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Electric field enhancement of depolarization of excited states
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Our calculations show that an external dc electric field can enhance by many orders of magnitude
the depolarization cross section of highly excited atoms by charged particles. The enhancement is
due to the fact that the electric field extends and shifts the electronic charge distribution along its
direction, thus effectively creating a giant electric dipole in the atom.

There has been recent interest in the effect of dc electric
fields on the structure? and collisional interaction of
highly -excited atoms in the regions near and below the
classical ionization limit E, and near E=0.3"1° Investi-
gations of the effect of such fields on half collisions, that
is, on the photoionization spectrum of atoms showed that
the electric field induces ionizing states in the region near
the photoionization threshold, whose electronic charge is
highly polarized along the external field.!"?

Understanding the properties of highly excited states in
an external field near E_, is not only important for the
understanding of the ionization of these atoms, but also
important for the understanding of the inverse process,
i.e., electron-ion recombination. This is due to the fact
that these highly excited states are the gateway for such
recombination. Because of the large degree of mixing of
the / quantum numbers of highly excited states caused by
the field it is expected that even a weak external field may
affect this process. Several articles in Ref. 1 on dielect-
ronic recombination—a type of electron-ion recombina-
tion which is of great current interest— indeed show that
weak-field effects on Rydberg states can cause large
changes in this collision cross section.®

In this paper we present a semiclassical investigation of
depolarization of highly excited atoms by charged parti-
cles in the presence of dc electric fields. We find for the
first time that the electric field enhances by many orders
of magnitude the cross section for this process. This
enhancement is due to the fact that the electric field ex-
tends the electronic charge distribution of the atom along
its direction thus effectively creating a giant dipole mo-
ment in the atom which then interacts with the long-range
field of the charge. The interaction is so long range that
the excitation duration (pulse width) governs the time over
which the interaction takes place. Even though this
long-range dipole may live less than 10~ !! s and the exci-
tation pulses are less than 10 ns, the interaction is strong
enough to cause appreciable depolarization even at num-
ber densities as low as 10% cm?.

The size of this giant dipole in complex atoms can be a
few thousand angstroms; however, only a few percent
(~6% at 5 kV/cm) of the charge distribution of the final
state molds into the giant dipole. In addition, this percen-
tage depends very weakly on the strength of the electric
field (F'/* dependence). Moreover, these giant dipole

atoms are unstable with respect to ionization"? (a few pi-
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coseconds lifetime). Our recent calculations and experi-
ments, however, have shown that this percentage can be
enhanced in atomic hydrogen.® Moreover, contrary to
complex atoms, it is possible to excite selectively giant di-
poles in hydrogen with much longer lifetimes (on the or-
der of 1 ns) at negative energies.” These enhancements of
the excitation strength and the lifetime which are only
possible in atomic hydrogen would make it easier to ex-
periment with Stark resonant states in which the highly
excited electron spends appreciable time upfield (or down-
field).

The dipole interaction is the longest range interaction
possible between a point charge and a neutral atom and it
can be expected to dominate scattering at large distances.
Such an interaction has been used to describe scattering of
electrons by highly polar molecules by representing the
molecule in a first approximation as a rigid rotator pos-
sessing a dipole moment.'°

Consider an atom in the presence of a uniform static
electric field directed along the z axis, F=F2, colliding
with a charged particle of charge e. The Hamiltonian of
the system is H =Hy+ V, where Hy=H +V, is the sum
of the Hamiltonian of the unperturbed atom Hj and its
interaction with the static electric field V;, and ¥, is the
collisional interaction between the charge and the atom.
The effect of the field on the structure of the projectile is
negligible.

The collisional effect will be calculated by solving for
the density matrix of the atom plus Stark field described
by H, for a single collision and then averaging over all
collisions. The effect of the field on the velocity of the
projectile is discussed later. We use basis states which are
eigenstates of the sum of the unperturbed Hamiltonian
and the interaction Hamiltonian of the Stark field. A
semiclassical treatment of the problem of an electron in
Coulomb and electric fields of comparable strength has
recently been solved.! We will give here the necessary
features for our study. The nonrelativistic, time-
independent Schrédinger equation for a single spinless
electron in combined Coulomb and electric fields F=F2
in the z direction can be separated in the parabolic coordi-
nate system £=r +z, n=r—z, ¢=tan"(y/x) by setting
Y=u,(E)uy(n)explimge).

For an electron excited to an energy very near the ioni-
zation limit, the electric and Coulomb fields are of com-
parable importance in the determination of its motion.
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Thus neither field’s effects may be treated as a perturba-
tion. However, since the electron is in a highly excited
state, a Wentzel-Kramers-Brillouin (WKB) treatment of
its motion is applicable. Applying the transformation
X,=u,VE to the £ equation of the separated Schrédinger
equation and using the Langer approximation of
m?—1—>m? gives the form of a one-dimensional
Schrodinger equation with energy E /4 and effective po-
tential energy

V(E)=—2Z,/26+m?/8E*+FE/8 .

Examination of this equation shows that for any energy
the electron is bound in this coordinate, with classical
turning points §;=0 and §,5%0. A similar treatment in
the 7 coordinate leads to another one-dimensional equa-
tion with energy E /4 and potential energy

Vn)=—2Z,/2n+m?*/8n*—~Fn/8 .

For energies greater than E, classical escape occurs. The
motions in the two coordinates are coupled by the condi-
tion on the separation parameters Z,+Z,=1. Applying
the WKB method to the equation governing the motion in
the £ coordinate yields a Bohr-Sommerfeld quantization
condition:

JRIEE V@ Pde=(n,+ ),

where the limits of integration are £, and &,, n; is the
quantum number associated with this motion. Similar
quantization of the motion in the 7 direction gives the
quantum number n,. Thus states are labeled by the three
quantum numbers (n,n,, |m |). Moreover, for energies
above E =0, this picture predicts the presence of reso-
nanclels with energies given by the properties of the motion
in &.

This semiclassical treatment predicts a set of resonances
for excited states of any m embedded in the continuum
that is above E =0, since the motion in £ is bounded for
all energies and m.! Each of these resonances is a super-
position of a few parabolic states. The largest contribu-
tion comes from an opening of a new channel which may
be labeled by quantum numbers: ny, n, =0, and m, that is
the Stark components which are shifted up the most
(bluest components) where n, is the quantum number of
the £ motion. The resonance structure, therefore, comes
from this new channel, where as the other channels con-
tribute a smooth yield. The ratio of the difference to the
average of the maximum and the minimum of the modu-
lation defines the percentage of the height of the modula-
tions or simply their heights which implies (by definition)
that the maximum value that they can have is 200 per-
cent. The height, as defined, reflects the partial cross sec-
tion of the new channel at that energy. The height of the
states decreases monotonically with increasing | m |. For
a given sum n;+ | m | +1, the energies of the bluest com-
ponents differ since V(£) depends on | m |, with the vari-
ation depending also on the strength of the Stark field.
Numerical calculations indicate that these differences are
not larger than 5 cm™! in the range of field strength ap-
propriate for the occurrence and detection of this
phenomenon (2—10 kV/cm). Because the collisional ener-
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gies are much larger than 5 cm™!, the variations in the
energy of bluest components of a given sum
ni+ |m | +1 but different n, and |m | and same
ny+ |m | +1 can be neglected.

The electronic charge distributions of the bluest com-
ponents are highly distorted. They are elliptical with the
major diameter extending over thousands of angstroms,
while the minor diameter extends over a few angstroms.
The major diameter is defined by the turning points one
of which is very close to the nucleus. The orientation of
the orbit depends on | m |; for example for m =0, the or-
bit contains the z axis (direction of the electric field), and
for large | m | it is almost normal to z. The far turning
point for m =0 is given by £=V4/F or r~1/VF.
Since for other m values, the centrifugal potential is negli-
gible at large £ we expect the turning points to differ from
those of m =0 by very small amounts.

The distribution of the partial cross section of the vari-
ous parabolic channels, at a given field strength, depend
on the energy of the system. For the region below E =0,

-the nonrelativistic hydrogenic treatment predicts that one

channel dominates because the resonances are quite nar-
row there, whereas in the E > 0 region other channels may

- contribute. The above results derived from the nonrela-

tivistic hydrogenic theory were modified in the case of
complex atoms due to the additional electron-electronic
core interaction. This interaction mixes the hydrogenic
channels and their ionization rates, resulting in the modi-
fication of the distribution of the partial cross sections of
the various parabolic channels.

The height or the partial cross section giving rise to the
resonance structure of the hydrogenic Stark-induced reso-
nances having giant dipoles in the region E >0 is 15 per-
cent of the underlying smooth ionization yield at 4
kV/cm.?2 In complex atoms, the interaction of the elec-
tron with the non-Coulombic ionic core results in a reduc-
tion of this percentage by the factor cos(2mu;) where u; is
the quantum defect of the /th final continum channel. If
more than one channel is involved, then the analysis will
have to involve a superposition of them.? Typically the
height drops to 0—10 %. The dependence of the height of
the resonances on the electric field strength is a rather
slow power law dependence of the form F!/4,

Recently our studies on atomic hydrogen have shown,
contrary to complex atoms, that the percentage of the
charge distribution that can be molded into the giant di-
pole from the otherwise free electronic charge of the high-
ly excited state (or alternatively the height of the reso-
nances) can be enhanced dramatically.® This can be done
by using multistep excitation via resonant intermediate
states instead of a single-step excitation from the ground
state.

Because of near ! degeneracy (the largest splitting is
0.365 cm~! in n =2), the n =2 states of hydrogen be-
come effectively pure parabolic at fields as low as 10
kV/cm, having very distinct dipole charge distributions
that are parallel or antiparallel to the Stark field, whereas
the ground state, unaffected by the field, stays spherically
symmetric. By appropriate choice of a multistep excita-
tion process and choice of the intermediate states, the
overlap and hence the excitation cross section of giant di-
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poles extended either upfield or downfield can be greatly
enhanced. We present here calculations of the photoioni-
zation cross section as a function of the quantum number
n of the initial state and as a function of its parabolic
quantum numbers ny, n,y, and | m | (defined earlier) and
give the dependence of the depth of the Stark-induced res-
onances on these quantum numbers.

The percentage of the depth of the broad modulations

at E >0 for excitation from the ground state, the n =2.

state, 100 and 010 states, and the n =3 states 200, 110,
and 020 are presented in Table I. Moreover, the results
for excitation from some spherical states are shown in the
same table. These results show that for the n =2,100 ini-
tial state the predicted depth of modulation is more than
twice that for the ground state, while that for the
n=2,100 state is so small as to be practically unobserv-
able. The situation is even more pronounced for the n =3
states.

Comparison between excitation from initial spherical
and parabolic states is interesting since the spherical case
is applicable to excitation in complex atoms. Because of
the large splittings between the various low-lying angular
momentum states in complex atoms, the electric field can-
not mix them completely and hence pure parabolic states
cannot be prepared using laboratory field. Hydrogen, on
the other hand, is a special case where the splittings are
small enough to be overcome by the external field in
n =2, and higher. Our calculations in Table I show that
for excitation from the ground states both cases give the
same result as it should. However, for excitation from ex-
cited states we have drastic differences between the two
cases. We find an enhancement of the depth of the
Stark-induced modulation in the region E >0 when the
initial excited state is a pure m =0 blue state, and disap-
pear almost completely when the initial state is a pure
m =0 red state.

There is another important property that distinguishes
the hydrogen system from all other atoms, that at £ <O
but E > —2V'F, one can populate quasibound states (with
“giant dipoles”), whose potential barriers are large enough
(tunneling small enough) to render their lifetimes quite
long on the time scale of the experiment. Hydrogen is a
special case, because these states are not mixed with less
stable ones so their “giant dipoles” survive long enough to
be studied.

The collisional mixing among the degenerate m states
occurs by j-L coupling of the electronic angular momen-

TABLE 1. Effect of initial state (from Ref. 9).

Parabolic
states Spherical
n (nynym) % states %
1 0 0 0 20.4 s 20.4
2 1 0 0 57 2s 20.4
0 1 0 2.3 2p 38
3 2 0 0 89.7 3s 18.8
0 2 0 0.3 3p 39.6
1 1 0 11.0
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tum j with the orbital angular momentum L associated
with the relative motion of the colliding particles. Be-
cause the external electric field F is strong, then the velo-
city of precession of j about the field direction is greater
than the velocity of precession of the orbital and spin an-
gular momenta about j, hence an uncoupling takes place
as in the Paschen-Bach effect. Therefore j*L=mL
+m| L where m; and m; are the projection of the spin
and angular momenta along L. Note that m; is different
from m used above for the projection of / along the elec-
tric field. Because we are interested in mixing of the
Stark states we will only calculate the effect of the m'L
interaction here (where the subscript / is dropped from
m; ‘to simplify the notations). Thus we write
V(t)=A[R(t)]Lm' where A(R) is a function of the in-
terparticle distance R which depends on the nature of the
interaction between the particles.

We consider here charges whose velocities are along the
direction of the electric field, therefore the angular
momentum of the collision L is perpendicular to the
direction of F. As a result the interaction V' (¢) is not di-
agonal since the axis of quantization is taken along the
direction of the Stark field; the Stark states are eigenstates
of the projection of their orbital angular momenta along
the direction of the field (m is a good quantum number).

Consider an atom with n distinguishable substates
| m) where m is the projection of the angular momentum
[ along the electric field. If only the population probabili-
ties of these states are of interest, then an rn-dimensional
vector of components given by the density of atoms in the
various states is adequate. Such a vector can of course be
expanded as a linear combination of »n Cartesian basis vec-
tors.

This population representation is not generally applic-
able especially when one is interested in representing the
same physical phenomenon in terms of states defined with
a different axis of quantization. Such a representation
arises in the problem at hand; in these cases we use an
n X n density matrix p instead of the above n-dimensional
vector. The matrix, written in “Liouville space,” is of n?
dimensions. A spherical basis will be used in this space.
The components of those are matrix elements of irreduci-
ble tensor operators T;s. Possible symmetries of the sys-
tem can be conveniently studied in the Liouville space be-
cause the multipoles of the system are just the coefficients
of the expansion of the density matrix p in terms of Ty

p=pmTrLy - (M
LM

We use an impact parameter treatment where the posi-

tion of the charge from the atomic nucleus is

R=(b*+v%?)!/2 where b is the impact parameter and v

is the velocity of the charge. A cross section for relaxa-

tion (1)21‘ decaying of the multipole p;,, is defined as fol-
lows:

ULM=—21rf0°°b dbApy 2)
Apy= 23 (=)™
n,n’

! L 1 ! L 1
—n M n' !

—m M m
X{n|S|m)(n'|S|m")*, 3)
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where we have used the 3-j symbols. The S matrix is
given by

s=exp [—in~ [ vinar | )
Hence the matrix elements of S are given by

(n|S|m)=exp[——iﬁ'1f_:V,,mdt’] , (5)

Vam=(n|V|m)=g,mAR), (6)

where A4 (R) is the matrix element of the radial motion; it
is a function of the internuclear distance only, and g,,, is
the matrix element of the angular motion in 6.

We now discuss the physical meaning of the multipoles
pry- The system of the n states is considered spherically
symmetric if pyy =0 for all L > 1, i.e., prp+0 for only
L =0. In this case all n stazes will be equally populated,
]

[ +m W —m" W +m)N] —m )]

m(0) 3 (—1)

p=0

(U4+m'—pWl —m —p)l(p +m —m’)Ip!
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and the system is unpolarized. If any of the higher mul-
tipoles, L > 1 is nonzero, the system is polarized with the
n states being unequally populated. . The multipoles p;ys
and p,) for example designate the orientation and align-
ment of the system, respectively. If for any L, p; =0
for | M| >1, that is it is nonzero for M =0 only, then
the system is cylindrically symmetric; otherwise it is not
cylindrically symmetric and it is said to have coherence.

To evaluate g, explicitly, we expand the states |m )
and |n) in terms of the |m') eigenstates. The
mathematical determination of this expansion is rather la-
borious'3

|m)=SBpm(@)|m'), 7

where

(cos36)H = +m'=m(sin 3 6) —m'+m ®)

which is a homogeneoﬁs polynomial of degree 2/ in cos36 and sin36. Note that BY..(8) generates (finite) rotations
about the axis that is perpendicular to the axes defining m and m’. For small values of / these polynomials have only a
few terms. Taking §=m/2 gives cos+60=sin360=1/V'2; thus

[ +m W —m W 4mW—m ]2

Bg:)‘mzz(_l)p

p=0

For [ =0, we only have m =m'=0 and /380=1. On the
other hand for /=1, m can be 1, 0, and —1, and m’ can
also be l(i) 0, and —1. In this case and for 6=m/2, the

matrix f3,,’,, is

1 —v2 1 v
Da=>1v2 0 —v2 ‘ (10)
1 V2 1

and thus the explicit expansions of the |m) states in
terms of the | m )’ states are the following:

|1>=%|1>'-—71_2—|0>'+%|-—1>’,
lo>=7_15|1>'—71.2—|—1>', (11)
|~V =4 +—= )+ 4] —1)'.

The matrix elements g,,, can be calculated using Egs. (7)
and (9) and the fact that V is diagonal in the prime basis:

gmn=2m' nll)’m nlt)’n . " (12)
™

For example for [/ =1, the explicit elements form the 33
matrix:

(I+m'—pWl—m —pp +m —m')lp!

(). ' )

1
0O — O
V2
1 1
&mn = \/5. 1 ‘/5 . : (13)
1
0 Y 0

We should note that this procedure is equivalent to the
diagonalization of the collisional interaction, V(z). The
diagonal collisional interaction V'(¢) implies that the vari-
ous components of its eigenstates evolve independently,
that is all the channels decouple. The same procedure is
often made in the study of rotational excitation of mole-
cules by collisions with atoms.!*

We now turn to the calculation of the cross section. We
will only calculate it for the case of /=1, the case that
arises in one-photon excitation from s ground states. Sub-
stituting Egs. (5) and (6) and Eq. (13) in Eq. (3) and taking
L =1 gives Ayp =0 for M =0,

Ay =4[cos(gga)—1] for |[M | =1, (14)

and the following for the cross section for relaxation of
the multipoles p;;:

ou=2m [ "bdb[1—cos(gwa)] , (15)

. where goo=1, a is the phase factor accumulated during

the collision:
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1 pt2
a:—ﬁ—f,1 A(R)dt (16)

and ¢, and ¢, are the times between which the interaction
takes place. For cases where contributions come from
large impact parameters such as in cases of long-range in-
teractions, the duration of the excitation pulse may be-
come comparable to or shorter than the time over which
the interaction is effective, and hence become the limiting
interaction time.

We are interested in the depolarization of states of low
m quantum numbers, e.g., m =0, 1, and 2. These are the
states that usually get populated in the most frequently
used radiative processes, one- and two-photon processes.
The electronic charge distribution of these states is mostly
elongated along the electric field. However, because of
the large extent of the electronic charge, it is not appropri-
ate to represent it as a dipole distribution. Thus we write
for the interaction

2
4areq

A(t)= {——(t2+b2/l)2)_1/2

+[(t4zo v+ b2 /2]~ 12, (17)

where z, is the coordinate of the electron, and v is taken
along the z axis. Thus for pulse width =

e? ) (zo/v +8)+[(zo/v + )2+ b2 /0?2
t2+b%/0? 0
(18)

= n
* 4mrequfi t+

Let us examine a as a function of b and v for 75 ns,
and zy~1000 A. Numerical evaluations show that a
stays much less than one for velocities larger than 10%
cm/s regardless of the magnitude of b. At lower veloci-
ties, v <107 cm/s, however, a exceeds one for a wide
range of b. In the latter case the integrand in Eq. (15),
1—cos(gga), usually oscillates rapidly about an average
value of one out to a critical impact parameter b, which
of course depends on m and z, and beyond which it drops
rapidly to zero. Hence!? the cross section is given by
o=mb?2. The criterion (Weisskopf or Firsov approxima-
tion) that is customarily employed to define the boundary
between both of these two regions is defined by a~1 rad.
An interesting limit of Eq. (18) is the low-speed limit
when zy7/v <<b?/v% In this limit, the general expression
for a simplifies and takes the following form:

e? 2 ezzo‘r
a=%ln(1+zou7'/b )= Pre) (19)
Taking a=1, then in this limit the cross section becomes
melzyT
pp— - —;—g"" . " (20)

We note that the cross section is velocity independent at
low velocities, hence the corresponding depolarization
rates are proportional to the velocity. As we mentioned
above at high velocities where a stays small, the
1—cos(ggoa) term stays small, hence resulting in a small-
er cross section than that of the low-velocity regime.
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When testing the low-velocity regime, one should have
special consideration with the way the ions are injected or
generated in the interaction region. One scheme for
achieving this regime is via injection of the ions with their
initial velocity opposite to the direction of the field. To
avoid acceleration by the field over large distances before
it interacts with the atomic system, the ions can be pro-
duced in the same region of space by photoionization of a
low-pressure impurity using a laser beam that overlaps the
beam that produces the highly excited atomic states. The
density of ions can be varied by varying the partial density
of the impurity or/and the intensity of the photoionizing
radiation. Moreover, time-delay measurements between
the production of the highly excited atoms and the ions
can be made thus effectively, giving the means for varia-
tion of the average velocity. In fact, we expect to have
some ions present in the interaction region that come
from the photoionization of the highly excited atoms
themselves. » .

The turning point of the electronic orbit is 1000 A in
the presence of 5 kV/cm. If we take z;~1000 A, and
7=5 ns, then 0~4X10~> cm?. This is a much larger
cross section than one expects from the interaction of an
n =20 state with charged particles in the absence of an
electric field. In this case the interaction energy is given
by —C4/R* where C,=u’?/(#A). For a matrix ele-
ment of 1 D and an energy denominator A of 15000
cm™!, we find C,=5X% 10—°® IJm®*. Hence the cross sec-
tion for depolarization may be drawn from the corre-
sponding a:

1
a=ZfC4/R4dt=2C4/(ﬁvb3). 1)

This gives b, =(2C,/tw)'3 and
o=m(2C4/#)*3~10"1* cm? for v=10° cm/s.

Finally it is relevant to talk about the importance of
this effect in the collision of neutrals with the excited
state. When one is dealing with neutrals, the plane of col-
lision can be in any direction relative to the direction of
the electric field. Hence the procedure we used for diago-
nalization in the charged particle interaction where a sin-
gle direction of relative velocity was used should. be aver-
aged over the direction of the plane of collision. Here,
however, we will only calculate the cross section for a sin-
gle plane of collision. The neutrals can be similar or dis-
similar atoms or molecules. If we consider a nonpolar
ground state atom of polarizability S at a distance R from
the highly excited atom of dipole moment u(F), then the
induced dipole moment of the ground state and the in-
teraction energy averaged over the possible orientations
are BF, and u=—pBu’/R® where F is the electric field
produced by the excited atom at the location of the
ground-state atom. Taking B=r> where r is of the order
of a Bohr radius, gives u = —u?r3/RS.

An estimate of the depolarizing cross section can be ar-
rived at by calculating a for this case which we find to be
a=(3mu?3) /(8%wb’). The corresponding cutoff for the
impact parameter is calculated by taking a=1 making the
cross section o=m(3mu’r3/8%v)*/>. Taking the veloci-
ty for neutrals to be v=2Xx10* m/s, r=0.5 A, and

hence
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u=ezy where zo= 1000 1&, we get 0~1.5% 1078 cm?.

In conclusion we have shown that the presence of a few
kV/cm dc electric field can enhance the depolarization
cross section of excited states by charged particles by
- many orders or magnitude. Such enhancement is a result
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of the large elliptical distortion (eccentricity of near unity)
of the atomic electronic charge.
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