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Off-axis electron orbits in realistic helical wigglers for free-electron-laser applications
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Off-axis electron orbits in free-electron-laser beams of finite thickness, subjected to combined heli-
cal wiggler and axial guide fields, have been studied analytically. A semiempirical equation for the
electron velocity components, averaged over the electron's oscillatory (betatron) motion, has been de-
rived as a function of the radial displacement of the electron guiding center. The predictions from
the equation are compared with single-particle numerical simulations, and with free-electron-laser
experiments. Good agreement is found.

INTRODUCTION

Accurate prediction of the gain and output frequency
of a free-electron laser (FEL) requires precise knowledge
of the axial and transverse electron velocity. The full
three-dimensional field of a helical wiggler magnet, B
has a strong radial dependence. Moreover, many high-
current experiments also use an axial guide magnetic field
B, superimposed on the wiggler field B, thereby causing
a resonance in the electron orbits. Consequently, except
for a class of highly constrained electron orbits, it is gen-
erally difficult to predict the exact electron motion. This
is particularly true in the neighborhood of the above-
mentioned resonance Q, =k pllc, where Q, =e8, /ymoc
is the relativistic cyclotron frequency in the axial guide
magnetic field, y=(1—

pll
—pi) ' is the relativistic en-

«gy fa«or, pll=vll/c with Ull the axial electron velocity
and pi ——Ui /c with Ui the transverse electron velocity in-
duced by the wiggler magnetic field, and k =2m. /1 is the
wiggler wave number with I the wiggler period.

In the original one-dimensional orbit theory, the radial
variations of the wiggler-field amplitude are neglected and
the total externally applied axial plus wiggler field is as-
sumed to be of the form

B=e,8, +8 [e„cos(k z)+e„sin(k z)],
where e„, e~, and e, are unit vectors along the x, y, and z
axes, and 8, and 8 are the amplitudes of the guide and
wiggler fields, respectively. This field configuration has
the special virtue of possessing an easily derived class of
highly desirable, purely helical electron orbits character-
ized by the fact that the axial and perpendicular electron
velocities are constants of the motion. ' These trajectories
are specified by the simultaneous solution of the energy-
conservation equation

1/y =1—
pll —pi =const,

and the velocity relation

(2)

Q Pllpi=
kwPllc —Qa

(k pllc&Q, ), (3)

where Q =e8 /ymoc is the relativistic cyclotron fre-

cy associated with the wiggler magnetic field. We note
that in order to achieve the helical orbits given by Eqs. (2)
and (3), the electrons must be launched into a wiggler field
that has a slow, smooth introduction, ' and the exact res-
onance k Pllc =Q, must be avoided.

In the case of a physically realizable wiggler field that
satisfies Maxwell's equations V.B =0 and VXB =0,
the wiggler field B~ necessarily has a radial dependence.
The combined axial and wiggler fields, expressed in
cylindrical coordinates ( r, P, z), are given by

B=e,8, +28~ e„I'i (k~r)cos(P —k~z)

I, (k r)—e~ sin(tb —k~z)
k r

+e,Ii(k r)sin(P —k z) (4)

where Ii is the modified Bessel function. It has been
shown that if all the beam electrons enter the wiggler ex-
actly on axis, and are then allowed to spiral out in the
gradually increasing wiggler field, the electrons once again
execute pure1y, helical orbits, just as in the one-
dimensiona1 calculations described above. Now, however,
the transverse electron velocity acquired in the magnetic
field is given by the simultaneous solution of Eq. (2) and

2Q PIII, (A. )/A,

k pllc —Q, —2Q Ii(A, )

Here A, =pi/pll =+k r is the normalized size of the orbit,
such that A, = kr when—Q, & k pl lc, and A, = +k r
when Q. & k.Pllc.

In practical systems comprised of an electron beam of
finite thickness, a large fraction of the electrons entering
the wiggler are not axis centered, their orbits are not pure-
ly helical, and the axial and transverse electron velocities
oscillate about mean values denoted by (pll) and (pi).
This is illustrated in Fig. 1, which shows the trajectory of
an electron propagating through a wiggler entrance and
well into the constant-wiggler-amplitude region. In the
entrance region, the wiggler converts a fraction of the axi-
al velocity pl l

=U
l l

/c into perpendicular velocity
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cussed below) the expression for (pi ) for an off-axis elec-
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which when solved in conjunction with the energy-
conservation equation [Eq. (2)], yields the values of (p~~)
and (P, ).

The purpose of this paper is to derive a more general
equation for ( pi ). Although the derivation is of a
semiempirical nature, we will show that it agrees well
with single-particle computer simulations and with FEL
experiments. Moreover, we shall demonstrate that our
equation correctly approaches the results of the previous
analyses; namely, when yg ~0, we recover the axis-
centered results given by Eq. (5), and when A, ~O, we re-
cover Eq. (6). We note that the range of yg of practical
interest is typically k~yg &0.5. In this range the quasihel-
ical electron orbits are of sufficient quality to yield good
FEL frequency and gain characteristics. When k~yg & 1

the large betatron oscillations (see Fig. 1) cause serious
deterioration of the FEL operation.

0
0

I

50
AXIAL DISTANCE (cm)

100
ANALYTIC DERIVATIONS

AND NUMERICAL SIMULATIONS

It is instructive to examine the origin of the correction
terms in Eq. (5) [i.e., those terms not found in Eq. (3)].
As an electron moves away from the wiggler axis, it must
respond to the axial component of the full wiggler field
[Eq. (4)]. [On axis, at r =0, this component vanishes
since Ii(0)=0.] Normally the axial component is oscilla-
tory; however, for the special case of perfect axis-centered
orbits, the axial component is constant because
P —k~z =const. Thus the electron is affected by a net ax-
ial field given by

8
i i

=8, +28~I i (A, ) .

FIG. 1. Electron velocity and magnetic field variations as a
function of distance z; y =1.33, k„=1.904, B =250 G,
B,=1600 G. The electron is started at the off-axis position
k yg =0.4. The six-period adiabatic wiggler introduction begins
at z =10 cm. (a) Normalized axial velocity P~~ and perpendicu-
lar velocity Pq. (b) Axial magnetic field B~~ and perpendicular
magnetic field B~ at the instantaneous position of the electron.
(c) Projections of the electron orbit onto the x-y plane, illustrat-
ing azimuthal precession (Ref. 7).

pi ——vi/c, and, in the constant-wiggler-amplitude region,
the axial velocity p~~ is seen to oscillate around an average
value ( p~

~

). The average axial velocity ( p~
~

) determines
the FEL output frequency, and the average perpendicular
velocity (Pi ) determines the gain. Thus, precise compar-
isons between FEL theory and experiment require an ac-
curate method of predicting (p~~ ) and (pz ) as a function
of ys, the radial distance from the axis of an electron's
guiding center. Recently, Freund and Ganguly have
shown that (under the rather restrictive conditions dis-

The off-axis increase in the perpendicular wiggler-field
component is similarly constant, and the electron feels a
net perpendicular field

Bi 28~I I (A, )/A, ,
——

Note that if we define Qi
~~
=eBi

~~
/ympc and rewrite Eq.

(5) as

pi=
k Piic Q

then the axis-centered three-dimensional theory and the
one-dimensional theory are functionally equivalent.

Because the denominator of Eq. (5) is small for parame-
ters near resonance, the difference between the one-
dimensional theory and the three-dimensional theory is
largely due to the axial field correction. Since this correc-
tion is inherently a finite Larmor radius effect, it would
not be found in a pure guiding-center theory such as that
given by Eq. (6).

Numeric analysis of off-axis electron trajectories for a
wide variety of system parameters shows that the average
velocity (p~~ ) can be accurately predicted by Eq. (9) if the
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fields Bi and B~) are set equal to the average axial and
perpendicular fields seen by the off-axis electron as it
propagates along its trajectory. For example, an electron
propagating with the parameters stated in the caption to
Fig. 3(b), initially at radius k~r =0.6, has a numerically
determined average axial velocity of (p~

~

) =0.905 68.
The numerically determined average fields are
(8] ) =646.0 G and (8~~ ) = 12904 G. If these fields are
used in Eq. (9), the calculated average axial velocity is

(p~~ ) =0.905 54, in good agreement with the numerically
derived value given above. Thus analytic expressions for
(Bi ) and (B~~ ) could be used to determine a semiempiri-
cal formula for non-axis-centered orbits.

Expressions for (Bi ) and (8~~ ) can be found if the
electrons are assumed to travel without precession (see
Fig. 2) in perfectly circular orbits around an off-axis guid-
ing center, and are assumed to have the same phase rela-
tionship. That is, all the electrons at a given axial posi-
tion travel in the same radial direction. This direction is
taken to be the direction of an electron in an axis-centered
orbit [Eq. (5)]. Without any loss of generality, the elec-
tron guiding centers can be assumed to be on the e~ axis
and, at the position z =0, the electron will be at the point
on its orbit that is farthest away from the wiggler axis
(Fig. 2). Then the exact expression for the wiggler field
along the electron orbit is

B=e,B +28 e„I'](—k R)sin(y —k z+a)
Ii(k R)—e~ cos(]Iv —k z+a)

k~8

whether 0, &k (p~~)c or 0,, &k (p~~)c. The average
transverse field is

]B~)=28
( [1](k R)] sin'(y —k z)

Ii(k R)
+ cos (y —k z)

and the average axial field is

(8~~ ) =8, +28 (I,(k R)cos(y kz—) )cosa, (12)

where the averages () on the right-hand sides of the
above equations are to be taken over the orbit angle 0, and
are carried out by expanding in y~ and r. The calculation
becomes extremely involved if higher-order terms are in-
cluded. Consequently the symbolic manipulation pro-
gram MACSYMA (Ref. 6) is used to perform the calcula-
tions. However, we note that as a result of the rapid beta-
tron oscillations, the perfect-circular-orbit assumption is
no longer a good approximation when the axial magnetic
field 8, is very small or zero.

The procedure employed is to expand the formulas for
(8] ), (8~~ ), R, and ]Iv in Taylor series to fourth-order
terms in yz and r. Expansion of y also requires the as-
sumption that either yz «r or yz »r. The Taylor series
for (Bi ) and (B~

~

) is equivalent to a power series in sines
and cosines, and can easily be averaged by integrating
over the orbit angle 8. The resultant series is then identi-
fied as the sum of modified Bessel functions plus small
residual terms. The average perpendicular field is found
to be

+e,I](k R)cos(y —k z+a) (10) (Bi )=28 Ip(k y~)[I (]A, ) /A](1 +e&), (13)

where
where R =r +yz+2ryzcos8, y=P m/2—
=tan '[r i s8n/(y +sr cos8)], yz is the distance of the
guiding center from the axis, 8 is the angular position of
the electron along its orbit, and &x=0 or m depending on

k4 2

6144
(14)

for yz « r, and

k4 2

256
(15)

for yz »r. For k ys & 1, e is typically less than 0.001,
and can be ignored. The distinction between yz «r and

ys »r is a mathematical artifact; there is no physical
discontinuity separating these two parameter regimes.
Thus it is evident that to within an error of e&,

( Bi ) 28 Ip(k y )I (A )/A- (16)

for all parameter regimes where r and y~ are sufficiently
small. The average axial field is similarly found to be

A
ex

FIG. 2. Coordinate system used in the derivation of Eq. {10).
Precession seen in Fig. 1{c)is neglected here.

which, to fourth order, is exact for both y~ &&r and

y »r. Substituting these two terms into the velocity re-
lation Eq. (9) yields the 'sought-after expression for (pi ):

2Q (P~~)Ip(k y )I](A,)/A,

kii) (P~~ )c—Qii —20 Ip(k y& )I]()]),)
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In the limit y~ —+0, this expression reduces to the axis-
centered theory represented by Eq. (5), and in the limit
A, —+0, the expression is identical to the guiding-center
theory represented by Eq. (6).

The parameters (P~I) and (Pi ) are obtained by a
simultaneous solution of Eqs. (2) and (18). The value of
ys employed in solving Eq. (18) is the initial electron ra-
dius in the 8 =0 region outside the wiggler. In Fig. 3
the predicted values of &pII) (solid dots) are compared
with the values of (p~~ ) obtained by numeric simulation
for a wide range of parameters (curved lines). For
k y &0.6, the worst case error is ((pII)„—(pII),h„,)/
(pII)„&0.(X)03. In Fig. 3(b) we also show the predic-
tions of the previously derived, pure guiding-center theory
[Eqs. (2) and (6)]. While this theory exhibits the correct
qualitative behavior, it is significantly less precise than the
results obtained from Eq. (18).

The complete three-dimensional field along the electron
orbit of Eq. (10) oscillates around the average field values
given by Eqs. (16) and (17) and the oscillation inay be sub-
stantial, particularly for the axial field (see Fig. 2). A
more detailed description of the electron orbits allowing
for azimuthal and radial drifts can be found by consider-
ing the total magnetic field to be a superposition of the
average field denoted as (Bo) and a small perturbation
Bi. If the velocity is decomposed into a small perturba-
tion vi around the average velocity (vo), then, to first or-
der,

4
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FICs. 4. Precession frequency cop, of the electron guiding
centers as a function of the normalized distance of the electron
guiding centers from the wiggler axis k„y~. Computer simula-
tions are shown by the lines, and the predictions of Eq. (20) are
given by the dots. Cases a, b, and c correspond to the configu-
rations of Figs. 3(a), 3(b), and 3(c), respectively. Arrow indicates
the direction of the precession, which changes sign as

k.pI, c & n. .

l.3l0.645—

1vi
(vi X &Bo)+&v, ) XB&) .

dt ymc
l.30 (19)

0.635—
This equation was solved to first order in r in the limit
r «ys, and it was found that vi is equal to a sum of os-
cillatory terms at the fundamental and harmonics of k z,
and an azimuthal drift which causes the guiding, center to
precess around the wiggler axis [Fig. 1(c)]. To this order,
there is no radial drift. However, the numeric simulations
show that there is a small outward drift for electrons that
are situated very far away from the axis ( k ys & 1).

In Fig. 4 the precession frequency predicted by Eq. (19),

B ( i )It(keys) (8.~0), (20)
ys 8.—28 Io(k 3g)i, (z)

l.29
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is compared with the numerically determined precession
frequency. The excellent agreement between the theory
and the simulations shown in Figs. 3 and 4, and the lack
of any large radial drifts, confirm the empirical assump-
tions underlying the derivations.
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FIG. 3. Average axial velocity (PI~ ) as a function of the nor-
malized distance of the electron guiding centers from the
wiggler axis k„y~. Curves are the value of (PII) found numeri-
cally, and the dots give the theoretical prediction of Eqs. (2) and
(18). (a) (P~I) for y=1.33, 8„=250 G, k„=1.904, 8, =1600

for y=3.4, 8 =583.3 G, k =2.904, 8, =13120
G. (c) (PII) for y=1.33, 8„=250G, k =1.904, 8, =4000G.
(a) is for trajectories well below resonance (k„(PII)c& Q, ), (b)
is for trajectories very near resonance, and (c) is for trajectories
well above resonance. (b) also shows (squares) the predictions of
the pure guiding-center theory of Eqs. {2)and (6).

EXPERIMENTS

The validity of Eq. (18) has been confirmed experimen-
tally by measuring the spectral properties of~ a free-
electron laser as a function of the position of the FEL's
electron beam relative to the FEL wiggler axis. An elec-
tron beam produced by a Marx-generator-driven ther-
mionic electron gun is constrained to flow along the axis
of a solenoidal magnet. The superimposed bifilar helical

OFF-AXIS ELECTRON ORBITS IN REALISTIC HELICAL. . .
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FIG. 5. Experimental results showing the energy required to
radiate a fixed frequency m/2m =9.55 GHz as a function of the
normalized distance of the electron beam from the wiggler axis
yb. Data are given for three values of the wiggler'field. Experi-
mental points are shown by the crosses, squares, and dots, and
the predictions of Eqs. (2), (18), and (21) are given by the lines.

2
m =P))ckw, effY(~

X {1+P~~[1—(~, /k. ..g ~~P~~c)']'"I . (21)

Here the effective wiggler wave number is
k,.«= S i~ C""—/r '"riÃiic
the nonrelativistic plasma frequency; co, = (co,o
+pzcoz/y)'~ is the effective waveguide cutoff frequency
adjusted for the presence of the electron beam; co,o is the
empt'y-waveguide cutoff frequency; p ~ and pq are
frequency-dependent numerical factors, less than unity,
that are related to the finite transverse geometry of the
system; and @ is a correction to the space-charge disper-
sion equation due to the combined presence of the axial
and wiggler magnetic fields, and is defined as

0 = 1 —
I Q()y))p~/[(1+ p~ )Q(~ ka p~)c]—J, (22)

where p~=pj/p~~ is the normalized transverse velocity
acquired by the electrons from the wiggler magnetic
field. "

The wiggler is mounted so that it can be moved freely

wiggler magnet induces amplification in a codirectional
microwave signal of known amplitude and known fre-
quency co. Amplification occurs only at the appropriate
beam energies corresponding to the radiation frequency'

1

in the direction transverse to the axial solenoid field.
Note that the solenoid axis and the wiggler axis remain
collinear. Since the position of the center of the electron
beam is defined by a 0.254-cm-radius aperture centered on
the solenoid axis, the wiggler position can be adjusted so
that the electron beam propagates through the wiggler at
any desired distance yb from the wiggler axis. In this way
the beam electrons are allowed to sample different axial
and perpendicular wiggler-field components and ampli-
tudes as prescribed by Eq. (4). In Fig. 5 we plot the exper-
imentally determined beam energy required to radiate the
fixed frequency co/2m. =9.55 6Hz, as a function of the
distance between the beam center y~ and the wiggler axis.
The dashed and solid lines show the theoretically predict-
ed beam energy as determined by solving Eqs. (2), (18),
and (21). We have taken ys in Eq. (18) to be equal to yb.
The experimental data agree well with the predictions of
the general three-dimensional theory. However, the good
agreement should be considered with caution since the
beam diameter is large and only somewhat smaller than
the beam displacement yb.

DISCUSSION

In the past, there has been some discussion in the FEL
community concerning the merits of the various orbit ap-
proximations [Eqs. (3), (5), and (6)] when an electron
beam of finite thickness propagates in realistic helical
wiggler and guide magnetic fields. Users of the one-
dimensional theory [Eq. (3)] or the guiding-center theory
[Eq. (6)] have questioned, with some justification, the use
of the axis-centered theory [Eq. (5)] for beams of consid-
erable thickness, typically kerb -0.5, in which the beam
radius and the electron undulations are of comparable
size. On the other hand, comparisons with experiments
described here and in earlier studies have consistently
shown better agreement with the axis-centered theory [Eq.
(5)]. In this paper we find, by comparisons with numeric
simulations, that the axis-centered approximation is al-
ways a better representation of the electron dynamics than
the one-dimensional theory [Eq. (3)] and for small values
of y~ it is also better than the guiding-center theory. We
also obtain a precise and general result, given by Eq. (18),
that can be used for a thick electron beam. This formula
accurately predicts the results of numeric simulations, and
it agrees well with experimental observations. Conse-
quently, the orbit expression Eq. (18) developed here can
be used with assurance over the full range of beam radii
of practical interest ( k rb & 1).
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