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The impact-parameter method for electron-impact excitation of diatomic molecules is reformulat-
ed to explicitly treat molecular vibration and rotation and to permit the study of molecular dissocia-
tion. Applications are made to optically allowed transitions involving the X '=}, B 'S}, and B’ 'S}
states of H,. The resulting cross sections are compared to other theoretical calculations and to ex-
perimental data. This method is applicable to heavy diatomic molecules and is expected to be useful
in studying trends in electronic excitation and dissociation cross sections associated with variations

in internal energy.

1. INTRODUCTION

Processes involving electron-molecule collisions are im-
portant in gas-laser systems, atmospheric physics, and
photochemistry. Because of their importance in laser
plasmas,! collision-induced electronic excitations and dis-
sociation by electron impact have been the subject of re-
cent experimental interest;> however, there has been less
progress in the theoretical description of these processes.
Although electron-molecule scattering theory has been
significantly advanced in the areas of elastic scattering
and rotational and vibrational excitation,>~ the ab initio
calculation of electronic excitation of molecules by elec-
tron impact is relatively new. ‘Early work in this area in-
cludes Born or other “plane-wave” approximation calcula-
tions®~15 that are reliable only at relatively high energies.
In addition a two-state close-coupling method!'®—!® has
been applied to electronic excitation and dissociation of a
number of states of H, and to the excitation of the a' I,
state of N,.!° In these calculations electron exchange is
correctly included, but the treatment of nuclear motion
utilizes the Franck-Condon approximation. The theory
can treat both singlet-singlet and singlet-triplet transi-
tions. The distorted-wave Born approximation employing
the L? T-matrix?*~26 or R-matrix?’ methods has also re-
ceived attention. Most applications of the distorted-wave
methods have been to processes involving excited electron-
ic states of H,, although applications to N, (Ref. 24) and
F, (Ref. 25) have also been made. The method is most
applicable to spin-forbidden transitions involving short-
range interactions.

Hazi has extended the semiclassical impact-parameter
method?®? to electronic excitation of diatomic mole-
cules.’®3! The formulation neglects exchange, and is best
suited for the treatment of optically allowed transitions
that require many partial waves in conventional close-
coupling or distorted-wave theories. Thus it is comple-
mentary to these approaches and' to the high-energy
Born-type approximations. In the semiclassical impact-
parameter (IP) method the motion of the electrons (in-
cluding the incident electron) is separated from nuclear
motion by the Born-Oppenheimer approximation. This
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allows the molecular electronic problem to be treated as
accurately as necessary, independently of the scattering.
Hazi’s theory assumes degenerate rotational states and
averages the transition probability over molecular orienta-
tions. His formulation results in cross sections that satis-
fy reciprocity, and this represents a refinement over the
original impact-parameter method. @ However, the
Franck-Condon approximation is utilized, and internu-
clear distances are treated as static. Thus vibrational and
rotational motion are neglected. Because of these approx-
imations in Hazi’s theory, the resulting cross sections do
not distinguish between bound (rovibrational) and un-
bound (continuum) channels. When the method is extend-
ed to include nuclear motion, this differentiation can be
made.

In Sec. II we present extensions of the impact-
parameter model to include the effects of initial vibration-
al and rotational excitation upon electron-impact-induced
excitation and dissociation. We are interested in non-
resonant optically allowed electronic excitations of dia-
tomic molecules. These involve dipole-allowed spin-
conserving transitions. These excitations can be to bound
rovibrational levels of the final electronic state or to parts
of the potential-energy curve above the dissociative limit
of the final electronic state. We consider only processes
of direct dissociation through excited electronic states
rather than the resonance-enhanced dissociative attach-
ment process. When the diatomic molecule is treated as a
symmetric top, electronic and rotational angular momen-
tum are coupled; however, the resulting cross section re-
tains a separability of structural and dynamical factors
analogous to that of Hazi’s original method and involves
simple products of Clebsch-Gordon coefficients. By per-
forming suitable averages, the original cross-section for-
mula of Hazi is obtained.

Section III provides the relevant computational details,
while Sec. IV presents the results of the cross-section cal-
culations for several levels of approximation within the IP
method. As a test of the method for electronic excitation
to bound vibrational states, we apply the IP method to the
X'} to B'S} and X '3} to B''S} transitions in H,
and compare with previous experimental’> and theoreti-
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cal!%16:23,26.30 gty dies. We also apply it to the direct disso-

ciation of Hy('2]) through the B’ 'S} state and compare
the results with expenmental 3,3 and theoretical >2° stud-
ies. Section V provides a summary and the conclusions.

II. THEORY

Hazi’s implementation of the impact-parameter method
employs the “fixed-nuclei” approximation,* averaging the
semiclassical transition probability>°

_ AE, t/h
Pri=g ' > ‘ﬁ lf dre' ' Vft(t)
A=A, Af—+Af

(1)
over all molecular orientations. In this expression g; is
the degeneracy of the initial electronic state, A; and Af
are the usual projections of electronic angular momentum
on the body-fixed axis, AEy; is the transition energy, and
V4i(t) is the time-dependent matrix element of the pertur-
bation. We present an extension of the theory to allow
treatment of those processes that require consideration of
nuclear motion.

We work within the framework of the adiabatic nuclei
approximation®> and employ a Born-Oppenheimer factori-
zation of the wave function for the target molecule

W (5 R) =9 (xR XS (RN, (R) 2)

The function ¥, represents an approximate solution (for
electronic state a) to the n-electron Schrédinger equation
for the electrons in the molecule moving in the field of the
“fixed” nuclei, Xj; is the vibrational wave function for
the (v,j) rovibrational level of electronic state a, and N},
is a symmetric-top function for a diatomic molecule with
electronic angular momentum component A.%¢ In our no-
tation, x collectively represents the coordinates of the tar-

get electrons, while R and R represent the magnitude and

Vilt)= fdggdeMfdﬁx/:;m(x R)R

To evaluate this expression, we use the usual multipole
expansion® _
1

r—x | = 3 ol P S TR AL
f=o =ty |21+1 £

(6)

where 7 (r,) is the lesser (greater) of r’ and r;. We

keep only the asymptotic (7' >r, ) terms of this expansion
because the impact-parameter treatment is valid only for
collisions that do not penetrate the electron cloud of the
target.’ We are presently interested only in optical
(dipole-allowed) transitions (for which the dominant con-
tribution is from /=1). Therefore, we approximate the

electron-target interaction by

, g Ar H
l'q| 123 2

p=-—1
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angular position of the relative position vector R. All tar-
get electronic coordinates are referred to the body-fixed
(BF) frame and the polar z axis is taken along the line
joining the nuclei (R).

The vibrational wave functions for electronic state a
are orthonormal eigenfunctions of the equation

[—(ﬁz/ZﬂAB )d*/dR*+ V (R)
(]+l)/2uABR2]X (R)=egX5(R), (3)

where p 4p is the reduced mass of the diatomic molecule,
€,; is the vibrational energy level, and V,(R) is the poten-
tial energy curve for electronic state c.

The symmetric-top functions are represented in terms
of Wigner D functions®’
172

(DL (R)]*, @)

A

N (R)= |2l

'81TZ

where the projectile electron is assumed to be initially
moving along the spaced-fixed (SF) Z axis, and where R
represents the two (nontrivial) Euler angles relating the
BF frame to SF axes. This normalization assumes in-
tegration over all three Euler angles.

In our formulation of the semiclassical impact-
parameter method, the projectile-electron velocity is as-
sumed to be high enough that the collision time is short
compared to the periods of molecular vibration or rota--
tion. Then the adiabatic nuclei approximation is expected
to be valid, and the time-dependent perturbation matrix
element required in Eq. (1) is obtained by taking the ma-
trix element of the projectile-target interaction between in-
itial and final molecular states represented in the form of
Eq. (2). If r'(¢) represents the classical trajectory of the
projectile electron, and r; the coordinates of a target elec-
tron (the primes indicate SF coordinates), then this matrix
element can be expressed as

Va2, (X;RIR —‘xv, (RN, (R) .

2
2P 0—g |
(5)

I
Since the electron coordinates of the electronic wave

functions employed in the matrix element Vj; given by
Eq. (5) are expressed in BF coordinates, Eq. (7) must be
transformed to BF coordinates before the integration can
be carried out. Using the Wigner rotation matrices,*® w
obtain

| r(t)—r, | !
4,n. 41 +1

q
~2T S oyt

' r,)[Diltm(ﬁ)]*Ylm(’fq) .
p i m S ()2

(8)

Substituting this expression into Eq. (5), we note that the
part of the resulting expression involving integration over
the target-electron coordinates is the matrix element of
the spherical representation of the dipole operdtor. This
operator is a spherical tensor of rank 1, so (from the
Wigner-Eckart theorem®’) we have
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where the electronic transition dipole moment is
n
Mafa,.(R)= f d{ 1,};/1/({;12) z erq"/’aiki(f;R) (10
g=1
and AA=A;—A,;. The transition matrix element can now be written as
4 A 41 ;
T i N o di A
Vilt)~ {-3— ] eM"f{’fl’Ji 2 1 W rﬂ( )f dR[ flf(R)]*[DlltAk(R)]*Nmi’»i(R) , (11)
p—
where the electronic transition dipole moment is averaged over the initial and final vibrational wave functions
a a,. ®©
Ml)fj}fviji = fo dR [XU/II(R )]*M“f" (R )le (R) . (12)

For the remaining integral over Euler angles, we use the Wigner D-function representation of the symmetric-top wave
functions, Eq. (4),

2jr+1 2j;+1 ~ i e
r= |0 o3 f dRDmf;‘f(R)[D,‘LM(R)]‘[Dmili(R)]*
-, | 20 +1 2j;+1 ~
=(=D" ;ﬂz - f dR [D}a R)]*Dmf;‘f(R)D_mi R, (13)
where we have used the property>’
Dk, R =(—1" "MD", (R). (14)
Making use of the integral theorem for the product of three rotation matrices,*® we obtain
(2f +1)1/2(2 1+1)1/2
=(=1)"" —x; 2Jjr 877.2] _5mf_m wCUisdrs 1 —my,mp)Cji,jg, 15 —AiAs) . (15)

We have now reduced the rotational factor to a simple expression involving the product of two Clebsch-Gordan coeffi-
cients. The time-dependent perturbation matrix element now becomes

/2 . 1/2( ; 172
2 | 47 2jr+1)7%2j;+1) m;—A, ’
Vﬁ(t)f_\:-:; EY e Py (—1) Mufflf,,]C(],,jf,l —my,mg)CjJjs,1; —-7»,,7&_{)
1 +1
XW > Smf'-mp#Ylﬂ(r ). (16)
p=—1

Substituting Eq. (16) into (1), summing over final angular momenta (electronic and rotational), and averaging over initial
angular momenta results in the following form for the transition probability: '

. 2
ij—i-l ez aa, © r'(t)
Ar%i — - i 2 .
Pvfjfv_l,( )= 27g; # I velgvidi ! f__w dt expli AEﬂ t/#) s
Jr Ji
X ¥ 3 |CULpL=MAN? X X | CUnip i —mmp) |2 amn
Af=iAf A=A mf=—jf m;=—j; . .

We have also used the relation defining the displacement vector in terms of the spherical harmonics®

+ 172
S rYLER=| | (18)
p=—1

to simplify the time-dependent integral.’*® This form for the probability results from the present restriction to dipole-
allowed transitions. Thus even with the inclusion of vibrational and rotational degrees of freedom, we still obtain a form
analogous to Hazi’s, i.e., a factorization of the transition probability into the product of a dynamical factor depending on
projectile-electron coordinates (classical trajectory) and a unitless structural factor depending only upon properties of the
target molecule.*

The structural factor is written as
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ae; _m,_,zez 2jf+l
YAt T b 27g;

!Ml’fjf:)i}, l 2
f'_+Af A=A

where m, is the electron mass. It contains Clebsch-
Gordan coefficients that impose optical selection rules due
to the requirements of the triangle inequality.®® The
structural factor is zero unless jy=j;+1. It also vanishes
when |AA| >1, and so we can have 2«32, 2IlI, and
ITI<II transitions but not Z«>A. Extending the present
theory to permit the description of higher-order processes
would require including additional terms in the multipole
expansion of the electron-target interaction. If we assume
degenerate rotational states, the structural factor reduces

to |

afa,. 2

D,

2 IC(JU.]/" > }‘v;"f)' 2 2
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+J;
I C(jiyjf’l;”mi:mf) I 2 ’
mp=—jp mj=—j;

(19)

‘ a.a m2 2
,,ffviu e (2—84,,0)(2—84, o)}M,,ff,, 12, o)
Evaluation of the dynamical factor follows the deriva-
tion of Hazi exactly. By assuming that the trajectories for
the incident electron are straight lines and energy ex-
change with the target occurs at the distance of closest ap-
proach and requiring conservation of energy and angular
momentum, the dynamical factor can be expressed in
terms of modified Bessel functions*® K;(y) and modified
Struve functions® S;(y). The derivation is found in
Hazi’s paper,®® and we present only the final result in-
tegrated over the impact parameter:

2mh
o gy (E) = 7 YiKo(y)K () +7 Koy £)K 1 (v £)— 57 v:iSo(¥; IS +7£Soly)Si(y )]
e i

+7{K1(’}’f)K0(’}/i )+Ko(’}’f)K1(')/,‘ )+ %17'2[50(’}’,' )Sl(’}’f)+Sly('}’i )SO(Yf)]}

' 14 )
+(uf—up)ul+up) " Inly, /7)) + 47 fy,.fdyso(y)] ] , 1)

where
moul=E , (22)
mouj=E —AE , (23)
yi=lo AE /m,u? , (24)
vr=lo AE/meu} R (25)
=21y AE /m (u}+u}) , (26)

E is the relative translational energy of the incident elec-
tron, m is the electron mass, /; is the minimum value of
the incident electronic-orbital angular momentum quan-
tum number, u; (uy) is the initial (final) electron speed,
and the transition energy AE is defined by

AE=e); —&,} . @n

j max

T B, o) =1y (Tro)]~
Ji=0

where Q,Z "(Teo) is the rotational partition function for
vibronic state (a;,v;),
a; i . a;
0y (T o) = > d;,(2ji+ 1) exp(—e&yj, /kpTrot) (30)
j,~=0

kp is Boltzmann’s constant, and v/™* is the vibrational
quantum number of the highest bound state of the final

electronic state. The nuclear-spin degeneracy factor d j, 18

> d; (21,+1)exp(—e,,,

I
The dependence of the dynamical factor on molecular vi-
brational and rotational quantum numbers is only through
the transition energy.

The cross section is expressed as the product of the
structural factor for the molecule, given by Eq. (19), and
the dynamical factor for the electron, given by Eq. (21):
afa

i Dt (E) . (28)

U"I”ﬂf(E V=Su5i v Pogipuiy

A. Bound-to-bound transitions

The cross section of interest is obtained by averaging
Eq. (28) over a Boltzmann distribution of initial rotational
states characterized by a rotational temperature T, and
summing over all final vibrational and rotational states:

v max

/kpTrot) 3, Eau,j,.,,j,(m , (29)
vf--

I

unity except for certain classes of homonuclear diatomics
(see Table I). j"** is selected by practical consideration.
The sum over final rotational states has nonzero contri-
butions only for j, equal to j;—1 or j;+1 (j Jjr20). In the
low- temperature hmlt only the j;=0 and jr=1 states

contribute to a,, (E Tio). Then the sums over the

Clebsch-Gordan coefflcxents in Eq. (19) can be evaluated
to give a factor of + and the cross section of Eq. (29)
reduces to
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TABLE 1. Nuclear-spin degeneracy factors required for homonuclear diatomic molecules in sigma

states.
d;
gt or u~ and 2I+1 even, or g~ or ut and 2141 even, or
g~ or ut and 2I+1 odd gt or u~ and 2741 odd
Even j I+1)2I+1) I(21+1)
0Odd j I(2I+1) (I4+1)2I+1)
aaf P i 2e? (28 )M % 121y tional quantum number for the final state; instead we
(E,Trot)— 20 3% Af,0 va Ve have the continuum energy e. Thus we replace all oc-
Uf—

as T,,; —0. (31)

Invoking the Franck-Condon approximation in Eq. (12)
and assuming the vibrational states are degenerate we ob-
tain®

mle?
Oif(E,Trot)>——1— ppr (2—84 0 [ Mg q, (Reg)1*D

afa

“(E)

as Troy—0, (32)

where we assume the sum over the Franck-Condon fac-
tors is unity (this is true only if continuum states are also
included in the “sum”). This expression thus represents
excitation to both bound and dissociative states. We call
the cross section denoted by Eq. (29) the IPVR (impact-
parameter-method, vibrational-rotational) cross section,
the one given by Eq. (31) the IPV (impact-parameter-
method, vibrational) cross section, and the one given by
Eq. (32) the IP (impact-parameter-method) cross section.
The last is the form obtained by Hazi.°

B. Bound-to-continuum transitions

Next we consider the modification necessary for disso-
ciative transitions. In this case we no longer have a vibra-
|

currences of the quantum number vy by € in the preceding
equations. The wave functions for the continuum states
are solutions to the equation

[—(#/2u4p)d?/dR*+V (R)

+ 71+ 1 /2 45 RANC](R)=eXcf (R)  (33)

subject to scattering boundary conditions, i.e.,

elf(R)—>0 as R—0, (34)
E1f(R -——>CkR[j[ (kR)— tan(n)n,f(kR)] asR—w ,
(35)

where
k=Q2u 45 /ﬁ)[s——Vaf(R=oo)] , (36)

Ji p and n; , are regular and irregular Riccati-Bessel func-

tions,*® respectively, 7 is the phase shift, and C is a con-
stant obtained by normalizing the wave function to unit
density per unit energy.!? The transition energy AE [Eq.
(27)] is replaced by

AE=¢g— s:iji (37

and the final expression for the averaged cross section is

aa, o _ i . a; Emax a;a
gy (E’Trot)=[Qu‘. (Trot)] 2 dji(21i+1)exp(—ev,-j‘- /kBTrot)E fs . dsav.’j.{lf(E) ’ (38)

j;=0 If ‘min Ll

I
where, in analogy to Eq. (28), Emax=E +e:iji . , (41)
a a' a ai . .
0,, i sz (E)=S.] v j’,Dglf v,j, (E) . (39) The expression for dissociation from selected initial vi-
f f fridi

In this case, the final rotational angular momentum quan-
tum number is interpreted as the orbital angular momen-
tum quantum number [; of the separating atoms. We
refer to the cross section defined by Eq. (38) as the
IPVRD (impact-parameter-method, vibrational-rotational
dissociation) cross section. The limits of integration in
Eq. (38) are rigorously given by the continuum threshold

Va f(R =) (40)

Emin=

and by energy conservation

brational states in which rotations are treated as degen-
erate is generalized from Eq. (31),

i smax
o J(E)= [ " de DSBS, (42)

mm

where the structural factor is given by

Sat=2 L (2—84 ,.0) IM ik 43)

3h4

and the dynamical factor is given by Egs. (21)—(26). The
cross section defined by Eq. (42) is called the IPVD
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(impact-parameter-method, vibrational dissociation) cross
section.

III. COMPUTATIONAL DETAILS

The potential curves for the X 'S}, B'S}, and B''S;}
states of H, are obtained by fitting accurate ab initio*"*?
and experimental*® data in a manner similar to that of
Blais and Truhlar.* Over the region for which the poten-
tial data is available, the points are fitted to a cubic spline
function. For small R values the potential is written as

V=AR 'exp(—BR) , (44)

where the parameters 4 and B are determined so that the
function fits the data points at the two smallest R values.
For the region of R values greater than the spline-fit re-
gion, the potential is fitted with the form

V=Vy—C¢R6—CzgR"?, (45)

where V) is the experimental dissociation energy and the
parameters Cg and Cj are determined so that the function
fits the data points at the two largest R values. The cubic
spline fit is restricted to match the function values and
their derivatives at the end points of the data. Our fits to
the three potential curves used in this work are presented
in Fig. 1..

The transition dipole matrix elements as a continuous
function of R are obtained by 4-point (third-order)
Lagrange interpolation® of the accurate ab initio data.*6
The fits to the matrix elements are shown in Fig. 2.

The vibrational eigenvalues €; are obtained by solving
Eq. (3) using Cooley’s algorithm.*” Once an eigenvalue is
found, the values of the unnormalized wave function

u(R) are stored on a grid of evenly spaced R values.

20

[
B Z: H(1s)+H(2s)

H(1s)+H(2p)

=
G
= 15+
2 0| B 2!
z
[}
=
o
a
5 H(1s)+H(1s)_]
X 1r*
9
0 1 ' L
0 1 2 3

INTERNUCLEAR DISTANCE (/i)

FIG. 1. Potential-energy curves for the three states of H,
studied in this work. The X '3} and B '3} potentials are fits
to the calculations of Kolos and Wolniewicz (Refs. 41 and 42,
respectively), while the B’ 'S} potential is a fit to the data of
Spindler (Ref. 43).
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2.0 T T T

DIPOLE MATRIX ELEMENT (a.u.)

—-0.5 1 1 | 1 1
6] 1 2 3 4 5 6

INTERNUCLEAR DISTANCE (bohr)

FIG. 2. Dipole matrix elements used in the calculations. The
matrix element for the X 'S to B 'S} transition is a fit to the
calculation of Wolniewicz (Ref. 45) while that for the X '} to
B''3} transition is a fit to the calculation of Ford (Ref. 46).

The normalization factor is determined by extended
Simpson’s-rule integration,”* and the stored values are

normalized. Unnormalized continuum wave functions for

a fixed energy € are obtained by Numerov integration and
stored on the same grid of R values used for the vibra-
tional wave function. The asymptotic boundary condi-
tions are applied, and the normalization constant of Eq.
(35) is obtained using the method described by Chung,
Lin, and Lee."?

The structural factor S, Vi is obtained from Eq. (19),
where the summation over the Clebsch-Gordan coeffi-
cients is straightforward and the square of the dipole tran-
sition matrix element is obtained from Eq. (12). The in-
tegration. in Eq. (12) is performed using extended
Simpson’s rule on the grid of R values on which the wave
functions are saved. In the case of bound-to-continuum
transitions, the quantum number v is replaced by the en-
ergy eigenvalue €, but the computational procedure is
identical.

The dynamical factor is calculated from Eq. (21).
Evaluation of all of the modified Bessel and Struve func-
tions, including the finite integral of the Struve function,
is accomplished by Lagrange interpolation from the tables
of Abramowitz and Stegun.** The order of interpolation
used is that recommended in the tables.

The impact-parameter method requires that a
minimum value of the orbital angular momentum of the
incident electron be supplied to evaluate Eq. (21). For the
comparisons reported here, we have used Hazi’s value
(bp=1.7a¢).*° In subsequent applications, we define the
minimum value of the impact parameter b, by requiring
the cross section from Eq. (32) to agree with that of the
Born approximation at a high energy.’® The choice of b,
is discussed further in paper 1143

afal.
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For dissociative processes, the integral over the final en-
ergy is performed using repeated Gauss-Legendre integra-
tion. The total range from g, to €, need not be con-
sidered; only a limited range of € values contributes sig-
nificantly to the cross sections for all incident energies.
This range is determined by the behavior of the Franck-
Condon factors. Typically 80 to 100 integration points
are needed to converge the cross sections to two or more
significant figures.

IV. RESULTS

In this section we report the results of calculations of
various electron-impact processes in H, using the theoreti-
cal impact-parameter methods of Sec. II. The calcula-
tions permit comparison with experimental and other
theoretical results. We have studied excitation and disso-
ciation of ground-state H, via the B and B’ states and the
effect of varying initial molecular vibrational and rota-
tional energy on these processes. The latter studies are the
first of their kind for electron-impact dissociation to neu-
tral species.

In Table II we present cross sections for electron-
impact excitation from the ground (X) state to the B state
of H, (v=0). Our IPV results [Eq. (31)] are compared
with other theoretical calculations and with experiment.
The comparison is also shown in Fig. 3. Because the level
of theory in our IPV calculations [Eq. (31)] is meant to be
comparable to the treatment of vibration in the majority
of other theoretical methods, we use the Franck-Condon
approximation in Eq. (12) for the comparisons in Table II.
Our most accurate method employs explicit numerical in-
tegration of the dipole transition moment over the vibra-
tional wave functions of the target molecule.

The agreement of the Born-approximation results
with our IPV cross sections in Table II is good at energies
above 50 eV but poorer at lower energies, where the Born
approximation is known to break down. The fact that the

16,23
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8 T T T T

CROSS SECTION ( 107'7 cm?)

0 | 1 1 1
0 20 40 60 80 100

ENERGY (eV)

FIG. 3. Electron-impact excitation cross sections (units of
10~'7 cm?) for the X '3} (v=0) to B '3} transition in H,. The
solid curve represents the results (summed over final vibrational
states) of the present impact-parameter IPV cross section [Eq.
(31)] with the Franck-Condon approximation used to evaluate
the vibrational integrals in Eq. (12). The circles and solid circles
are the results of Born approximation calculations (Refs. 16 and
23, respectively). The triangles are from the L? distorted-wave
calculations of Ref. 23. The asterisks are the Born-Ochkur cal-
culations of Ref. 16, and the squares are the results of two-state
close-coupling calculations. The vertical lines represent error
bars for the experimental results of Ref. 32.

two sets of Born-approximation results appear to have a
different low-energy behavior is somewhat disturbing.
The difference is larger between the two Born cross sec-
tions than that found in comparing the smaller Born cross
section with the Born-Ochkur result!® (which included ex-
change). Fliflet and McCoy?? attribute this difference to
the use of different final-state wave functions. The IPV
results are in reasonable agreement with the distorted-

TABLE II. Comparison of the present impact-parameter results for the electron-impact excitation of

the B state of H, with other results.?

E (eV) cct Born I° BO¢ DW* Born IIf IPVE Expt.
15 1.05 3.60 3.61 1.4+0.4
20 3.09 5.23 4.10 1.9+0.6
25 4.31 6.66 5.31 4.12 5.64 4.84
30 4.46 5.69 5.19 2.0+0.6
40 4.93 5.43 5.27 2.3+0.7
50 4.7 5.55 5.14 4.84 5.06 5.06 2.840.8
60 4.49 4.70 4.79 1.940.6
75 4.09 4.55 4.36 4.37
100 3.58 3.87 3.76 3.80

2Cross sections are in units of 10~'7 cm?. Results are for 0 K.

*Two-state close-coupling results of Ref. 16.
“Born results of Ref. 16.

9Born-Ochkur results of Ref. 16.

°L? distorted-wave results of Ref. 23.

fBorn results of Ref. 23.

EIPV results of the present work from Eq. (31) with the Franck-Condon evaluation of vibrational in-

tegrals.
"Experimental data from Ref. 32.



wave (Ref. 23) cross sections, being somewhat larger at
the lower energies. The close-coupling results!® are also
smaller than the IPV cross sections, but the overall agree-
ment of the present impact-parameter method with both
of these more exact methods is within an acceptable 15%
above 25 eV. The distorted-wave?® and close-coupling'®
calculations include exchange, which is not treated in the
impact-parameter theory. Exchange effects could be in-
cluded in the IP method by the use of effective exchange
potentials.** However, one should then account for
higher-order terms in the expansion Eq. (6).

The experimental results of Srivastava and Jensen®? lie
about a factor of 2 below all of the theoretical calcula-
tions. Their experiment did not directly measure the in-
tegrated cross section to all final vibrational states; it only
detected radiation from the v’'=2 state. The quantity
they measured was the differential cross section, which
agreed well with the distorted- wave calculations of Fliflet
and McCoy?® except in the low-angle region, where the
experimental cross section was about a factor of 2 smaller
than the calculations. The cross section summed over all
final vibrational states was estimated using the Franck-
Condon principle. The differences between the theoretical
and experimental cross sections in Table II probably stem
from the smaller values for low-angle scattering obtained
in the experiment. The good agreement above threshold
among all of the theoretical methods suggests that the
predicted values of the excitation cross sections in this en-
ergy region for the X-to-B transition in H, are reliable.

In Table IIT we compare the results for this transition
of various treatments of molecular vibration within the
impact-parameter method. The IP (impact-parameter)

TABLE III. Comparison of various impact-parameter ap-
proximations for the X to B excitation of H,.?

E (eV) Ip® IPV(FC)* pv¢
15 3.47 3.61 3.87
20 3.83 4.10 4.47
25 4.58 4.84 5.25
30 4.95 5.19 5.61
35 5.09 5.29 5.72
40 5.08 5.27 5.68
45 5.01 - 5.18 5.58
50 4.90 5.06 5.45
55 4.78 4.93 5.30
60 4.64 4.79 5.14
70 4.39 4.51 4.84
75 4.26 4.37 4.69
80 4.14 4.25 4.57
85 4.02 4.12 4.42
90 391 4.01 4.30
95 3.81 3.90 4.18
100 3.71 3.80 4.07

2Cross sections are in units of 1077 cm?. Results are for 0 K.
*IP results [Eq. (32)] corresponding to Hazi’s method of Ref. 30.
Continuum contributions (small in this case) are implicitly in-
cluded.

°IPV results [Eq. (31)], with the Franck-Condon approximation
used to evaluate integrals over the vibrational wave functions.
9PV results [Eq. (31)], with the integrals over vibrational wave
functions evaluated explicitly.
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TABLE IV. Cross sections for electron-impact excitation
from the X to the B’ state of H,.?

E (eV) Born® Dwe° Ip¢ IPV(FC)® IPV!
20 8.88 1.7 4.03 1.93 2.14
30 3.9 5.49 2.66 2.95
40 4.8 6.19 2.89 3.21
50 9.41 4.9 6.28 2.88 3.19
60 4.7 6.14 2.78 3.08
70 4.4 591 2.66 2.94
80 4.1 5.79 2.53 2.80
90 - 3.8 5.42 241 2.67
100 6.75 34 5.18 2.30 2.54

2Cross sections are in units of 10~!8 cm?. Results are for 0 K.
®Born results of Ref. 15.

°L? distorted-wave results interpolated from Fig. 4 of Ref. 26.
9Impact-parameter IP results from Eq. (32) corresponding to the
original method of Hazi [Ref. 30] which assumes vibrational de-
generacy. Continuum contributions, implicit in this method, are
large for this case.

‘Impact-parameter results with the IPV cross section of Eq. (31).
The vibrational integrals are evaluated using the Franck-
Condon approximation.

fImpact-parameter results with the IPV cross section of Eq. (31).
‘The vibrational integrals are evaluated using numerical integra-
tion.

method of Hazi,® which assumes vibrational degeneracy,
underestimates the IPV cross sections obtained with an
accurate treatment of vibration (shown in the rightmost
column) by approximately 10%. The use of IPV with the

TABLE V. Electron-impact dissociation cross sections for
production of H(1s)+H(2s) via excitation to the B’ state of
H,.?

E (V) BR® DWe® IPVD(FC) IPVD®  Expt.f
20 1.98 1.48 2.32 2.24
30 3.23 3.12 3.02
40 3.91 4.46 3.54 1341 ‘
50 3.60 3.47 6.17
60 3.75 4.41 3.52 3.40 5.94
70 3.40 3.28
80 3.41 3.26 3.14 5.50
90 3.12 3.00
100 3.09 3.41 2.99 2.88  5.08
150 2.50 2.44 2.35 4.19
200 2.10 2.07 1.99 3.62
250 1.80 1.73 3.10
300 1.60 1.54 2.69

2Cross sections are in units of 10~!8 cm?. Results are for 0 K.
*Born-Rudge results of Ref. 12.

°L? distorted-wave results of Ref. 26.

dImpact-parameter results with IPVD cross section from Eq.
(42) evaluated using the Franck-Condon approximation for vi-
brational integrals.

‘Impact-parameter results with IPVD cross section from Eq.
(42) with the vibrational integrals evaluated numerically.
fExperimental results of Ref. 33 scaled by 0.8 according to the
recommendation of Ref. 34. The experimental cross section
contains contributions from states other than B’.
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FIG. 4. Electron-impact dissociation cross sections (in units
of 10! cm?) for production of H(1s)+H(2s) via excitation of
the B'13} (v=0) state of H,. The solid curve is the result of
applying the IPVD method [Eq. (42)] of Sec. II B with accurate
numerical evaluation of the integrals over vibrational wave
functions. The dashed curve represents the IPVD result when
the Franck-Condon approximation is used to evaluate the in-
tegrals [Eq. (12)] . The squares represent the Born-Rudge re-
sults of Ref. 12 and the triangles represent the L? distorted-
wave results of Ref. 26. The experimental results of Ref. 33
(multiplied by 0.8 according to the recommendation of Ref. 34)
are shown as solid circles. The experimental results include con-
tributions from states other than B’ '3}. ~

Franck-Condon (FC) approximation in Eq. (12) shows the
improvement over IP [Eq. (32)] that can be achieved by
including vibrational motion. The IP method (Ref. 30)
implicitly assumes a sum over bound and continuum vi-
brational levels, while the IPV method only includes
bound levels. For this comparison, however, the major
differences arise from errors in treating these bound states
since the dissociation cross section is small. This com-
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FIG. 5. Dependence of the cross section (summed over final
vibrational states) for excitation of the B 'S} state on initial vi-
brational quantum number (in units of 10~!” cm?). The solid
curve represents v=0, the dashed curve v=1, the long-
dash—short-dash curve v =2, and the long-dash curve v=3.
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FIG. 6. Dependence on initial vibrational quantum number
of the electron-impact dissociation cross section to produce
H(1s)+H(2p) via the B !=} state of H, (in units of 10~ !8 cm?).
The solid curve represents v=0, the dashed curve v=1, the
long-dash—short-dash curve v=2, the long-dash curve v=S35,
and the long-dash—double-short-dash curve v =10.

ment applies only for this case (v=0). As will be seen
below, there is a considerable enhancement of the dissoci-
ation cross section with increasing target vibrational exci-
tation.

Table IV presents results from excitation to the B’ state
of H,. For this transition there are fewer calculations for
comparison and (to our knowledge) no experimental re-
sults. The most accurate theoretical calculations available
for comparison are the distorted-wave results of Mu-Tao,
Lucchese, and McCoy.?® These results include bound vi-
brational states through a Franck-Condon factor in the
differential cross section so that the most meaningful
comparison is with our IPV(FC) calculations in the fourth
column. The agreement with the present IPV cross sec-

AN
//
/

CROSS SECTION ( 107'® cm?)
w

T

)

~

0 20 40 60 80 100
ENERGY (eV)

FIG. 7. Dependence of the cross section (summed over final
vibrational states) for excitation of the B’ !3; state on initial vi-
brational quantum number (in units of 10~'® ¢cm?). The solid
line representss v=0, the dashed line v=1, the long-
dash—short-dash curve v =2, as the long-dash curve v =3.
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FIG. 8. Dependence on initial vibrational quantum number
of the electron-impact dissociation cross section to produce
H(1s)+H(2s) via the B’ =] state of H, (in units of 10~!® cm?).
The solid curve represents v=0, the long-dash—short-dash
curve v =1, the long-dash curve v =2, and the short-dash curve
v=3.

tions [Eq. (31)] is typically to within 30% to 40% of the
distorted-wave (Ref. 26) result. The agreement between
the present results and the Born-approximation calcula-
tions of Arrighini et al.!® is poor, the difference being a
factor of 4 at low energies. The simple IP method [Eq.
(32)] overestimates the IPV and DW (Ref. 23) cross sec-
tions by approximately a factor of 2. This is due to the
implicit sum over continuum states discussed above for
the IP method [Eq. (32)]. The sum over all bound vibra-
tional levels of the B’ state of the Franck-Condon factors
involving ground-state H, is 0.48, so that approximately
50% of the IP cross section comes from the continuum.
This comparison of the IP and IPV cross sections indi-
cates that a realistic treatment of molecular vibration is
important for this transition due to the importance of dis-
sociative processes.
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FIG. 9. Final vibrational distributions (in units of cm?) of the
B'3} and B'!Z} states of H, resulting from electron-impact
excitation of the X '3} (v =0) state.
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In Table V we present cross sections for the production
of H(1s)+H(2s) via excitation to continuum levels of the
B’ state. The agreement between the various theoretical
results is good; the largest difference is less than 20% at
energies above the maximum in the cross section. The
theoretical results all lie approximately 50% below the ex-
perimental results of Vroom and de Heer’>. The latter
have been scaled by 0.8 as suggested by Mumma and
Zipf* to correct for molecular radiation observed in the
experiment. Because the experimental cross sections con-
tain contributions from other states that produce
H(1s)+H(2s), they are expected to be larger than the
theoretical calculations. Figure 4 illustrates these results
and shows the good agreement of the various theoretical
treatments.

In Fig. 5 the effect of increasing the energy in molecu-
lar vibration (up to v=3) for the bound-bound X-B tran-
sition is shown. For this range of vibrational quanta the
cross section doubles. In Fig. 6 the corresponding vibra-
tional dependence for dissociative excitation is seen to be
even greater, although the cross sections are smaller than
for nondissociative excitation. The enhancement in both
cases results form the larger Franck-Condon factors for
the excited vibrational levels of the X state.

In Fig. 7 the vibrational dependence of the cross section
for nondissociative X-B' excitation is shown. Instead of
increasing monotonically with v, the v=1 and v =2 cross
sections reverse order. The cross sections for dissociation
to H(1s)+H(2s) in Fig. 8 are monotonically decreasing
with v, in contrast to all of the other processes discussed
here. Again, this behavior is primarily determined by the
magnitude of the structural factor.

The impact-parameter method as formulated in this
work is capable of providing information on final-state vi-
brational distributions. In Fig. 9 we show vibrational dis-
tributions for both the B and B’ states resulting from
electron-impact excitation from the ground vibrational
level of the X state. The two distributions reflect the
difference in the number of vibrational levels supported
by the two excited electronic states. Both the B and B’
distributions have maxima for v >0, indicating a prefer-
ence for vibrationally inelastic processes.

Table VI presents the rotational-temperature depen-

TABLE VI. Rotational-temperature dependence of the cross
section for electronic excitation to the B state of H,.?

Temperature (kelvin)

E (ev) 0 4.2 300 1000 5000 20000
15 3.87 3.87 3.89 3.94 4.31 5.53
20 4.47 4.46 4.49 4.57 5.15 6.83
25 5.25 5.24 5.27 5.37 5.97 7.63
30 5.61 5.60 5.63 5.72 631 7.93
35 5.72 5.70 5.74 5.82 6.39 7.91
40 5.68 5.67 5.71 5.79 6.32 7.75
45 5.58 5.57 5.60 5.68 6.19 7.54
50 5.45 5.44 5.47 5.54 6.02 7.29
60 5.14 5.14 5.15 5.23 5.66 6.81
80 4.55 4.55 4.57 4.63 5.00 5.95
100 4.07 4.06 4.08 4.14 4.45 5.27

Cross sections from Eq. (29) are in units of 10~ cm?.
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TABLE VII. Rotational-temperature dependence of the cross

section for electronic excitation to the B’ state of H,.?
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TABLE VIII. Rotational-temperature dependence of the
cross section for dissociation of H, through the B’ state.?

Temperature (kelvin)

E (eV) 0 4.2 300 1000 5000 20000
20 2.10 210 2.10 2.14 1.87 1.65
30 290 290 - 2.89 2.94 2.57 2.27
40 3.15 3.15 3.14 3.19 2.78 2.44
50 3.13 3.13 3.12 3.17 2.75 2.42
60 3.03  3.03 3.01 3.06 2.65 2.32
80 282 282 274 2.78 2.41 2.12
100 250 250 2.49 2.52 2.18 1.92

2Cross sections from Eq. (29) are in units of 10~'® cm?.

dence of the X-B excitation of H, initially in the ground
vibrational state. The cross section increases by approxi-
mately 45% over the temperature range from zero to

20000 K. The corresponding dissociative cross section -

(not shown) to form H(1s)-+H(2p) increases by 30% over
the same range of temperatures. For v =0 the dissocia-
tion cross section has a maximum for 300 K of
2.9 107! cm? at 50 eV compared to 5.6 10~17 cm? for
the bound-bound excitation. For the X-B transition
bound-bound transitions dominate over bound-continuum
processes regardless of rotational temperature or initial vi-
brational temperature. The effect of initial vibrational en-
ergy is much more significant than the effect of rotational
temperature.

In Table VII the nondissociative excitation cross section
for the X-B’ transition decreases monotonically with tem-
perature. This is the opposite of the behavior seen in
Table VI for the X-B transition. The explanation lies in
the far-fewer bound rotational states that can be support-
ed by the B’ electronic state. At higher temperatures,
therefore, the tail of the Boltzmann distribution becomes
severely truncated. The cross sections for dissociation
through the B state, shown in Table VIII, increase mono-
tonically with temperature. We also found this increase
with temperature for the X-B dissociation cross sections.
We are not reporting the latter since they are small in
magnitude for v =0 (the only case studied when rotational
motion was included) and the trends follow those for the
B’ state.

V. CONCLUSIONS

The purpose of this work was to extend the impact-
parameter method for diatomic molecules to permit a
realistic treatment of vibrational and rotational motion
and to allow the study of dissociative processes. To test
the theory, applications were made to nondissociative ex-
citation of the B state of H, and to dissociation to
H(1s)+H(2s) via the B’ state. Agreement with previous

Temperature (kelvin)

E (eV) 0 4.2 300 1000 5000 20000
20 2.28 2.28 2.31 2.40 2.77 2.96
30 3.06 3.06 3.11 3.24 3.77 4.04
40 3.46 3.46 3.51 3.65 4.21 4.49
50 3.52 3.52 3.57 3.70 4.25 4.53
60 3.45 3.45 3.49 3.62 4.14 4.41
80 3.19 3.19 3.23 3.34 3.81 4.05
100 2.92 2.92 2.96 3.06 3.48 3.69
150 2.38 2.38 2.42 2.50 2.84 3.00
200 2.02 2.02 2.04 2.12 2.40 2.54
250 1.76 1.76 1.78 1.84 2.08 2.20
300 1.56 1.56 1.58 1.63 1.85 1.95

2Cross sections are in units of 10~ '8 cm?.

theoretical results is generally good. Comparison with ex-
periment was hampered by the lack of direct experimental
information for the processes we studied. However, the
magnitudes of the theoretical cross sections are very con-
sistent with our understanding of the processes probed by
the experiments. New results from this work include the
dependence on initial vibrational state and rotational tem-
perature of nondissociative and dissociative processes in-
volving the X, B, and B’ states of H,. While the depen-
dence of the cross sections on initial rotational tempera-
ture is modest, we find that increasing initial vibrational
energy can have a dramatic effect on the cross sections.
There is to our knowledge no experimental data providing
information on the effect of internal energy on the pro-
cesses reported here. However, the trends we find con-
cerning the effect of internal energy on dissociation are
similar to those seen in dissociative attachment processes
in H,. 505!

In summary, the impact-parameter theory presented
here should be useful in studying the effect of internal en-
ergy in excitation and dissociation processes in diatomic
molecules. It is a first-order theory, and thus is most
valid at high energies, i.e., at some distance above thresh-
old. It is also best applied to qualitative studies of in-
tegral cross sections. Applications of the methods
developed here to heavier diatomic molecules are given in
paper II (Ref. 8) and in forthcoming publications.>*33
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