is the temperature of the free radiation bath. It
should be noted that lack of commutability between bt
and bi is reflected in the Einstein relations (3.16) and
(3.17). This fact is central to preserving the quantum na-
ture of bI and bI in the damped system.

Both damping and fluctuations are introduced into Eqs.
(3.3), (3.4), and (3.5) as follows:

= [iQ(k) —y(x, k) ]PcP„+h(x, k, t),

dt

f. —
+L, (x,k, t),

'rc x,k

f. —
+L„(x,k, t) .

r, x, k

(3.19)

(3.20)

(3.21)

Each of these equations is driven by a Langevin fluctua-
tion operator which is in general a function of time and
location in the appropriate phase space. The second mo-
ments of these Langevin operators, found using (3.11), ap-
pear below:

(h~(x, k, t+r)b, (x', k', t))=0, (3.22)

(Q (x,k, t+r)h(x', k', t))

=2yf, [1—(2')'f, )D (x—x', k —k', r), (3.23)

where nI =(bt bt) is the number of thermal photons in
the optical mode l as given by

(L,(x,k, t+r)L„(x',k', t)) =0. (3.27)

(f.) =
(2~)' expI[@,(k) —g, (x, t)]/kbT(x, t) ]+1

(3.28)

is the quasi-Fermi-distribution function for the conduc-
tion band with associated temporally and spatially varying
temperature and electrochemical potential (to allow for
the possibility of internal electric potentials). The factor
involving (2~) is a normalization which enters into this
expression since f, and f, as well as 1(,pc and p, p,
represent occupancy densities in (x,k) phase spaces. In
SL s local quasiequilibrium is established extremely rapid-
ly by intraband scattering. The phenomenological relaxa-
tion times for this thermalization within each band are
the r (x,k) and r, (x,k) appearing in (3.20) and (3.21).
These times are generally thought to lie in the range
0.1—1.0 psec. ' To be strictly correct we should also in-
clude thermal generation and spontaneous recombination
rate terms in (3.20) and (3.21). These terms are utterly
negligible, however, in comparison to the intraband
scattering terms and are not considered for the moment.
In fact, the absence of noticeable spectral hole burning in
SL's implies that intraband scattering rates also dominate
stimulated rate terms resulting from the electron-radiation
interaction. "' This extremely rapid thermalization is the
basis for the assumption, often made, that local
quasiequilibrium holds during lasing action. We shall as-
sume that this is the case in the remainder of this analysis.
Local quasiequilibrium of the conduction-band and
valence-band baths is always assumed to hold and with it
well-defined local temperature and quasielectrochemical
potentials. Spatial equilibrium is not assumed, however,
as its characteristic equilibration time is comparable to re-
laxation times governing photon-inversion dynamics.

Damping parameters also, in general, have a phase-space
dependence caused by energy-dependent scattering rates
and spatial inhomogeneities, such as a nonuniform carrier
density. The damping parameter y(x, k) describes col-
lisionally induced loss of polarization between states in a
transition. Between Bloch states in the conduction and
valence bands the time y

' is thought to be roughly 0.1

psec.
The damping form assumed in (3.20) and (3.21) is

characteristic of the relaxation time approximation.
These terms give the relaxation rate of g, Pc and g„g„ to
their local quasiequilibrium forms given by f, and f„
where, for example,
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Currents which result from spatial nonequilibrium (pump
currents included) are assumed to be expressible as gra-
dients of the temperature distribution and quasielectro-
chemical potentials.

The assumption of local quasiequilibrium means that
Eqs. (3.20) and (3.21) are approximately correct even
when the electron-radiation interaction is turned on. The
short-term motion of g, P, and P,g„ therefore consists
only of thermal fluctuations about f, and f, . The long-
term motion, including the action of stimulated rate
terms, is absorbed almost completely by the quasi-Fermi-
operators f, and f„. This kind of approximate picture is
very similar to that found in the Born-Oppenheimer ap-
proximation. The idea is illustrated in Fig. 4. Figure 4(a)
depicts a relaxation oscillation of (f, ) or (f, ) after the
inversion has been disturbed from its operating point; Fig.
4(b) shows (g, g, ) or (g„g, ) during the same oscillation,
the added fuzziness resulting from intraband thermal
fiuctuations. The slowly varying time evolution of the
quasi-Fermi-operators can be found through application
of the following obvious identities to (3.20) and (3.21):

f dkf, = f dkP, f, , (3.29)

f dkf, = f dkq„'y„. (3.30)

A further simplification can be made by assuming that in-
traband scattering preserves the carrier density (there will,
however, be fluctuations about an average value stemming
from shot contributions of the balanced intraband scatter-
ing rates into and out of a particular location),

f dk =0,
~, (x,k)

(3.31)

f dk =0.
7,(x,k)

(3.32)

+ f dxdkuI(x)q(k)g, g„+gt (t),
2GFKot

(3.33)

= [iQ(k) —y(x, k)]g, P„

ui(x)q*(k)

2EflCOt'

+h(x, k, t), (3.34)

f. —
+ Y+L, (x,k, t),

~, x,k
(3.35)

dt
f. ——Y+L„(x,k, t),v„x,k

(3.36)

where

(k)
h (k) (3.37)

Y= —R(x,k)+G(x, k)

[q«)e.e.bl q*«»l 0.0—.] .
2EFKOt

(3.38)

Equations (3.12), (3.19), (3.20), and (3.21) describe the
motion of the chosen dynamic variables under the Hamil-
tonian Ho+H~. We now include the electron-radiation
interaction term given in (2.44). Neglecting nonsynchro-
nous terms, the resulting dynamic equations are

1
COl—

271

t (nsec)

G(x,k) and R(x,k) are generation and spontaneous
recombination terms whose explicit dependence on system
operators is not important for our purposes. From the
above discussion, the operator Y can be omitted in (3.35)
and (3.36) for consideration of the rapid variations of
g, g, and g„P„whereas the slow variations of the quasi-
Fermi-levels (or equivalently the carrier density) can be
determined by application of (3.29) and (3.31) to (3.35),

dt
= f dk Y+ f dkL, (x,k, t), (3.39)

n(x, t)=—f dkf, = f dkg, g, (3.40)

(bj

FIG. 4. A relaxation oscillation of the Fermi number density

(f, ) and the phase-space number density (f,g, ) towards the

operating point value (f, )o. Intraband scattering produces the
added fuzziness in the lower plot.

is the electron density operator. The corresponding equa-
tion for the valence band, found by applying (3.30) and
(3.32) to (3.36), is omitted since it is determined from
knowledge of f, [or n (x, t)] with the quasineutrality con-
dition. We now rewrite (3.39) using (3.38) and also reex-
press the total time derivative in the form of a conserva-
tion equation
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B,n+V J=—R(x)+G(x)

i—g f dk[q(k)g, P, b(
2E fKrJ I

q*—(k)bt g„g, ]

+ f dkL, (x,k, t), (3 41)

where

R(x)—:f dkR(x, k),
G(x)—:f dkG(x, k),

(3.42)

(3.43)

and where I is the electron current-density operator
caused by drift and diffusion, for example. Equation
(3.41) is a carrier-density operator rate equation which can
be used to study both normal electronic transport in con-
junction with electron-radiation induced interband transi-
tions.

We assume it is possible to define drift and diffusion
coefficients. A more fundamental approach would begin
with the operator version of the Boltzmann transport
equation given by Eq. (3.35),

X exp I [iQ(k') —y](t —t') I
t

+ f dt'b(x', k', t')expI[iQ(k') —y](t —t')I .

(4.1)

(4.3)

where f, and f„are the slowly varying quasi-Fermi-
operators (varying on a nanosecond time scale) and U, and
U„are the rapidly varying fluctuations caused by intra-
band thermalization. The time evolution of the Fermi
operators is given by (3.41) and the time evolution of U,

and U„ follows immediately from (3.35) and (3.36),

As mentioned in Sec. III the damping parameter y is of
the order of 0.1 psec in SL's and as such the above in-
tegrals sample a very narrow interval of time. The rate-
equation approximation exploits the rapid decay provided
by y to remove slowly varying quantities from these
integrations. From discussions in Sec. III variations in

P, g, and P„g„can be separated into slowly and rapidly
varying parts as follows:

4.A =f.+U, (4.2)

0.4.=f.+U.

dt
=d 0.0.+v, ~A.P. +k ~.0,0, UC=—

C

+L, (x,k, t), (4.4)

C

f. —
+ + C 7 +L, (x,k, t),

7
(4.5)

where vg
——x is the group velocity of a wave packet. Us-

ing this equation one could derive formulas for the trans-
port coefficients. For a related discussion see Ref. 8; also
see Refs. 11—13 in regard to operator transport equations.

IV. THE RATE-EQUATION APPROXIMATION

Normally, it is possible to make one simplification of
Eqs. (3.33)—(3.36) and (3.41) without much loss of gen-
erality. To do this Eq. (3.34) is solved for the operator
g, g„by employing the rate-equation approximation. In-
tegrating the total time derivative in (3.34) yields

where we have treated f, and f„adiabatically and have
also neglected the operator Y in comparison to the intra-
band scattering terms. In addition to intraband scatter-
ing, multimode interactions can also cause rapid varia-
tions of the population (i.e., modal beating ). Provided
that the intermodal beat frequency is smaller than the col-
lisional dephasing rate (i.e.,

~
cot —co

~

& y), however, the
rate-equation approximation will remain valid. Nearly all
lasing modes will satisfy this condition, because of the
large y in SLs. Using the decomposition given in (4.2)
and (4.3) and also separating the rapid optical variations
in the operator bi, we can apply the rate-equation approx-
imation to (4.1) to yield

ut(x)q*(k) (f, f„)bI uI(x)q—*(k)b~
i g — f dt'(U, —U, )exp(Ii[Q(k) —Bt]—yI(t —t'))

+2Efuut i [cot —Q(k) ]+y I +2efico~

+ f dt'b(x, k, t')expI [iQ(k) y](t —t') I, — (4.6)

where coI is the lasing frequency of the 1th mode (not necessarily equal to cot). We have also replaced (x', k') by (x,k)
throughout this expression since any point in one of the phase spaces will not evolve significantly during the time inter-
val @-'.

The operators g, g„and g„P, represent contributions to the active medium polarization caused by the electron-
radiation interaction between points in the respective conduction-band and valence-band phase spaces. Each term in (4.6)
then represents a different contribution to polarization. The first term is the induced polarization, giving rise to a com-
plex susceptibility which depends on the excitation of the active layer; the second term is an intraband scattering contri-
bution to polarization (the so called "occupation fluctuation" contribution to polarization '); and the third term is the
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main contributor to quantum fluctuations in lasers. This term in conjunction with a contribution from optical-field vac-
uum fluctuations causes spontaneous emission fluctuations of the lasing modes.

The optical-field and carrier-density equations (3.33) and (3.41) are now rewritten using (4.6). We have

~
y 1

6 ~= 1CO~—
2'TI

bI'+i f dxuI(x) g g(n, rv~)b u (x)
m 2p

I
q(k) I

'u, (x)u {x)
+ g f dxdk b f dt'(v, —v, )exp( Ii[0(k)—co ]—yI(t —t'))

2'~~ OO

+ — f dxdkdt'u)(x)q(k)A(x, k, t')expt [iQ(k) —y](t t') I—+gIt(t),
+2E'Itcvt

(4.7)

~tn+&'J= —&+6+ g 2 u((x)u (x)[g(n, cv~)b~bt —H. a. ]
2p E

ui(x)u (x) f dk f dt'
I q«) I'(v. —v. )[b'btexp(ti[Q(k) —co ]—7 I(t —t'))+H. a. ]

1~ 2eR

ut(x) f dk f dt'[q(k)b( xk, t') be1xp[[iA( k) —y](t t')
I
—H—.a. ]+ f dkL„(x, k, t),

2E'fKO t OO

(4.8)

where in writing these equations we have defined a local
complex susceptibility operator as follows:

i [coI —A(k)]+y (4.9)

We take the complex susceptibility to be an explicit func-
tion of the carrier density n, rather than an equivalent
representation in terms of either one of the electrochemi-
cal potentials.

Equations (4.4), (4.5), (4.7), and (4.8) represent the main
result of our analysis. Although the rate-equation approx-
imation has been invoked in the case of (4.7) and (4.8), the
equations should remain exceedingly accurate owing to
the smallness of y

' in comparison to characteristic times
of interest. Thus these equations can be used to study a
variety of phenomena ranging from multimode interac-
tions, to the effect of carrier diffusion on optical fluctua-
tions. Under circumstances where the rate-equation ap-
proximation does not hold the more general forms of
these equations appearing in Sec. III can be used.

In this paper we have developed an operator formalism

based on electronic wave packets which facilitates the
treatment of local phenomena in semiconductors. In ad-
dition, an example of its use has been presented by
developing local operator equations of motion for a semi-
conductor laser. In doing this we have rigorously incor-
porated the electro-optic interaction into the semiclassical
picture of the Bloch electron, and have given conditions
under which other quantum interactions may also be
treated using this formalism. Although the analysis we
have presented treats only the electronic system in a local
fashion, it is clear that one can do likewise for the optical
field by developing a space of optical wave packets
Such a formalism might prove to be useful for interpret-
ing femtosecond-pulse propagation experiments.
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