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We describe a class of continuously phase-modulated radiation pulses that result in coherent pop-
ulation inversion on resonance as well as over a large range of transition frequencies and radiation
field strengths. This is a population-inversion analogy to self-induced transparency. Simulations of
the inversion properties of the modulated inversion pulse (MIP) are presented. It is shown that the
inversion behavior can be explained by treating the MIP as a highly efficient adiabatic sweep. Cri-
teria for establishing adiabaticity are discussed in detail. Finally, a method is presented for generat-
ing a sequence of phase-shifted radio-frequency pulses, from the continuously modulated pulse,
which can be implemented on modern NMR and coherent optical spectrometers; experimental con-

firmation is given.

I. INTRODUCTION
A. Background

The implementation of population inversion among en-
ergy states is an important requirement of many tech-
niques in nuclear magnetic resonance (NMR) and
coherent optical spectroscopy, including relaxation-time!
measurements, spin or photon echoes,”> and spin decou-
pling.* The simplest way to coherently invert populations
is with a single 7 pulse, i.e., a pulse of radiation such that
the product of amplitude in angular frequency units and
the time in seconds equals 7. For good population inver-
sion to be achieved, the difference between the radiation
frequency and the resonant frequency of the transition for
which the populations are to be inverted must be much
smaller than the radiation amplitude. In other words, the
inversion bandwidth of a single 7 pulse is quite limited.
Often, it is the case experimentally that the bandwidth of
resonant frequencies is comparable to or greater than the
available radiation amplitude. In NMR, the bandwidth
may result from static magnetic field gradients, chemical
shifts, or spin couplings. In coherent optics this may be
due to inhomogeneous broadening from crystal strains or
Doppler shifts.

An established technique in NMR for inverting spin
populations over a large bandwidth is adiabatic rapid pas-
sage,” in which the frequency of applied radio-frequency
(rf) radiation is swept through the resonances at a con-
stant rate that is small compared to the rf amplitude but
large compared to the inverse of the relaxation times.
Adiabatic sweeps have been employed in coherent optics
as well.°~!! An alternative approach to broadband inver-
sion in NMR was proposed some time ago by Levitt and
Freeman.!? They suggested using a sequence of phase-
shifted pulses, collectively called a composite 7 pulse, to
produce inversion over a broad bandwidth. Composite
pulses have led to a wide range of applications. Several
approaches to their design in NMR (Refs. 4 and 12—27)
and coherent optics?®?° have been described. The original
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work was based on computer simulations of spin trajec-
tories and geometrical intuition.!> This was followed by a
more formal analysis in terms of rotation operators.!4—16
More recent developments include an approach based on
coherent-averaging theory'”'® and the introduction of
iterative - methods for generating composite =
pulses.*!°=22, The coherent averaging theory approach
and another approach based on a fictitious spin- formal-
ism have led to composite pulses for coupled spin sys-
tems.23—25 .

This paper enlarges upon a recent communication®® in
which we introduced an approach to broadband popula-
tion inversion that bridges between adiabatic sweeps and.
composite 7 pulses. This work—which was subsequently
appreciated by Silver, Joseph, and Hoult?’—was originally
motivated by the self-induced transparency effect’® ob-
served in coherent optical spectroscopy. The phenomenon
of self-induced transparency, first discovered and studied
by McCall and Hahn, occurs when a radiation pulse with
an area of 27 and amplitude modulated according to a hy-
perbolic secant function brings a two-level absorbing sys-
tem from its ground state back to its ground state regard-
less of its resonance frequency. In that sense, a hyperbolic
secant pulse is a perfectly broadband 27 pulse. Allen and
Eberly have proposed a similar class of pulses for popula-
tion inversion, but with both phase and amplitude modu-
lation.?! If @,(¢) is the amplitude and ¢(z) the phase of
the radiation, the pulse of Allen and Eberly may be writ-
ten as

w(t)=(w)/siny )sech(wlt) , (1)
é(2)=(wlcoty)tanh(lt) , @)

where ¢ extends from — « to + . ¥ is a parameter that
determines the depth of the modulation, with no phase
modulation when ¥ equals 7/2 and increasing phase
modulation as ¥ approaches zero. This pulse inverts pop-
ulations in a two-level system regardless of the values of ¥
and o9, provided that the radiation frequency exactly
equals the resonance frequency, i.e., “on resonance.” Al-
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len and Eberly point out that the pulse resembles an adia-
batic sweep for small values of ¥, due to the equivalence
of phase modulation and frequency modulation. Thus, it
may be anticipated that a pulse with phase modulation
similar to that of Eq. (2) will have broadband inversion
properties. The performance of a class of phase-
modulated pulses related to Egs. (1) and (2) is investigated
in detail below. Comparisons with adiabatic sweeps are
made.

The relation to a composite 7 pulse arises from consid-
ering a composite 7 pulse as a single phase-modulated
pulse, with a piecewise-constant phase function. A com-
posite 7 pulse may then be regarded as an approximation
of a continuously phase-modulated pulse. One way to
generate composite 7 pulses would be by approximating
the continuously varying phase function of a pulse similar
to that of Egs. (1) and (2) by a piecewise-constant func-
tion. Procedures for generating composite 7 pulses from
continuously phase-modulated pulses are developed below.

B. Organization

In Sec. II the class of phase-modulated, constant-
amplitude pulses first presented in Ref. 26 is derived from
consideration of the magnetization trajectory. Simula-
tions of population inversion performance are given. A
general transformation from a pulse with a modulated
phase and a constant amplitude to a pulse with both phase
and amplitude modulation is introduced, in order to
demonstrate the relationship between our pulses and those
of Allen and Eberly.

In Sec. IIT we treat phase-modulated pulses as adiabatic
frequency sweeps. Criteria for adiabatic inversion are dis-
cussed. They lead to the concept of the efficiency of an
adiabatic sweep and to the derivation of a new class of
phase-modulated pulses based on efficiency considera-
tions. A comparison of the inversion performance of
linear sweeps, pulses derived in Sec. II, and pulses derived
from considerations of efficiency is made.

The treatment of adiabaticity in Sec. III suggests that
the phase-modulated pulses of Sec. II may invert spin
populations over large ranges of rf amplitude as well as
large ranges of resonant frequencies. The inversion per-
formance as a function of the rf amplitude is treated in
Sec. IV. In Sec. V we describe a method for deriving
discrete composite pulse sequences from continuously
phase-modulated pulses. Experimental results are
presented.

II. DERIVATION OF PHASE-MODULATED
PULSES FOR POPULATION INVERSION

A. Frames of reference

We begin with a description of two frames of reference,
shown in Fig. 1, that are of importance in the remainder
of the paper. The first of these is the usual rotating
frame.?? If an isolated-spin or two-level system with reso-
nance frequency oy is irradiated with a rf pulse with any
general amplitude and phase modulation, its motion in the
usual rotating frame is determined by the Hamiltonian
H™ (where PM refers to phase modulation):
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(a) PM Frame
Z

(b) FM Frame
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FIG. 1. (a) Phase-modulated (PM) frame. (b) Frequency-
modulated (FM) frame. The resonance offset, Aw=w¢—ow, is
the difference between the Larmor frequency and the rf carrier
frequency. The pulse amplitude and phase are denoted by w(¢)
and ¢(¢), respectively. In the PM frame, which is the equivalent
of the usual rotating frame used in NMR, the phase of the pulse
which varies with time gives the direction of the radiation in the
x-y plane. In the FM frame the direction of the radiation in the
x-y plane is fixed, and the time derivative of the phase function,
q§(t), appears along the z direction as an additional resonance
offset. The two frames are related by a rotation about the z axis
by ¢(t).

HPM= Aol —o,(1)[Iycosp()—Isind(1)] . 3)

@y(2) and ¢(¢) are the pulse amplitude and phase; Aw is
the difference between wg and the rf carrier frequency o,
i.e., the resonance offset. HFM is derived from the
lall))&ratory-frame Hamiltonian by the transformation
T

TPM—exp(—iwl,t) . (4)
In this reference frame, which we call the PM frame, the
rf frequency appears constant and the phase, i.e., the
direction in the x-y plane, varies. This is seen in Fig. 1(a).
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An alternative rotating-frame transformation that is
useful in dealing with continuously modulated pulses is
~accomplished by the unitary operator 7™ (where FM
refers to frequency modulation):

T™=exp[ —i(wt +¢()),] . (5)
In the FM frame, the Hamiltonian is
H™M=[Ao+¢()], — (D), , (6)

and the time derivative of the phase function appears as
an additional resonance offset with the x-y plane com-
ponent constant in direction, as shown in Fig. 1(b). That
a phase-modulated pulse can be viewed in either the PM
or FM frames is a statement of the equivalence of phase
and frequency modulation. Of course, due to the design
of a typical pulsed NMR spectrometer with its constant-
frequency reference, spin evolution is normally observed
in the PM frame. For our purposes, the FM frame serves
as a useful tool for deriving modulated pulses.

B. Derivation of phase modulation
from magnetization trajectories

An isolated spin can be described in the FM frame by a
density operator p(¢) of the following form:

p(t)=M()1, (7)

where M(?) is a three-vector proportional to the magneti-
zation and I is a three-vector whose components are the
angular-momentum operators.>> With Eq. (6), M(z) satis-
fies the Bloch equations without relaxation:

M —(—0,(1,0,§()+80) XM . (®)
If the initial condition for M is known and if ¢(¢) and

,(t) are given, then Eq. (8) determines the evolution in

time of M. For arbitrary ¢(¢) and w,(2), Eq. (8) can be-

solved by numerical methods for ordinary differential
equations. Alternatively, ¢(¢) and w,(¢#) may be approxi-
mated by piecewise-constant functions, possibly by divid-
ing time into small intervals over which ¢(¢) and «,(¢) are
assigned their respective values at the midpoint of each in-
terval. For each interval with constant ¢(¢), the evolution
of M is simple. M precesses around the effective field
vector with x component —w; and z component ¢+ Aw
at an angular rate equal to [wi+(d+Aw)*]'/% The
length of M is conserved. If M is assumed to have urit
length, M follows a trajectory on a unit sphere. A trajec-
tory of M from + z to — z corresponds to the inversion of
spin state populations.

An important question which now arises is the following:
given a trajectory for M(t), how can we determine the ¢(t)
and w,(t) which will yield that trajectory? We begin our
consideration of this question with a class of trajectories
that is of particular importance in the rest of the paper,
namely those that follow a great circle from +zto —z in
the FM frame, as depicted in Fig. 2(a). The Appendix
presents a formalism for treating other trajectories. A
|
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(b)

FIG. 2. Inverting magnetization trajectories for an on-
resonance spin for the (a) FM and (b) PM frames calculated
from Egs. (9) and (11), and (13) and (14), respectively, with
y=0.1.

great circle trajectory is of the form
M(2)=(cosy cosg, siny cos€, —sine) , 9)

where ¥ is a constant azimuthal angle and € is a polar an-
gle. € is a function of ¢ that is to be determined. Since
the trajectory depends on the resonance offset, we specify
that Aw=0, i.e., that Eq. (9) should hold on resonance. In
addition, we initially search for a pulse with a constant am-
plitude equal to »°. The general case of amplitude modu-
lation is treated later. Equations (8) and (9) lead to

(—€écosy sine, —é€siny sine, — € cose)=(—d siny cose, —wisine+ ¢ cosy cose, —wJsiny cose) , (10)
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which implies

e=(wlsiny)t , (11)
¢;=w(1)cos7/ tan[(%siny)t] , (12)
where

S N —
20%siny 2a%siny

Equation (12) dictates a class of phase-modulated pulses
that invert spin populations exactly on resonance, since it
is derived from the inverting trajectory in Eq. (9). With
y=m/2, the phase is constant, the PM and FM frames
coincide, and a standard 7 pulse is recovered. M(¢) is
confined to a plane perpendicular to the plane of the ef-
fective field. As y approaches zero, the phase modulation
deepens, the pulse length increases, and the plane of the
magnetization trajectory approaches coincidence with the
plane of the effective field, suggesting adiabatic behavior.
Equation (11) indicates that M(z) moves with a constant
angular velocity along the trajectory of Eq. (9) regardless
of the value of y, provided that w, is constant.

The derivation of the phase modulation has been car-
ried out in the FM frame. Since the PM and FM frames
are related by a rotation about z by ¢(¢), the trajectory in
the PM frame does not follow a great circle, but is still an
inverting trajectory. This is shown in Fig. 2(b). To obtain
¢(1), we integrate Eq. (12):

#(t)= —coty In{cos[(wsiny)z]} ,
where

T T
—_—— gl — . (13)
20%siny 2w9siny

¢(t) and #(z) are plotted in Fig. 3. A pulse specified by
Egs. (12) and (13) will be referred to as a modulated inver-

MODULATED INVERSION PULSE
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FIG. 3. (a) Continuously frequency and (b) phase modulated
inversion pulse (MIP) plotted versus Yt for values of y=0.2
and 0.1. The pulse amplitude is constant and the phase modula-
tion increases as ¥ decreases. Also, as ¥y —0 the overall length
increases (20t =1/siny). The MIP is an exact analytical solu-
tion to the problem of population inversion on resonance
(Aw=0) for all values of y.

sion pulse (MIP). The magnetization trajectory in the PM
frame [Fig. 2(b)] is

M:M =cos[y + ¢( t)]cos[(a)?sin'y ],
MM =sin[y +¢(2)Icos[ (wisiny )¢] , (14)

M™M= —sin[(wsiny)z] .

C. Inversion performance off resonance

Although the MIP is derived so as to invert spin popu-
lations on resonance, the appearance of adiabatic behavior
suggests that spin populations may be inverted over large
ranges of resonance offsets as ¢ approaches zero. Figure
4 shows simulations of the inversion performance of the
MIP as a function of the resonance offset for several
values of y. The extent of inversion is defined to be the
negative of the final z component of M. Apparently, the
range of offsets for which the inversion is nearly complete
can be made as large as desired by taking y to be suffi-
ciently small.

D. Transformation to amplitude-modulated pulses

Equation (13) is derived above with the assumption of a
constant pulse amplitude. Although there is at most one
rf phase function that yields a given magnetization trajec-
tory on resonance with a given constant rf amplitude,
there may be an infinite variety of combinations of phase
and amplitude functions, if amplitude modulation is al-
lowed. Here we present a method for converting a phase-
modulated, constant-amplitude pulse to a pulse with both
phase and amplitude modulation that produces the same
trajectory on resonance.

The essential idea becomes apparent from considering a
single pulse with a constant phase ¢, a constant am-

T T T T 1
P(t) = -cotY In[cos(sin? wM)]
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FIG. 4. Simulations of spin inversion from the MIP as a
function of the relative resonance offset for various values of y.
Inversion is defined as the negative of the final z component of
the spin angular momentum; initially, the spin system has a z
component of + 1. For all values of y, the inversion is always
perfect on resonance. For y=m/2, i.e.,, no phase modulation,
the MIP is equivalent to a standard s pulse, which can be used
here as a reference. As y—0, i.e., increasing phase modulation,
good inversion is accomplished over an increasingly large range
of frequencies.



plitude w9, and a length 7. The effect of such a pulse
when Aw=0 is to produce a rotation of M by an angle
)7 about an axis in the x-y plane at an angle @ to the x
axis. Since it is only the area of the pulse that matters,
however, the net effect is unaltered if the pulse amplitude
is changed, provided that the pulse length is also changed
so that the pulse area remains equal to 7. In general, a
phase-modulated, constant-amplitude pulse can be ap-
proximated to arbitrarily high accuracy by a sequence of
many constant-phase, constant-amplitude pulses. In order
to transform the overall pulse to some desired amplitude
modulation, it is then only necessary to increase or de-
crease the amplitudes of the individual pulses and corre-
spondingly decrease or increase their lengths. The total
pulse area must remain constant. Figure 5 illustrates the
procedure.

Mathematically, the amplitude transformation is a dis-
tortion of time. In general, suppose a pair of functions
,(t) and ¢(¢) produce a certain magnetization trajectory,
with

[° owdi=a. (15)

If there is another amplitude function @,(#), also with area
A, then we implicitly define a time transformation
t'=h (z) by the relation

t t
[, eitwdu= fo a(u)du . (16)

The phase function ¢(t)=¢(h(t)), along with the ampli- -

tude function @(t), will produce the same magnetization
trajectory. :

Thus we have arrived at the most general procedure for
finding phase and amplitude combinations that produce a
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FIG. 5. Schematic representation of the transformation from
(a) a pulse with constant amplitude and phase modulation to (b)
a pulse with both amplitude and phase modulation. In (a) the
total time interval is divided into subintervals of length 7,
represented by the dashed lines, which are each assigned a con-
stant phase and a flip angle equal to w,7. The transformation
from (a) to (b) is effected by choosing the desired overall ampli-
tude modulation, and then changing the lengths of the individu-
al pulses while still maintaining that their flip angle remain
equal to w;7. The new phase modulation emerges from the time
transformation.
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desired magnetization trajectory. We first derive a unique
constant-amplitude pulse. Then we may transform to any
other amplitude function of the same area, with the trajec-
tory uniquely determining the pulse area.

To derive the pulses of Allen and Eberly, we transform
the pulses of Eq. (13) to the amplitude function of Eq. (1).
The corresponding time transformation is

01, tan~ [sinh(w%)] . 17
wisiny

While the pulses of Egs. (1) and (2), and of Eq. (12), yield
the same on-resonance trajectory, the utility of the pulses
lies in their ability to invert spins off resonance. The sig-
nificant, dimensionless quantity that characterizes off-
resonance behavior is the ratio Aw/w;. In simulations we
find that the constant-amplitude pulses of Eq. (13) give
inversion over a larger range of resonance offsets than the
amplitude-modulated pulses of Egs. (1) and (2). An ex-
planation for this is that Aw/w, is always at its minimum
for the constant-amplitude pulses.

h(t)=

III. POPULATION INVERSION
BY ADIABATIC SWEEPS

We saw in Sec. II that modulated pulses invert spins
perfectly on resonance and also over a large range of fre-
quencies as y—0. Because the on-resonance magnetiza-
tion trajectories are suggestive of adiabaticity, we now
treat the above pulse in the framework of adiabatic sweeps
and compare different adiabatic approaches.

A. Criteria for adiabatic inversion
The Hamiltonian of Eq. (6) can be written
H™M=g (1)1, (18)
(D) =(—0w1(2), 0, Ao+ (1)) . (19)

Spin populations may be inverted adiabatically if ¢(z) and
1(t) are such that the direction of @(t) moves from —z
to +z, or from +z to —z, at a sufficiently slow angular
rate. In that case, the magnetization, or spin density
operator, is said to follow the effective field @.g 2).

If w.g(2) is written as

@esi(t) =wepe(t)( —cos0, 0, sinb) , » (20)
0=tan~'{[Aw+d()]/wy(1)} , SN ¢3))

the two criteria for adiabatic inversion by a pulse between
times —?, and ¢, can be stated as follows:5726

~

(i) <LK Deff »

d
i o(t)

(ii) O(tty)=tm/2.

Criterion (i) states that the effective field must change
direction slowly compared to the rate at which M™
precesses. In order to quantify criterion (i), we define the
adiabaticity factor Q(#) according to

. (22)

Q(t)=coeﬂ<t)/ ‘%G(t)
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The larger the value of Q(2), the more adiabatic the fre-
quency sweep. :

In what follows, we consider only sweeps for which w,;
is constant and nonzero. Therefore, criterion (ii) requires
that the sweep begin far below resonance and end far
above resonance, such that | Aw+@(*1g) | >>w;.

There are many possible forms for ¢(¢) that result in
adiabatic inversion. We call a sweep efficient if it accom-
plishes population inversion in a comparatively short
time. Different forms of sweeps may have different effi-
ciencies for the following reason. Consider criterion (i).
Taking w; to be constant, g is smallest when 6=0 and
¢(t)= — Aw, i.e., when the sweep passes through reso-
nance. It is at this time that criterion (i) is most restric-
tive so that |dO(t)/dt| must be smallest. When the
sweep is far from resonance, |dO(t)/dt| may be larger
while still satisfying criterion (i) since w.g is larger. If
| dO(2)/dt | indeed becomes larger far from resonance,
criterion (ii) may be satisfied for comparatively small
values of ¢q.

In the remainder of this section, three forms of sweeps
are examined in light of the above criteria for adiabaticity.
The factors that limit their inversion bandwidths are dis-
cussed and their efficiencies are contrasted.

B. Linear sweep

The simplest and most commonly used frequency sweep
is a linear sweep defined by

o(t)=—kt, —ty<t<ty (23)

where k is the constant sweep rate. Since k is constant,
criterion (i) is satisfied for all values of Aw once k is small
enough so that criterion (i) is satisfied at any particular
value of Aw. For Aw=0, a linear sweep has

() =[N +é()*]?"*/ke? . (24)

Q(#) has its minimum at t=0, where Q(0)=(w})¥/k.
Simulations show that the maximum value of k for which
populations are inverted adiabatically with Aw=0 is given
approximately by k. =0.2(w})?. This limit is deter-
mined by simulating the effects of linear sweeps with ¢g
taken to be very large.

For values of k less than or equal to k,,, criterion (i)
is satisfied throughout the sweep. With k fixed, the
choice of #, determines whether criterion (ii) is satisfied.

Simulations of inversion as a function of Aw/wi for
linear sweeps with k=0.2(w})? and various values of ¢,
are shown in Fig. 6. For the inversion to be essentially
complete for Aw=0, the minimum length of the sweep
must be given approximately by 2t = 10009, Inversion is
achieved over a large range of resonant frequencies be-
cause criterion (ii) is satisfied for a large range of resonant
frequencies once it is satisfied for Aw=0. In other words,
¢(xty) is only a weak function of Aw when
| #(+29) | =7 /2. However, it is still criterion (i) that ul-
timately limits the inversion bandwidth for any given
value of .

C. Modulated inversion pulse

When treated as a frequency sweep, the MIP of Eq. (12)

and Fig. 3(a) satisfies criterion (ii) for all values of ¥ and

1.0} o
3 N L
¢ 00 -
B - -
L (a) - (b)
or 1 ! 1 1 I L 1 1 ] 1 L
ok
= +
< o -
2 0.0 o
¢ | -
£ [(c) - (d)
o 1 L 1 L 1 L 1 L L L L
00 - 1.0 2.0 3.0 10 2.0 3.0
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FIG. 6. Simulations of inversion as a function of resonance
offset, resulting from the linear frequency sweep of Eq. (23) of
the text with k/(0?)*=0.2. The linear sweep consists of a
constant-amplitude rf field whose frequency is changing at a
constant rate of k/(»})%. The overall lengths of the sweeps are
200to=(a) 15.82, (b) 31.46, (c) 62.86, and (d) 200.0. The
minimum overall length required to achieve adiabatic inversion
on resonance is approximately 2w{o=100. Once inversion is
achieved on resonance, it is also accomplished over a large range
of resonant frequencies. The overall lengths of (a)—(c) are equal
to the overall lengths of the sweeps used to simulate inversion
performance from the MIP in Fig. 4 when ¥ =0.20, 0.10, and
0.05, respectively.

Aw. This is because ¢(z) becomes infinite at the beginning
and end of the pulse. Thus, it is criterion (i) that deter-
mines whether the MIP functions as an adiabatically in-
verting frequency sweep. Recall that the MIP was de-
rived in Sec. II in such a way that the inversion at Aw=0
is complete regardless of y. The adiabatic nature of the
inversion is therefore expressed not by the inversion at
Aw=0, but rather by the appearance of a large inversion
bandwidth as ¢ decreases.

The adiabaticity factor for the MIP with Aw=0 is
given by

()= {1+ [cosy tan(wisiny)z]}3/? 25)
{cosy siny[1+tanXwisiny)t]}
Q(t) has its minimum at ¢=0, where Q(0)

=(cosy siny)~!. Broadband inversion occurs when 7y is
less than or about equal to 0.20, as was seen in Fig. 4.
When y=0.20, Q(0)=5.1. This result is consistent with
the finding that a linear sweep effectively inverts popula-
tions only when the sweep rate k is less than or about
equal to 0.2(»?)?, making the adiabaticity factor for a
linear sweep greater than or equal to 5. Thus, the adiaba-
ticity factor appears to be a meaningful quantity for
predicting the performance of a frequency sweep. In ad-
dition, the agreement of the adiabaticity factors for the
MIP and the linear sweep supports the contention that the
broadband properties of the MIP are due to the adiabatic
nature of the inversion.

A comparison of Figs. 4 and 6 reveals that nearly com-
plete inversion is achieved by the MIP in less time than by
a linear sweep. The sweeps in Figs. 6(a)—6(c) require the
same total time as the MIP in Fig. 4 with y=0.20, 0.10,
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and 0.05, respectively. The inversion results in Fig. 4 are
generally superior, however. Thus, the MIP is a more ef-
ficient frequency sweep. This is because the instantaneous
sweep rate, i.e., ¢ greater at the beginning and end of the
sweep than at ¢ =0.

The fact that the sweep rate is not constant makes cri-
terion (i) the limiting factor on the inversion bandwidth
for the MIP. At resonant frequencies for which the sweep
rate is rapid as the sweep passes through resonance, de-
fined by the condition ¢(#)= — Aw, criterion (i) is not sa-
tisfied and populations are not inverted.

D. Constant adiabaticity pulse

A third class of frequency sweeps may be derived by
making the restriction that Q(z) be constant when Aw =0,

Q(t)=gq . (26)

Based on the above discussion, such a sweep with g =5 is
expected to be particularly efficient for adiabatic inver-
sion.

Equation (26) implies

4%? =Oeff - (27
In addition, we have

et COSO=0] , (28)

e SINO=6 . (29)
Equations (27) and (28) imply

sinf=wlt/q . (30)

Equations (29) and (30) lead to
¢(t)= _(w?)Zt/[qZ__(w(l))ZtZ]l/Z ,

—q/al<t<q/o). (31
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FIG. 7. Comparison of three adiabatic (a) frequency- and (b)
phase-modulated pulses: the constant adiabatic pulse (CAP),
the MIP, and the linear sweep. The CAP, a constant amplitude
pulse, was derived from considerations of efficiency for adiabat-
ic sweeps. In this figure the parameters were chosen such that
the adiabaticity factor Q(z) defined by Eq. (22) be equal to
10.067 for all three pulses at ¢ =0. The larger the value of
Q (2), the more adiabatic the sweep.
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FIG. 8. Comparison of the adiabaticity factors Q(tz) with
Aw =0 for the MIP, the linear sweep, and the CAP. Q(¢) is de-
fined in the text by Egs. (25), (24), and (26), respectively. The
efficiency of the sweep is determined by the length of time Q(#)
remains close to its minimum; the linear sweep is the least effi-
cient sweep.

Equation (31) defines the desired frequency sweep, which
we refer to as the constant adiabaticity pulse (CAP). In-
tegration of Eq. (31) gives the equivalent phase modula-
tion:

&)= —[g*>— (2] ?+q . (32)

Note that ¢(¢) remains finite, although ¢(t) becomes infin-
ite at t=+q /.

Figure 7 is a comparison of the frequency and phase
modulations of the CAP, the MIP, and the linear sweep.
The specific parameters in Fig. 7 are chosen so that the
adiabaticity factor at t=O0 is the same for the three
sweeps. For a given minimum adiabaticity factor, the
CAP requires the least total time of the three sweeps.

The adiabaticity factors as functions of time for the
CAP, the MIP, and the linear sweep with Aw=0 are
shown in Fig. 8. The adiabaticity factor has its minimum
value throughout the sweep for the CAP. The adiabatici-
ty factor for the MIP remains close to its minimum value
for a greater portion of the sweep than for a linear sweep.

The inversion performance as a function of Aw for the
CAP with various values of ¢ is shown in Fig. 9. The
values of g are chosen so that the overall lengths of the
sweeps in Fig. 9 are the same as those in Fig. 4. The
bandwidth of the CAP is limited by criterion (i). A com-
parison of Figs. 4, 6, and 9 reveals that the MIP exhibits
the best inversion performance for equal sweep lengths.
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FIG. 9. Simulations of inversion as a function of Aw/w’ for
the CAP. The overall lengths of the sweeps were chosen such
that they correspond to the overall lengths of the sweeps of Fig.
4 (g =m/2siny, the overall length is 2¢). Simulations indicate
that when Q(O) >5, the CAP, the MIP, and the linear sweep ex-
hibit adiabatic inversion over a large range of frequencies. A
comparison of Figs. 4, 5(a)—5(c), and 8 indicate that the MIP
produces the best adiabatic broadband inversion for equal sweep
lengths and always inverts on resonance spins.

IV. INVERSION IN AN INHOMOGENEOUS rf FIELD -

Although the MIP was derived by considering a partic-
ular class of inverting trajectories for a spin on resonance,
Secs. II and IIT show that the MIP may invert spin popu-
lations over large ranges of resonance frequencies due to
its adiabatic characteristics. Adiabatic sweeps may invert
populations over large ranges of rf amplitudes as well as
resonance frequencies. Therefore, in this section we inves-
tigate the inversion performance of the MIP as a function
of w;. Deviations of w; from its nominal value of «{ arise
experimentally from rf inhomogeneity and from miscali-
bration of the rf field. In coherent optics, it is the laser-
beam profile that is the analogous source of amplitude in-
homogeneity.

‘The inversion performance as a function of w; may be
anticipated by referring to the criteria for adiabatic inver-

(1) =-cot ¥ In[cos(sinY w‘l’i)]

T T T _{

Inversion
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FIG. 10. Simulations of inversion as a function of w;/®{ for
the MIP with values of ¥ as shown. When y <0.2 [Q(0)>5],
the inversion becomes perfect over a very large range of w;.
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FIG. 11. Simulated contour plot of population inversion as a
function of Aw and w; for the MIP with ¥=0.10. The MIP
compensates simultaneously for resonance offset and rf inhomo-
geneity effects.

sion discussed in Sec. III. For the MIP, criterion (ii) is
automatically satisfied, since ¢(¢) becomes infinite at +¢,.
Once criterion (i) is satisfied for w; =09, it is satisfied
even more strongly for w; > ). Therefore, it is expected
that essentially complete inversion may be achieved over a
large range of w; when the MIP becomes adiabatic, i.e.,
for ¥ <0.20.

Figure 10 shows simulations of inversion as a function
of w; for the MIP with various values of y. The above
predictions are verified. Figure 11 shows a simulated con-
tour plot of inversion as a function of w; and Aw simul-
taneously for the MIP with y=0.10. A large region of
essentially complete inversion is apparent.

For comparison, Fig. 12 shows the inversion perfor-
mance of a linear sweep as a function of ;. Much small-
er bandwidths are achieved with much longer sweeps. ‘For
a linear sweep, criterion (i) of Sec. IIl is again satisfied for
1> o) once it is satisfied for w;=w]. However, criterion
(i) is not automatically satisfied. Rather, 6(t,) is a strong
function of w; when | 6(¢() | = /2, so that criterion (ii) is
not met at large ;.
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FIG. 12. Simulated inversion performance as a function of
w/e] for the linear sweep with k /(w)*=0.2. The overall pulse
lengths are 2w{to=(a) 31.46, (b) 62.86, (c) 100.0, and (d) 200.0.
For longer sweeps than shown in Fig. 10, the inversion is poor-
er.
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V. GENERATION OF DISCRETE COMPOSITE
PULSES FROM CONTINUOUSLY
PHASE-MODULATED PULSES

It is often difficult to implement the single continuous-
ly .phase-modulated pulse experimentally. Frequently, it
is more convenient to use a sequence of phase-shifted rf
pulses forming a composite 7 pulse. This section de-
scribes the method by which we approximate the continu-
ous pulse by discrete pulse sequences that have both unre-
stricted phases as well as rf phases which occur only as
multiples of a specified value.

A. General method of approximation
using magnetization trajectories

The goal is to arrive at a discrete pulse sequence with
inversion properties that are very similar to those of the
continuously phase-modulated pulse. In the computer
simulations described above, the MIP is approximated
with a large number of pulses, each with a small flip an-
gle, by extracting the individual pulse phases and flip an-
gles from ¢(z) in Eq. (13). This was done by dividing the
total time interval into subintervals and assigning a con-
stant phase to each subinterval as shown in Fig. 13(a). As
the number of pulses, or subintervals, increases and the
flip angles become smaller, this is an increasingly accurate
approximation. However, if the number of pulses is
small, i.e., less than 100, this is a poor approximation,
particularly for small y. The spin evolution brought
about by the MIP over a subinterval is not the same as
that brought about by a constant-phase pulse with a phase
equal to ¢(z) at the midpoint of that subinterval. Errors
in the magnetization trajectory accumulate from one su-
binterval to the next, so that even on-resonance spins are
no longer inverted. Clearly, a new approximation method
is needed. Our method is based on following the on-
resonance magnetization trajectory MFM(z).

Figure 13(b) is a schematic representation of the
method used. The first step is to approximate the trajec-
tory of the magnetization by choosing points in time
along it. We then calculate the constant-phase pulses that
give the evolution of the magnetization from one point to
the next. The result is a sequence of radio-frequency
pulses or a composite pulse whose magnetization trajecto-
ry and inverting properties are very similar to those gen-
erated from the continuous pulse.

B. Pulse sequences with unrestricted phases

For a 2n —1 pulse sequence, we need to choose 2n + 1
points on the trajectory M(z). These points are denoted
by Mg,My, ..., M,, ..., M,,. The individual flip angles
and phases of the derived pulse sequences are denoted
respectively by 6,...,0,,_; and ¢4, ...,¢y,_1, Where
0=w?7;, and 7; is the length of the ith rf pulse. We set
the first point My=+z and the last point M,,=—z to
ensure that on-resonance spins are always perfectly invert-
ed by the discrete pulse sequence. Then, in order to fol-
low the trajectory as closely as possible, as indicated in
Fig. 13(b), more points are selected in the region where
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FIG. 13. (a) Schematic diagram of a method for approximat-
ing the MIP by a large number of constant-phase pulses. The
total length of the pulse is divided into a large number of subin-
tervals with lengths inversely proportional to ¢(z); this is indi-
cated by the dotted lines. The pulse flip angles are calculated
from the subinterval lengths and the constant amplitude. Based
on ¢(2), a constant phase is assigned to each subinterval. If the
number of pulses is small, this is a poor approximation. (b)
Schematic representation of the method used to approximate the
continuously modulated pulse (MIP) by a discrete pulse se-
quence. The magnetization trajectory MF™(z) of an on-
resonance spin subjected to the MIP is approximated by a
discrete number of points. The flip angle and constant phase
that give the evolution of the magnetization from one point to
the next are calculated. The result of this “connect-the-dots”
technique is a composite pulse whose inversion properties are
similar to those of the continuous pulse.
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MPM(¢) spirals more. A weighting function, ¢(¢), which
is itself a function of y is used to generate a set of times
(ty,...,2y,_1) from which the intermediate points
M; =MP"M(1,) can be calculated.

More specifically, the intermediate points are calculated
as follows. First, we choose a value ?, <0 which
represents a cutoff time for ¢(¢). The means by which ¢,
is chosen are discussed below. We evaluate ¢(¢.) and cal-
culate a set of phases [¢(z), . . . ,d(2,)] satisfying

&)=t ) n—i)/n . (33)

Using the set of times (z, . . ., t,) calculated from the set
of phases above, we find M; through M, by evaluating
M, =M®M(z;). The remaining points are determined by
the symmetry of MP™(z;); M,, _; is related to M; by re-
flection in the x-y plane. Next, we calculate the phases
and flip angles of the 2n pulses that move on-resonance
spins between successive points, i.e., that connect M; with
M, .. A sequence of pulses with symmetric phases and
flip angles emerges. The central two pulses can be fused
into one, since they have the same phase, so that an odd
number of pulses results.

The “connect-the-dot” method described above ensures
that on-resonance spins are inverted. Moreover, the fact
that the intermediate M; are chosen according to constant
increments in ¢(¢) ensures that more points occur where
&(1) is larger, or, in other words, where MPM(¢) spirals
most rapidly. Thus, we achieve a good approximation to
the trajectory generated from the MIP and it may be ex-
pected that the broadband inversion properties of the MIP
will be preserved.

In this method there are only two parameters which
must be computer-optimized in order to get the best inver-
sion performance over resonance offset or rf inhomogenei-
ty effects, for a specified number of pulses. These are ¥
and ¢, the latter being the cutoff time on ¢(¢). They are
optimized according to a best-average criterion. This
means that we cycle through different values of ¥ and ¢,
within certain restrictions, and find the values for which
the average inversion, over a specified bandwidth of
offsets or rf values, is a maximum.

Figure 14 illustrates three composite pulse sequences
that are optimized for broadband inversion with respect to
;. Both simulations and experiments are shown. Inver-
sion results for a single 7 pulse are plotted as a reference.
The inversion performance improves for a larger number
of pulses.

C. Composite pulses with constant-phase increments

For reasons of experimental convenience, it would be
desirable to derive sequences in which rf phases occur as
multiples of a constant phase. In looking at the form of
the pulse sequences derived earlier, we see that the phases
¢, to ¢y, _; of the 2n — 1 pulse sequence occur in constant
increments, but that ¢; and ¢,, _; are arbitrary and hold
no relationship to the other phases. Our goal in this sec-
tion is to devise a method whereby we are able to specify
the value of the constant-phase increment, as well as make
the first and last pulse have a phase that is some multiple
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FIG. 14. Simulations (solid lines) and 'H experimental mea-
surements (dots) of population inversion as a function of »,/e?
for discrete pulse sequences derived from the MIP using the
technique described in Fig. 13(b). Results are shown for (a) sin-
gle m pulse presented as a reference; (b) three-pulse sequence
(54)90(162.8)0(54)s0, and (c) 31-pulse sequence (18.3)64(4.8)55-
(5.3) 172(5.7) 159(6.3) 146(6.9) 132(7.6) 115(8.5) 106(9.4) 93(10.6) 75(12.0) 6~
(13.9)53(16.4)45(20.2),6(27.3)13(127.0)6(27.3)13(20.2)6(16.4) 49(13.9) s3-
(12.0) 66(10.6) 79(9.4) 93(8.5) 106(7.6) 119(6.9) 132(6.3) 146(5-7) 159(5.3) 172~
(4.8)185(18.3)264. The notation is (8)4, where 6 and ¢ are the flip
angles and phases of individual pulses in degrees.

of that increment.

In our method the values of the phases ¢, to ¢,, _, of
the derived pulse sequence are determined solely from the
constant-phase increment used on the weighting function
¢(t). The phase of the ith pulse is calculated from the
(i —1)st and ith point on the trajectory by

M, (1;)—M,(t;_,)
M, (t; _)—M,(t;)

¢;=tan™! , 2<i<2n—1. (34)

By substituting the values for M, and M, of Eq. (14) into
the above equation, and wusing the fact that
&(t;)=(n—i)py [Eq. (33)], we find that

$i=ido+C, (35)

where C is constant. This indicates that the times corre-
sponding to constant-phase increments in ¢(¢) also corre-
spond to points on M(¢) that may be connected by pulses
with constant-phase increments. Therefore we can specify
¢o to be any constant phase we desire, and for a 2n —1
pulse sequence all the calculated pulses from the trajecto-
ry between 2 and 2n —2 will have phases that differ by a
multiple of ¢.

To ensure that the first and last pulse also have a phase
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that is a multiple of ¢, the following procedure is used.
Rather than setting My and M,,, at +z as before, we now
choose M,,, such that the pulse connecting M,, _; to M;,
has a phase ¢,, _;=md¢,, where m is an integer. In order

: |
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1 Mx(th—-l )sin(md)o)—My(tz,,__l )COS(m¢0)
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to still invert on-resonance spins, we also stipulate that
M;, should remain as close to —z as possible. Therefore,
to find the best position for M, the flip angle of the last
pulse is optimized by setting

O2n—1=tan M,y

M, is found from M,, by symmetry. As before, the com-
posite pulse is found by calculating the phases and flip an-
gles which connect all the points M;.

Note that contrary to before, we no longer optimize ¢,
and, thereby, ¢, but rather ¢, is chosen and ¢, is found
from ¢(t,)=n¢,. The only parameter to be varied is ¥,
and once again the best-average criterion is used to select
the pulse sequence that inverts best over the specified
range of frequencies and rf amplitudes.

In Fig. 15 we show computer simulations and experi-
mental data of inversion versus resonance offset for pulse
sequences generated by the above method. As expected,
when the pulse sequence becomes longer, inversion is
achieved over a large range of offsets. The inversion
bandwidths are comparable to those achieved by recently
developed iterative techniques.?!??

D. Experimental methods

All of our experiments were performed on a small
H,O0(l) sample using a homebuilt spectrometer operating
at a proton-resonance frequency of 360 MHz. The pulse
sequence used in the experiments consisted of a composite
pulse followed by a delay =100 ms, followed by a 7/2
detection pulse. Large static field inhomogeneity causes
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FIG. 15. Simulations (solid lines) and 'H experimental mea-
surements (dots) of population inversion as a function of Aw/w,
for discrete pulse sequences derived from the MIP. Results are
shown for (a) single 7 pulse presented as a reference, (b) seven-
pulse sequence (39.6)3,5(68.4)150(87.9)90(275.7)0(87.9)90(68.4) 30~
(39.6)315, (c) 11-pulse sequence (30.2)370(28.7)130(34.9)135(43.8)90-
(58.9)45(225.4)0(58.9)45(43.8)90(34.9)135(28.7)150(30.2)270, and (d)
15-pulse sequence (21-5)0(19'4)270(23'0)225(27'5)180(33-6)135'
(42.5) 99 (57.5)45 (222.8)0 (57.5) 45 (42.5) 99(33.6) 135 (27.5) 180 (23.0) 255 -
(19.4),70(21.5),.
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transverse magnetization to dephase during 7. The ensu-
ing free induction decay was collected and Fourier-
transformed to give the final spectra. The resulting peak
height was used as a measure of inversion. The peak
height resulting from a single 7 /2 pulse alone was used as
a calibration. A correction was made for spin-lattice re- '
laxation during 7. :

Experimental tests of composite pulses designed for
broadband inversion with respect to @, were performed on
resonance. The rf amplitude was varied with an attenua-
tor following the transmitter. The length of the detection
pulse was adjusted to maintain a constant flip angle. rf
amplitudes were calibrated as in Ref. 23. Phase shifts
were generated by a digitally controlled phase shifter ca-
pable of 1.4° phase increments, with a 3-us switching
time. The switching time required that delays be inserted
between individual pulses. These delays do not affect in-
version performance on resonance, although off-resonance
performance may degraded appreciably.

Experimental tests of broadband inversion with respect
to the resonance offset required rf phases in 45° incre-
ments. This was accomplished by mixing the outputs of
the two quadrature-generation circuits in the spectrome-
ter. Each quadrature circuit produces phases in 90° incre-
ments. A delay line was inserted between the two circuits,
producing a phase difference of 45° between them. The
quadrature circuits were driven by a variable intermediate
frequency, allowing the resonance offset to be adjusted.
The detection pulse was generated independently and
maintained on resonance. All experiments were per-
formed with w}/27=10 kHz.

VI. SUMMARY

We have described a general analytical procedure for
deriving continuously phase-modulated pulses that result
in coherent population inversion on resonance. In the
general case, both the phase and amplitude of the invert-
ing pulse can be modulated continuously. Here, however,
we have focused on a class of constant-amplitude, phase-
modulated pulses characterized by a single parameter v,
the depth of modulation. For small values of ¥, when the
phase modulation is deepened, the modulated inversion
pulse (MIP) inverts spin populations simultaneously over
large ranges of resonance frequencies and rf amplitudes.

We have proposed that the inversion behavior can be
explained by treating the MIP as an efficient adiabatic
sweep. To support this, the simulated inversion perfor-
mance of the MIP is compared to two other abiabatic
sweeps in light of two criteria for adiabatic inversion.
One sweep is the commonly cited linear frequency sweep
and the other is a constant adiabaticity pulse derived
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directly from considerations of efficiency for adiabatic in-
version. Comparisons indicate that the broadband proper-
ties of the MIP are, in fact, due to the adiabatic nature of
the pulse, and that for equal sweep length the MIP has su-
perior inversion properties.

Having established the adiabatic properties of the MIP,
we then present a method for generating a sequence of
phase-shifted rf pulses from the continuously phase-
modulated pulse. The composite pulses are calculated
directly from the magnetization trajectory followed by
on-resonance spins subjected to the MIP. Selected points
are chosen along the inverting trajectory and the corre-
sponding constant-phase pulses needed to connect these
points are found. The broadband properties of the MIP
are retained by the discrete pulse sequences, which can
then be implemented on most modern NMR spectrome-
ters. This approach connects modulated transparency and
inversion pulses used in optics with composite pulses of
NMR.
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APPENDIX

In this appendix -we treat the problem of finding rf
pulses that cause on-resonance magnetization to follow a
given trajectory. The trajectory in the FM frame is de-
fined by a function M(€), where M is the unit magnetiza-
tion vector in Eq. (7). In the special case of Eq. (9), € was
a polar angle. In general, € simply a variable that
parametrizes the trajectory. Here we require that € lie in a
unit interval. We make the restrictions that M(€) be con-
tinuous and differentiable.. These restrictions are con-

sistent with the physical requirements that the trajectory

. be smooth and unbroken. A piecewise-differentiable tra-

jectory may be treated by considering each piece separate-
ly.

With the rf amplitude constant and equal to o9, the
task is now to determine () and ¢(z). With the defini-

tion
_dM
~ de ’ (ab
Eq. (8) becomes
€p=(—0%,0,6)xXM, (A2)
leading to
b= (A3)
Mz
0
. oM,
f=——12 (A4)
Bz

Equation (A3) gives the phase modulation as a function of
€. Equation (A4) gives ¢ as a function of e:

€ 2]
— de'——— . (AS5)
fo a)?My

Inverting Eq. (A5) gives € as a function of ¢, which com-
pletes the derivation of the phase modulation.

The phase function obtained in this wa Y produces the
desired trajectory for Aw=0 and @ (¢)=w;. For nonzero
values of Aw, the same trajectory may be produced by
subtracting the constant Aw from ¢ in Eq. (A3). Of
course, this is equivalent to shifting the rf carrier frequen-
cy. The phase function that corresponds to an
amplitude-modulated pulse can be derived according to
the discussion in Sec. II D.

Finally, it should be realized that not all trajectories are
obtainable. In particular, there is no pulse that produces
the desired trajectory if ¢ is not a monotonic function of €
in Eq. (AS5).
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