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We describe a class of continuously phase-modulated radiation pulses that result in coherent pop-
ulation inversion on resonance as well as over a large range of transition frequencies and radiation
field strengths. This is a population-inversion analogy to self-induced transparency. Simulations of
the inversion properties of' the modulated inversion pulse (MIP) are presented. It is shown that the
inversion behavior can be explained by treating the MIP as a highly efficient adiabatic sweep. Cri-
teria for establishing adiabaticity are discussed in detail. Finally, a method is presented for generat-
ing a sequence of phase-shifted radio-frequency pulses, from the continuously modulated pulse,
which can be implemented on modern NMR and coherent optical spectrometers; experimental con-
firmation is given.

I. INTRODUCTION

A. Background

The implementation of population inversion among en-
ergy states is an important requirement of many tech-
niques in nuclear magnetic resonance (NMR) and
coherent optical spectroscopy, including relaxation-time
measurements, spin or photon echoes, ' and spin decou-
pling. The simplest way to coherently invert populations
is with a single m .pulse, i.e., a pulse of radiation such that
the product of amplitude in angular frequency units and
the time in seconds equals m. For good population inver-
sion to be achieved, the difference between the radiation
frequency and the resonant frequency of the transition for
which the populations are to be inverted must be much
smaller than the radiation amplitude. In other words, the
inversion bandwidth of a single n. pulse is quite limited.
Often, it is the case experimentally that the bandwidth of
resonant frequencies is comparable to or greater than the
available radiation amplitude. In NMR, the bandwidth
may result from static magnetic field gradients, chemical
shifts, or spin couplings. In coherent optics this may be
due to inhomogeneous broadening from crystal strains or
Doppler shifts.

An established technique in NMR for inverting spin
populations over a large bandwidth is adiabatic rapid pas-
sage, in which the frequency of applied radio-frequency
(rf) radiation is swept through the resonances at a con-
stant rate that is small compared to the rf amplitude but
large compared to the inverse of the relaxation times.
Adiabatic sweeps have been employed in coherent optics
as well. " An alternative approach to broadband inver-
sion in NMR was proposed some time ago by Levitt and
Freeman. ' They suggested using a sequence of phase-
shifted pulses, collectively called a composite m. .pulse, to
produce inversion over a broad bandwidth. Composite
pulses have led to a wide range of applications. Several
approaches to their design in NMR (Refs. 4 and 12—27)
and coherent optics ' have been described. The original

work was based on computer simulations of spin trajec-
tories and geometrical intuition. ' This was followed by a
more formal analysis in terms of rotation operators. '

More recent developments include an approach based on
coherent-averaging theory' ' and the introduction of
iterative methods for generating composite
pulses. ' . The coherent averaging theory approach
and another approach based on a fictitious spin- —,

' formal-
ism have led to composite pulses for coupled spin sys-
tems.

This paper enlarges upon a recent communication in
which we introduced an approach to broadband popula-
tion inversion that bridges between adiabatic sweeps and
composite m. pulses. This work —which was subsequently
appreciated by Silver, Joseph, and Hoult —was originally
motivated by the self-induced transparency effect o ob-
served in coherent optical spectroscopy. The phenomenon
of self-induced transparency, first discovered and studied
by McCall and Hahri, occurs when a radiation pulse with
an area of 2m and amplitude modulated according to a hy-
perbolic secant function brings a two-level absorbing sys-
tem from its ground state back to its ground state regard-
less of its resonance frequency. In that sense, a hyperbolic
secant pulse is a perfectly broadband 2m pulse. Allen and
Eberly have proposed a similar class of pulses for popula-
tion inversion, but with both phase and amplitude modu-
lation. ' lf co&(t) is the amplitude and P(t) the phase of
the radiation, the pulse of Allen and Eberly may be writ-
ten as

co&(t) =(co~/siny)sech(co~t),

P(t) =(co~coty)tanh(co, t),
where t extends from —ao to + (x). y is a parameter that
determines the depth of the modulation, with no phase
modulation when y equals m/2 and increasing phase
modulation as y approaches zero. This pulse inverts pop-
ulations in a two-level system regardless of the values of y
and tP&, provided that the radiation frequency exactly
equals the resonance frequency, i.e., "on resonance. " Al-
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len and Eberly point out that the pulse resembles an adia-
batic sweep for small values of y, due to the equivalence
of phase modulation. and frequency modulation. Thus, it
may be anticipated that a pulse with phase modulation
similar to that of Eq. (2) will have broadband inversion
properties. The performance of a class of phase-
modulated pulses related to Eqs. (1) and (2) is investigated
in detail below. Comparisons with adiabatic sweeps are
made.

The relation to a composite ~ pulse arises from consid-
ering a composite ~ pulse as a single phase-modulated
pulse, with a piecewise-constant phase function. A corn-
posite m pulse may then be regarded as an approximation
of a continuously phase-modulated pulse. One way to
generate composite ~ pulses would be by approximating
the continuously varying phase function of a pulse similar
to that of Eqs. (1) and (2) by a piecewise-constant func-
tion. Procedures for generating composite m pulses from
continuously phase-modulated pulses are developed below.

B. Organization

In Sec. II the class of phase-modulated, constant-
amplitude pulses first presented in Ref. 26 is derived from
consideration of the magnetization trajectory. Simula-
tions of population inversion performance are given. A
general transformation from a pulse with a modulated
phase and a constant amplitude to a pulse with both phase
and amplitude modulation is introduced, in order to
demonstrate the relationship between our pulses and those
of Allen and Eberly.

In Sec. III we treat phase-modulated pulses as adiabatic
frequency sweeps. Criteria for adiabatic inversion are dis-
cussed. They lead to the concept of the efficiency of an
adiabatic sweep and to the derivation of a new class of
phase-modulated pulses based on efficiency considera-
tions. A comparison of the inversion performance of
linear sweeps, pulses derived in Sec. II, and pulses derived
from considerations of efficiency is made.

The treatment of adiabaticity in Sec. III suggests that
the phase-modulated pulses of Sec. II may invert spin
populations over large ranges of rf amplitude as well as
large ranges of resonant frequencies. The inversion per-
formance as a function of the rf amplitude is treated in
Sec. IV. In Sec. V we describe a method for deriving
discrete composite pulse sequences from continuously
phase-modulated pulses. Experimental results are
presented.

(a ) PM Frame
Z

Ij

(b) FM Frame
Z

Ii

FICx. 1. (a) Phase-modulated (PM) frame. (b) Frequency-
modulated (FM) frame. The resonance offset, Aco=coo —m, is
the difference between the Larmor frequency and the rf carrier
frequency. The pulse amplitude and phase are denoted by co&(t)

and P(t), respectively. In the PM frame, which is the equivalent
of the usual rotating frame used in NMR, the phase of the pulse
which varies with time gives the direction of the radiation in the
x-y plane. In the FM frame the direction of the radiation in the
x-y plane is fixed, and the time derivative of the phase function,
P(t), appears along the z direction as an additional resonance
offset. The two frames are related by a rotation about the z axis
by P(r).

II. DERIVATION OF PHASE-MODULATED
PULSES FOR POPULATION INVERSION

A. Frames of reference

We begin with a description of two frames of reference,
shown in Fig. 1, that are of importance in the remainder
of the paper. The first of these is the usual rotating
frame. If an isolated-spin or two-level system with reso-
nance frequency coo is irradiated with a rf pulse with any
general amplitude and phase modulation, its motion in the
usual rotating frame is determined by the Harniltonian
HP (where PM refers to phase modulation):

=broI, —co~(t)[I„cosg(t)—I~sing(t)] .

ro~(t) and P(t) are the pulse amplitude and phase; Erg is
the difference between roc and the rf carrier frequency ro,
i.e., the resonance offset. H is derived from the
laboratory-frame Hamiltonian by the transformation
TPM.

T =exp( iroI, t) . —
In this reference frame, which we call the PM frame, the
rf frequency appears constant and the phase, i.e., the
direction in the x-y plane, varies. This is seen in Fig. 1(a).
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2- (b)

plitude aii, and a length r. The effect of such a pulse
when Aco=0 is to produce a rotation of M by an angle
aP~~ about an axis in the x-y plane at an angle $0 to the x
axis. Since it is only the area of the pulse that matters,
however, the net effect is unaltered if the pulse amplitude
is changed, provided that the pulse length is also changed
so that the pulse area remains equal to co&~. In general, a
phase-modulated, constant-amplitude pulse can be ap-
proximated to arbitrarily high accuracy by a sequence of
many constant-phase, constant-amplitude pulses. In order
to transform the overall pulse to some desired amplitude
modulation, it is then only necessary to increase or de-
crease the amplitudes of the individual pulses and corre-
spondingly decrease or increase their lengths. The total
pulse area must remain constant. Figure 5 illustrates the
procedure.

Mathematically, the amplitude transformation is a dis-
tortion of time. In general, suppose a pair of functions
coi(t) and p(t) produce a certain magnetization trajectory,
with

f co,(t)dt=A . (15)

If there is another amplitude function co i(t), also with area
A, then we implicitly define a time transformation
t'=h (t) by the relation

t'

f cubi(u)du = f ai(u)du . (16)

The phase function P(t)=P(h(t)), along with the ampli
tude function oTi(t), mill produce the same magnetization
trajectory.

Thus we have arrived at the most general procedure for
finding phase and amplitude combinations that produce a

desired magnetization trajectory. We first derive a unique
constant-amplitude pulse. Then we may transform to any
other amplitude function of the same area, with the trajec-
tory uniquely determining the pulse area.

To derive the pulses of Allen and Eberly, we transform
the pulses of Eq. (13) to the amplitude function of Eq. (1).
The corresponding time transformation is

h( t) = o tan [sinh(toit)] .
co )sing

(17)

While the pulses of Eqs. (1) and (2), and of Eq. (12), yield
the same on-resonance trajectory, the utility of the pulses
lies in their ability to invert spins off resonance. The sig-
nificant, dimensionless quantity that characterizes off-
resonance behavior is the ratio b,co/coi. In simulations we
find that the constant-amplitude pulses of Eq. (13) give
inversion over a larger range of resonance offsets than the
amplitude-modulated pulses of Eqs. (1) and (2). An ex-
planation for this is that hei/co& is always at its minimum
for the constant-amplitude pulses.

III. POPUI. ATION INVERSION
BY ADIABATIC SWEEPS

We saw in Sec. II that modulated pulses invert spins
perfectly on resonance and also over a large range of fre-
quencies as y~O. Because the on-resonance magnetiza-
tion trajectories are suggestive of adiabaticity, we now
treat the above pulse in the framework of adiabatic sweeps
and compare different adiabatic approaches.

A. Criteria for adiabatic inversion

The Hamiltonian of Eq. (6) can be written

H =co g(te)'I,

co,rr(t) =( coi(t), 0, bco—+P(t)) .

0-

I I

I I I I

I I I I

I I

I I I I

I I I I

I I
—

I

I I

I I I I

Spin populations may be inverted adiabatically if P(t) and
co,(t) are such that the direction of co,rt(t) moves from —z
to +z, or from +z to —z, at a sufficiently slow angular
rate. In that case, the magnetization, or spin density
operator, is said to follow the effective field co,rr( t).

If co,rr(t) is written as

cogff(t) =cli~ff(r)( cos8, 0, sln8)

8=tan 'I [bco+P(t)]/coi(t) I,
(20)

(21)

0
0

~Ot
I

I

-3 0
~O f

I

the two criteria for adiabatic inversion by a pulse between
times —to and to can be stated as follows: ' '

FICx. 5. Schematic representation of the transformation from
(a) a pulse with constant amplitude and phase modulation to (b)
a pulse with both amplitude and phase modulation. In (a) the
total time interval is divided into subintervals of length ~,
represented by the dashed lines, which are each assigned a con-
stant phase and a flip angle equal to col~. The transformation
from (a) to (b) is effected by choosing the desired overall ampli-
tude modulation, and then changing the lengths of the individu-
al pulses while still maintaining that their flip angle remain
equal to co&v. The new phase modulation emerges from the time
transformation.

(i) 8(t)
dt

Q( t) =co,rr(t) 8(t)d
(22)

(ii) 8(+to)= +n/2 . —
Criterion (i) states that the effective field must change
direction slowly compared to the rate at which M"
precesses. In order to quantify criterion (i), we define the
adiabaticity factor Q (t) according to
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The larger the value of Q(t), the more adiabatic the fre-
quency sweep.

In what follows, we consider only sweeps for which co~

is constant and nonzero. Therefore, criterion (ii) requires
that the sweep begin far below resonance and end far
above resonance, such that

~
bco+P(+to)

~
&)co~.

There are many possible forms for P(t) that result in
adiabatic inversion. We call a sweep efficient if it accom-
plishes population inversion in a comparatively short
time. Different forms of sweeps may have different effi-
ciencies for the following reason. Consider criterion (i).
Taking co] to be constant, co,ff is smallest when 0=0 and
P(t)= b,co, i.e—., when the sweep passes through reso-
nance. It is at this time that criterion (i) is most restric--
tive so that

~

d8(t)/dt
~

must be smallest. When the
sweep is far from resonance,

~

d8(t)/dt may be larger
while still satisfying criterion (i) since co,fr is larger. If

~

d8(t)/dt
~

indeed becomes larger far from resonance,
criterion (ii) may be satisfied for comparatively small
values of to.

In the remainder of this section, three forms of sweeps
are examined in light of the above criteria for adiabaticity.
The factors that limit their inversion bandwidths are dis-
cussed and their efficiencies are contrasted.

y(t) = —kt, —to & r & to (23)

where k is the constant sweep rate. Since k is constant,
criterion (i) is.satisfied for all values of Aco once k is small
enough so that criterion (i) is satisfied at any particular
value of Ace. For hco=O, a linear sweep has

Q( t) = [(co)) +P(t)']'~~/ken) . (24)

Q(t) has its minimum at t =0, where Q(0)=(co&)2/k.
Simulations show that the maximum value of k for which
populations are inverted adiabatically with bee=0 is given
approximately by k,„=0.2(co&) . This limit is deter-
mined by simulating the effects of linear sweeps with to
taken to be very large.

For values of k less than or equal to k,„, criterion (i)
is satisfied throughout the sweep. With k fixed, the
choice of tc determines whether criterion (ii) is satisfied.

Simulations of inversion as a function of Aco/co~ for
linear sweeps with k=0.2(co&) and various values of to
are shown in Fig. 6. For the inversion to be essentially
complete for b.co=0, the minimum length of the sweep
must be given approximately by 2to ——100~&. Inversion is
achieved over a large range of resonant frequencies be-
cause criterion (ii) is satisfied for a large range of resonant
frequencies once it is satisfied for hco=O. In other words,
P(+to) is only a weak function of her when

~

P(+to)
~

=-n/2 However, it is. still criterion (ii) that ul-
timately limits the inversion bandwidth for any given
value of to.

C. Modulated inversion pulse

When treated as a frequency sweep, the MIP of Eq. (12)
and Fig. 3(a) satisfies criterion (ii) for all values of y and

B. Linear sweep

The simplest and most commonly used frequency sweep
is a linear sweep defined by

1.0

O

0.0
C

-i.0

I 0 =

o 00

—I.O—

0.0

(c)

IO 20
6 cu/'ur) O

I.O 2.0
6 (8 /Qj (O

3.0

b,co. This is because P(t) becomes infinite at the beginning
and end of the pulse. Thus, it is criterion (i) that deter-
mines whether the MIP functions as an adiabatically in-
verting frequency sweep. Recall that the MIP was de-
rived in Sec. II in such a way that the inversion at hco=O
is complete regardless of y. The adiabatic nature of the
inversion is therefore expressed not by the inversion at
Aco=O, but rather by 'the appearance of a large inversion
bandwidth as y decreases.

The adiabaticity factor for the MIP with b.co=0 is
given by

I 1+[cosy tan(co~siny)t] ]
~

Q(t) =
I cosy siny [1+tan (co ~siny )t ] I

(25)

Q(t) has its minimum at t =0, where Q (0)
=(cosy siny)

' '. Broadband inversion occurs when y is
less than or about equal to 0.20, as was seen in Fig. 4.
When y=0.20, Q(0)=5.1. This result is consistent with
the finding that a linear sweep effectively inverts popula-
tions only when the sweep rate k is less than or about
equal to 0.2(co,), making the adiabaticity factor for a
linear sweep greater than or equal to 5. Thus, the adiaba-
ticity factor appears to be a meaningful quantity for
predicting the performance of a frequency sweep. In ad-
dition, the agreement of the adiabaticity factors for the
MIP and the linear sweep supports the contention that the
broadband properties of the MIP are due to the adiabatic
nature of the inversion.

A comparison of Figs. 4 and 6 reveals that nearly corn-
plete inversion is achieved by the MIP in less time than by
a linear sweep. The sweeps in Figs. 6(a)—6(c) require the
same total time as the MIP in Fig. 4 with y =0.20, 0.10,

FIG. 6. Simulations of inversion as a function of resonance
offset, resulting from the linear frequency sweep of Eq. (23) of
the text with k/(co~) =0.2. The linear sweep consists of a
constant-amplitude rf field whose frequency is changing at a
constant rate of k/(co~) . The overall lengths of the sweeps are
2' to ——(a) 15.82, {b) 31.46, (c) 62.86, and (d) 200.0. The
minimum overall length required to achieve adiabatic inversion
on resonance is approximately 2co~tp=100. Once inversion is
achieved on resonance, it is also accomplished over a large range
of resonant frequencies. The overall lengths of (a)—(c) are equal
to the overall lengths of the sweeps used to simulate inversion
performance from the MIP in Fig. 4 when y=0.20, 0.10, and
0.05, respectively.
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and 0.05, respectively. The inversion results in Fig. 4 are
generally superior, however. Thus, the MIP is a more ef-
ficient frequency sweep. This is because the instantaneous
sweep rate, i.e., P greater at the beginning and end of the
sweep than at t =0.

The fact that the sweep rate is not constant makes cri-
terion (i) the limiting factor on the inversion bandwidth
for the MIP. At resonant frequencies for which the sweep
rate is rapid as the sweep passes through resonance, de-
fined by the condition P(t) = —b.ro, criterion (i) is not sa-
tisfied and populations are not inverted.

100

75

3. MIP; y= O. I

2. Linear Sweep;
Ic = 0.099

3. CAP; q = I0.067

D. Constant adiabaticity pulse

A third class of frequency sweeps may be derived by
making the restriction that Q(t) be constant when b,ro =0, 25—

Q(t)=q . (26)

In addition, we have
0

coeff cosO =co ~,

ro,ttsin8=$ .

(28)

(29)

Based on the above discussion, such a sweep with q = 5 is
expected to be particularly efficient for adiabatic inver-
sion.

Equation (26) implies

d8 =~df .
dt

0
-20

I

—IO 0
(aJ t

i

I

IO 20

FIG. 8. Comparison of the adiabaticity factors Q(t) with
hco=O for the MIP, the linear sweep, and the CAP. Q(t) is de-
fined in the text by Eqs. (25), (24), and (26), respectively. The
efficiency of the sweep is determined by the length of time Q(t)
remains close to its minimum; the linear sweep is the least effi-
cient sweep.

Equations (27) and (28) imply

sin8=roit/q .

Equations (29) and (30) lead to

P(t) = —(roi)'t/[q' —( ro)'i']t' ',
—q/roi &t &q/coi .0 0

(30)

(31)

Equation (31) defines the desired frequency sweep, which
we refer to as the constant adiabaticity pulse (CAP). In-
tegration of Eq. (31) gives the equivalent phase modula-
tion:

10 20

P(t)= —[q (roi) t ]' —+q . (32)
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FIG. 7. Comparison of three adiabatic (a) frequency- and (b)
phase-modulated pulses: the constant adiabatic pulse (CAP),
the MIP, and the linear sweep. The CAP, a constant amplitude
pulse, was derived from considerations of efficiency for adiabat-
ic sweeps. In this figure the parameters were chosen such that
the adiabaticity factor Q(t) defined by Eq. (22) be equal to
10.067 for all three pulses at t =0. The larger the value of
Q (t), the more adiabatic the sweep.

Note that P(t) remains finite, although P(t) becomes infin-
ite at t =+q/roi.

Figure 7 is a comparison of the frequency and phase
modulations of the CAP, the MIP, and the linear sweep.
The specific parameters in Fig. 7 are chosen so that the
adiabaticity factor at t=0 is the same for the three
sweeps. For a given minimum adiabaticity factor, the
CAP requires the least total time of the three sweeps.

The adiabaticity factors as functions of time for the
CAP, the MIP, and the linear sweep with hco=0 are
shown in Fig. 8. The adiabaticity factor has its minimum
value throughout the sweep for the CAP. The adiabatici-
ty factor for the MIP remains close to its minimum value
for a greater portion of the sweep than for a linear sweep.

The inversion performance as a function of pro for the
CAP with various values of q is shown in Fig. 9. The
values of q are chosen so that the overall lengths of the
sweeps in Fig. 9 are the same as those in Fig. 4. The
bandwidth of the CAP is limited by criterion (i). A com-
parison of Figs. 4, 6, and 9 reveals that the MIP exhibits
the best inversion performance for equal sweep lengths.
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FIG. 9. Simulations of inversion as a function of dc'/col for
the CAP. The overall lengths of the sweeps were chosen such
that they correspond to the overa11 lengths of the sweeps of Fig.
4 (q=a./2siny, the overall length is 2q). Simulations indicate
that when Q(0) )5, the CAP, the MIP, and the linear sweep ex-
hibit adiabatic inversion over a large range of frequencies. A
comparison of Figs. 4, 5(a)—5(c), and 8 indicate that the MIP
produces the best adiabatic broadband inversion for equal sweep
lengths and always inverts on resonance spins.

IV. INVERSION IN AN INHQMOGENEOUS rf FIELD

Although the MIP was derived by considering a partic-
ular class of inverting trajectories for a spin on resonance,
Secs. II and III show that the MIP may invert spin popu-
lations over large ranges of resonance frequencies due to
its adiabatic characteristics. Adiabatic sweeps may invert
populations over large ranges of rf amplitudes as well as
resonance frequencies. Therefore, in this section we inves-
tigate the inversion performance of the MIP as a function
of cubi. Deviations of coi from its nominal value of co& arise
experimentally from rf inhomogeneity and from miscali-
bration of the rf field. In coherent optics, it is the laser-
beam profile that is the analogous source of amplitude in-
homogeneity.

The inversion performance as a function of co& may be
anticipated by referring to the criteria for adiabatic inver-

0
—4.0

.I

-2.0
I

0
6QJ /GU

I

I

2.0 4.0

FIG. 11. Simulated contour plot of population inversion as a
function of hen and co~ for the MIP with y=0.10. The MIP
compensates simultaneously for resonance offset and rf inhomo-
geneity effects.

sion discussed in Sec. III. For the MIP, criterion (ii) is
automatically satisfied, since P(t) becomes infinite at +to.
Once criterion (i) is satisfied for cubi

——~i, it is satisfied
even more strongly for co»co~. Therefore, it is expected
that essentially complete inversion may be achieved over a
large range of coi when the MIP becomes adiabatic, i.e.,
for y &0.20.

Figure 10 shows simulations of inversion as a function
of cubi for the MIP with various values of y. The above
predictions are verified. Figure 11 shows a simulated con-
tour plot of inversion as a function of coi and b,co simul-
taneously for the MIP with y=0.10. A large region of
essentially complete inversion is apparent.

For comparison, Fig. 12 shows the inversion perfor-
mance of a linear sweep as a function of mi. Much small-
er bandwidths are achieved with much longer sweeps. For
a linear sweep, criterion (i) of Sec. III is again satisfied for
m& & m& once it is satisfied for ~& ——m&. However, criterion
(ii) is not automatically satisfied. Rather, 8(to) is a strong
function of cubi when

~

8(to)
~

= n /2, so that criterion (ii) is
not met at large m&.
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FIG. 10. Simulations of inversion as a function of co&/col for
the MIP with values of y as shown. When y(0.2 [Q{0})5),
the inversion becomes perfect over a very large range of co&.
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FIG. 12. Simulated inversion performance as a function of
co&/co& for the linear sweep with k/(co&) =0.2. The overall pulse
lengths are 2co~to ——(a) 31.46, (b) 62.86, (c) 100.0, and (d) 200.0.
For 1onger sweeps than shown in Fig. 10, the inversion is poor-
er.
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V. GENERATION OF DISCRETE COMPOSITE
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M (t) spirals more. A weighting function, P(t), which
is itself a function of y is used to generate a set of times
(ti, . . . , t2„ i) from which the intermediate points
M; =M (t; ) can be calculated.

More specifically, the. intermediate points are calculated
as follows. First, we choose a value t, & 0 which
represents a cutoff time for P(t). The means by which t,
is chosen are discussed below. We evaluate P(t, ) and cal-
culate a set of phases [P(ti ), . . . , P(t„)] satisfying

I.O

- I.Q

I.Q—

P(t;) =P(t, )(n i)l—n . (33)

Using the set of times (ti, . . . , t„) calculated from the set
of phases above, we find Mi through M„by evaluating
M; =M (t;). The remaining points are determined by
the symmetry of M (t;); Mz„; is related to M; by re-
flection in the x-y plane. Next, we calculate the phases
and flip angles of the 2n pulses that move on-resonance
spins between successive points, i.e., that connect M; with
M;+i. A sequence of pulses with symmetric phases and
flip angles emerges. The central two pulses can be fused
into one, since they have the same phase, so that an odd
number of pulses results.

The "connect-the-dot" method described above ensures
that on-resonance spins are inverted. Moreover, the fact
that the intermediate M; are chosen according to constant
increments in P(t) ensures that more points occur where
P(t) is larger, or, in other words, where M (t) spirals
most rapidly. Thus, we achieve a good approximation to
the trajectory generated from the MIP and it may be ex-
pected that the broadband inversion properties of the MIP
will be preserved.

In this method there are only two parameters which
must be computer-optimized in order to get the best inver-
sion performance over resonance offset or rf inhomogenei-
ty effects, for a specified number of pulses. These are y
and t„ the latter being the cutoff time on P(t). They are
optimized according to a best-average criterion. This
means that we cycle through different values of y and t,
within certain restrictions, and find the values for which
the average inversion, over a specified bandwidth of
offsets or rf values, is a maximum.

Figure 14 illustrates three composite pulse sequences
that are optimized for broadband inversion with respect to
co~. Both simulations and experiments are shown. Inver-
sion results for a single m. pulse are plotted as a reference.
The inversion performance improves for a larger number
of pulses.

C. Composite pulses with coristant-phase increments

For reasons of experimental convenience, it would be
desirable to derive sequences in which rf phases occur as
multiples of a constant phase. In looking at the form of
the pulse sequences derived earlier, we see that the phases
Pq to Pq„ i of the 2n —1 pulse sequence occur in constant
increments, but that P, and $2„ i are arbitrary and hold
no relationship to the other phases. Our goal in this sec-
tion is to devise a method whereby we are able to specify
the value of the constant-phase increment, as well as make
the first and last pulse have a phase that is some multiple
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FICx. 14. Simulations (solid lines) and H experimental mea-
surements (dots) of population inversion as a function of co&/m~

for discrete pulse sequences derived from the MIP using the
technique described in Fig. 13(b). Results are shown for (a) sin-
gle m pulse presented as a reference; (b) three-pulse sequence
(54)90(162.8}0(54)9O, and (c) 31-pulse sequence (18.3)264(4.8)&85-

(5.3) (7g(5.7) )59(6.3) )46(6.9) )32(7.6) ()9(8.5) )06(9.4) 93(10.6) 79(12.0) 66-

(13.9)53(16.4)40(20.2)26(27.3))3(127.0)P(27.3)]3(20.2)P6(16.4)40(13.9}53-
(12.0) 66(10.6) 79(9.4) 93(8.5) )06(7.6) ))9(6.9) )32(6.3) )46(5.7}(59(5.3) )P2-

(4.8)is~(18.3)~~. The notation is (8)~, where 8 and P are the flip
angles and phases of individual pulses in degrees.

5.0

P; =imp+ c, (35)

where C is constant. This indicates that the times corre-
sponding to constant-phase increments in P(t) also corre-
spond to points on M(t) that may be connected by pulses
with constant-phase increments. Therefore we can specify
Pp to be any constant phase we desire, and for a 2n —1

pulse sequence all the calculated pulses from the trajecto-
ry between 2 and 2n —2 will have phases that differ by a
multiple of Pp.

To ensure that the first and last pulse also have a phase

of that increment.
In our method the values of the phases P2 to $2„2 of

the derived pulse sequence are determined solely from the
constant-phase increment used on the weighting function
P(t). The phase of the ith pulse is calculated from the
(i —1)st and ith point on the trajectory by

M„(t; ) —M„(t;,)

My tg i —My ti

By substituting the values for M„and M~ of Eq. (14) into
the above equation, and using the fact that
P(t; ) = (n i )Pp [Eq. (—33)], we find that
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that is a multiple of $0, the following procedure is used.
Rather than setting™oand M2„at+z as before, we now
choose Mz„such that the pulse connecting M2„& to M2„
has a phase $2„-~=mfa, where m is an integer. In order

to still invert on-resonance spins, we also stipulate that
M2„should remain as close to —z as possible. Therefore,
to find the best position for Mz„ the flip angle of the last
pulse is optimized by setting

M„(t'„-,)sin(m/0) —My(tz„-~)cos(m/0)
(36)

Mo is found from M2„by symmetry. As before, the com-
posite pulse is found by calculating the phases and flip an-
gles which connect all the points M;.

Note that contrary to before, we no longer optimize t,
and, thereby, $0, but rather $0 is chosen and t, is found
from P(t, ) =neo. The only parameter to be varied is y,
and once again the best-average criterion is used to select
the pulse sequence that inverts best over the specified
range of frequencies and rf amplitudes.

In Fig. 15 we show computer simulations and experi-
mental data of inversion versus resonance offset for pulse
sequences generated by the above method. As expected,
when the pulse sequence becomes longer, inversion is
achieved over a large range of offsets. The inversion
bandwidths are comparable to those achieved by recently
developed iterative techniques.
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FIG. 15. Simulations (solid lines) and H experimental mea-
surements (dots) of population inversion as a function of hco/co~
for discrete pulse sequences derived from the MIP. Results are
shown for (a) single n. pulse presented as a reference, (b) seven-
pulse sequence (39.6)»5(68.4)&«(87.9)90(275.7)p(87.9)90(68.4) ]sp-
(39.6)»5, {c) 11-pulse sequence (30.2)»p(28. 7)&sp(34.9)&35(43.8)90-
(58.9)45(225 4)o(58.9)45(43.8)9o(34 9)i3s(28. 7)&so(30.2)270 and (d)
15-pulse sequence (21.5)p(19.4)270(23.0)g25{27.5)&so{33.6) ]35-
(42.5) 9p (57.5)45 (222.8)p (57.5) 45 {42.5) 90 (33.6))35 (27.5)&sp (23.0) 225-
(19.4)270(21.5)o.

D. Experimental methods

All of our experiments were performed on a small
HzO(1) sample using a homebuilt spectrometer operating
at a proton-resonance frequency of 360 MHz. The pulse
sequence used in the experiments consisted of a composite
pulse followed by a delay &=100 ms, followed by a m./2
detection pulse. Large static field inhomogeneity causes

I

transverse magnetization to dephase during z. The ensu-
ing free induction decay was collected and Fourier-
transformed to give the final spectra. The resulting peak
height was used as a measure of inversion. The peak
height resulting from a single m/2 pulse alone was used as
a calibration. A correction was made for spin-lattice re-
laxation during ~.

Experimental tests of composite pulses designed for
broadband inversion with respect to co, were performed on
resonance. The rf amplitude was varied with an attenua-
tor following the transmitter. The length of the detection
pulse was adjusted to maintain a constant flip angle. rf
amplitudes were calibrated as in Ref. 23. Phase shifts
were generated by a digitally controlled phase shifter ca-
pable of 1.4' phase increments, with a 3-ps switching
time. The switching time required that delays be inserted
between individual pulses. These delays do not affect in-
version performance on resonance, although off-resonance
performance may degraded appreciably.

Experimental tests of broadband inversion with respect
to the resonance offset required rf phases in 45' incre-
ments. This was accomplished by mixing the outputs of
the two quadrature-generation circuits in the spectrome-
ter. Each quadrature circuit produces phases in 90' incre-
ments. A delay line was inserted between the two circuits,
producing a phase difference of 45' between them. The
quadrature circuits were driven by a variable intermediate
frequency, allowing the resonance offset to be adjusted.
The detection pulse was generated independently and
maintained on resonance. All experiments were per-
formed with co&/2m= 10 kHz.

VI. SUMMARY

We have described a general analytical procedure for
deriving continuously phase-modulated pulses that result
in coherent population inversion on resonance. In the
general case, both the phase and amplitude of the invert-
ing pulse. can be modulated continuously. Here, however,
we have focused on a class of constant-amplitude, phase-
modulated pulses characterized by a single parameter y,
the depth of modulation. For small values of y, when the
phase modulation is deepened, the modulated inversion
pulse (MIP) inverts spin populations simultaneously over
large ranges of resonance frequencies and rf amplitudes.

We have proposed that the inversion behavior can be
explained by treating the MIP as an efficient adiabatic
sweep. To support this, the simulated inversion perfor-
mance of the MIP is compared to two other abiabatic
sweeps in light of two criteria for adiabatic inversion.
One sweep is the commonly cited linear frequency sweep
and the other is a constant adiabaticity pulse derived
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directly from considerations of efficiency for adiabatic in-
version. Comparisons indicate that the broadband proper-
ties of the MIP are, in fact, due to the adiabatic nature of
the pulse, and that for equal sweep length the MIP has su-
perior inversion properties.

Having established the adiabatic properties of the MIP,
we then present a method for generating a sequence of
phase-shifted rf pulses from the continuously phase-
modulated pulse. The composite pulses are calculated
directly from the magnetization trajectory followed by
on-resonance spins subjected to the MIP. Selected points
are chosen along the inverting trajectory and the corre-
sponding constant-phase pulses needed to connect these
points are found. The broadband properties of the MIP
are retained by the discrete pulse sequences, which can
then be implemented on most modern NMR spectrome-
ters. This approach connects modulated transparency and
inversion pulses used in optics with composite pulses af
NMR.

dMp—:
dE

Eq. (8) becomes

ep= ( —oo&, 0,$) &&M,

leading to

oPx
Pz

(A I)

(A2)

(A3)

(A4)

sistent with the physical requirements that the trajectory
be smooth and unbroken. A piecewise-differentiable tra-
jectory may be treated by considering each piece separate-
ly.

With the rf amplitude constant and equal to co&, the
task is now to determine F(t) and P(t). With the defini-
tion
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APPENDIX

In this appendix we treat the problem of finding rf
pulses that cause on-resonance magnetization to fo1low a
given trajectory. The trajectory in the FM frame is de-
fined by a function M(e), where M is the unit magnetiza-
tion vector in Eq. (7). In the special case of Eq. (9), e was
a polar angle. In general, e simply a variable that
parametrizes the trajectory. Here we require that e lie in a
unit interval. We make the restrictions that M(e) be con-
tinuous and differentiable. These restrictions are con-

Equation (A3) gives the phase modulation as a function of
e. Equation (A4) gives t as a function of e'

(A5)

Inverting Eq. (A5) gives e as a function of t, which com-
pletes the derivation of the phase modulation.

The phase function obtained in this wag produces the
desired trajectory for bco=0 and to&(t) =co~. For nonzero
values of Aco, the same trajectory may be produced by
subtracting the constant b,co from P in Eq. (A3). Of
course, this is equivalent to shifting the rf carrier frequen-
cy. The phase function that corresponds to an
amplitude-modulated pulse can be derived according to
the discussion in Sec. II D.

Finally, it should be realized that not all trajectories are
obtainable. In particular, there is no pulse that produces
the desired trajectory if t is not a monotonic function of e
in Eq. (A5).
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