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A quantum theory of stimulated Raman scattering is presented that takes into account three-
dimensional propagation and collisional dephasing, allowing the study of the spatial and temporal
coherence properties of the generated Stokes light. Maxwell-Bloch equations for the Stokes, . field
operator and the collective atomic operators are solved analytically under low-signal-gain conditions,
where the laser field and the atomic ground states remain undepleted. The intensity and the space-
time autocorrelation function of the Stokes field are calculated. The Stokes field is expanded into a
set of statistically independent "coherence modes, " which are determined explicitly for the case of a
cylindrically shaped pumped volume. The Stokes pulse energy 8' is found to fluctuate from pulse
to pulse. The probability distribution function for pulse energies P(8') is calculated for a range of
Fresnel numbers of the excited volume and collisional dephasing rates. For small values of Fresnel
number and dephasing rate, P ( 8') is a negative exponential distribution. For large values of either,
P( 8') narrows and approaches a Gaussian-shaped distribution. This occurs because many indepen-
dent modes contribute to the Stokes emission, making it spatially and/or temporally incoherent.

I. INTRODUCTION

When a pulse of laser light passes through a medium of
Raman-active atoms or molecules, intense Stokes-shifted
light can be generated via stimulated Raman scattering
(SRS). This occurs through the spontaneous scattering of
a few photons followed by amplification during their sub-
sequent propagation through the active volume. The ef-
fect was first observed in 1962' and explained theoretical-
ly soon thereafter in terms of a photon rate-equation
model. In such a model the stimulated buildup of the
photon density is assumed to be much like that in the Ein-
stein A and B-coeff-icient model of blackbody radiation;
that is, no account is taken of the coherence properties of
the radiation. Later, a single-mode quantum model was
studied, which has the advantage of correctly describing
the buildup of SRS from spontaneous emission, but does
not fully describe the situation under consideration since
it assumes a light intensity that is uniform along the prop-
agation axis.

An improved quantum theory was introduced that
includes both spontaneous initiation of the scattering and
spatial buildup along the propagation axis, and allows for
consideration of the quantum coherence properties of the
generated light. The dynamics of the Stokes light buildup
was found to pass through a transient regime at short
times, where collisional dephasing is unimportant, to a
steady-state regime, where collisional dephasing dom-
inates the spectrum and the temporal coherence proper-
ties. On the other hand, in this treatment the Stokes light
was assumed to be spatially coherent since it was generat-
ed in a pencil-shaped volume with a Fresnel number
~ =A/A, SL near unity (A and L are the cross-sectional
area and length of the pumped volume and As is the

Stokes wavelength). This condition implies roughly that
diffraction washes out any initial spatial incoherence asso-
ciated with spontaneous emission. Thus the field was as-
sumed to be in a single spatial mode. Under these as-
sumptions a one-dimensional wave equation is sufficient
to describe the spatial propagation along the direction of
the intensity buildup.

Using the one-dimensional theory, it was predicted
that the energy of generated Stokes pulses fluctuates by
large amounts due to the quantum noise intrinsic to the
buildup process. This effect, which was subsequently ob-
served, " occurs even when the driving laser is perfectly
stabilized, if the gain remains unsaturated. Typically, a
mean number of 10 Stokes photons may be produced,
with 100% fluctuations around the mean. The Stokes
pulse energy, denoted by 8' was predicted to be distri-
buted according to a negative exponential probability den-
sity function P ( 8') = ( W) 'exp( —8'/( 8') ), where
( W) is the mean energy. This was predicted to hold in
the transient regime of SRS, which could be attained by
using laser pulses of short duration. However, the most
accurate experimental measurements to date' showed
that in the transient regime the probability distribution
function is not a pure exponential, but rather has a max-
imum occurring at an energy about 10% of the mean en-
ergy. This experiment met all of the above criteria for
transient, unit-Fresnel number, unsaturated Stokes genera-
tion. It was thus concluded that the one-dimensional
propagation assumption was inadequate to describe the
experiment.

This conclusion was independently supported by the
development of a three-dimensional solution' of the
quantum propagation equations, which includes diffrac-
tion and the initial spatial incoherence associated with
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spontaneous emission. This theory predicted a peak in
P(W) at around 10% of the mean energy, in agreement
with the measurements. This theory was limited, though,
by the assumptions of a square laser temporal shape and
the absence of dephasing collisions, which are important
when experiments are carried out using longer laser
pulses. The effects of collisions on P(8') have been con-
sidered in the one-dimensional model, in both steady-
state' and pulsed' situations, but not, so far, in a three-
dimensional theory.

The purpose of the present paper is to present a new,
more general solution to the problem of Stokes generation
that brings all of the above-mentioned phenomena into a
single formulation, thus allowing a fuller understanding
of the problem as we11 as quantitative comparison with
experiments under a wide range of conditions. The three-
dimensiona1 operator equations are solved for a cylindri-
cally shaped pumped region, including the effects of dif-
fraction and spatial incoherence, as well as temporal in-
coherence caused by dephasing collisions, and arbitrary
temporal shape of the laser pulse. The Fresnel number of
the pumped region is allowed to vary, but not to become
much less than unity, due to the difficulty of taking into
account waveguiding effects. The gain is assumed to be
unsaturated. The mean Stokes intensity and the Stokes
pulse-energy distribution function P(W) are calculated.
In doing this the concepts of "spatial coherence modes"
and "temporal coherence modes" are utilized. These
modes, which are determined explicitly, are statistically
independent fields that are added incoherently to produce
the total field. The number of significantly excited modes
determines the form of P(8'). These concepts are known
in the literature of classical coherence theory of partially
coherent light. ' ' This paper shows that the same con-
cepts can arise naturally in the quantum treatment of a
nonlinear optical process such as SRS.

II. THREE-DIMENSIONAL
MAXWELL-BLOCH EQUATIONS

In this section the equations of motion corresponding to
the physical model will be formulated and solved. More
details of the formulation can be found in Refs. 7 and 12.

A. Formulation of equations

Consider a medium of identical atoms or molecules ini-
tially in their ground states

~

1), with average number
density N. A pulse of laser light with electric field
8'L(r, t) travels in the z direction through the medium. It
is assumed that the field 8'L(r, t) is uniform over a circu-
lar disk of area A, and zero outside the disk, so that a
cylindrical volume with cross-sectional area 3 and length
L, is pumped uniformly. The laser light, with frequency
cuL, is scattered to produce photons at the Stokes frequen-
cy cps ——coL —co3~, where ~3& is the energy of the final
state

~

3) above the ground state
~

1). We will assume
that the laser field is, to a good approximation, unaffected
by its interaction with the medium and can be treated
classically. On the other hand, the radiation with fre-

(2)

where EI (r, t) is the slowly varying laser-field amplitude,
and E s+'(r, t) is the positive frequency part of the slowly
varying Stokes field operator, which propagates in the + z
direction. It is assumed that there is negligible dispersion,
that is, kL ——coL/c and ks ——cos/c. The coupling constant
v& is given by

gd3 d ) +=-2 1 I

~m 1 ~L ~m 1+~S
(3)

where d&——(i d
~
j) is the dipole matrix element. The

terms I Q and F describe the damping and fluctuations,
respectively, induced in the atomic operator Q by col-
lisions. Q is associated with the coherence between levels

~

1) and
~

3). (In the case of a molecular vibrational
transition, Q is the vibrational coordinate. ) F is a quan-
tum Langevin operator, whose presence guarantees that
the commutation relations for Q(r, t) are maintained at all
times. ' I is the rate of collisiona1 dephasing, and it is
also the half-width at half maximum of the spontaneous
Raman transition, ignoring Doppler broadening. I' and I
are related by

(F (r, t)F(r', t')) =2I N 'Sit t')63(r r') —. —
The Stokes field operator E s+'(r, t) obeys the wave equa-
tion

2
1 (1 ~ (+ )

—l (co~( —k~z)
2 2 S rte

c Bt

2IC l(~st ksz)

cps

where ~2 ——2w&~s~& /c.
Equations (2) and (5) make up the operator Maxwell-

Bloch equations for the SRS problem in three dimensions.
An important quantity that enters into the solutions is the
Kaman gain coefficient

quencies near the Stokes frequency will be treated quan-
tum mechanically to allow for spontaneous initiation of
the Raman scattering.

It is assumed that the laser frequency is far from any
resonances with intermediate states

~

m) and that the
atoms remain predominantly in their ground states

~
1).

In this case the atomic dynamics are described by the evo-
lution of the collective transition operator Q(r, t), which
acts like a harmonic oscillator raising operator for the
atoms at position r. Before the laser pulse arrives, the
atomic operators are not correlated for different atoms,
i.e.,

(Q (r, 0)Q(r', 0)) =N '5 (r r'),—
where the expectation value is taken in the initial ground
state. The time evolution of Q(r, t) is determined by the
Heisenberg equation of motion, including collisional
damping,

Q(r, t) = —I Q(r, t) )I(:*)E—t. (r, t)Es+'(r, t)+F(r, t),
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g =2m, a2I ' ~EL(r, r)
t

In a simple rate-equation treatment of steady-state SRS
with a constant laser intensity, the Stokes intensity grows
as Isoexp(gz), where Iso is the Stokes intensity at z =0.

H(r, r', ~,r')

ks&z . e-~"- '
EL(z), exp —s2' z —z' 2 (z —z')

B. Solution of equations

The laser pulse inside the cylinder is a function only of
the local time a=t —z/c, and if its leading edge is defined

to be at t =z/c, or &=0, the atomic operator Q(r, t) is left
unperturbed for times such that v &0. It is thus con-
venient to change variables from (r, t) to (r, r). Then Eqs.
(1) and (4) become

(Q (r, r=O)Q(r', r=O)) =X '5 (r—r'),

(F (r, ~)F(r', ~')) =2I"% '5(r r')5 —(r r') .—
(7a)

(7b)

E s+'(r, ~)=fd r'K(r, r', r)Q(r', 0)

+fd r'f dr'H(r, r', ~,~')F(r', ~'),

where the integral kernels are given by

The boundary condition for the Stokes field is that
E''z+'(r, r) is equal to the free-field operator at the input
face of the medium (z =0). We will consider only the
case that no Stokes photons are incident on the input face
from the outside. This means that all terms in the solu-

tion that are proportional to the free field will give zero
contribution to all normally ordered expectation values,
such as Stokes intensity (E s '(r, r)E s+'(r, 7) ). The free-
field terms will thus be omitted from the solution below.

In order to solve Eqs. (2) and (5) we make the assump-
tion that reflections from the outside surface of the
cylinder, due to dispersion near the Raman transition, are
negligible. This means we can neglect the field boundary
conditions at this surface, as discussed in detail for two-
level superfluorescence in Ref. 17. It was shown that in
that case this approximation is valid when the Fresnel
number ~ =A/AL is greater than unity, which guaran-
tees that the typical angles of incidence on the cylinder
surface are not in the regime of total internal reflection.
The criterion for neglecting reflections in the transient
SRS case is the same, i.e., ~ =2 /ASL ) 1. In the
steady-state case an analogous argument leads, in the
high-gain limit, to ~ )(gL/4)'~ . For gL = 16, this gives
~ )2, of the same order as in the transient case.

Under these assumptions the coupled Eqs. (2) and (5)
have the following solution, derived in Appendix A,

where

(8d)

p is the radial vector (x,y) and Io(x) is the modified
Bessel function of zero order. The r' integral in Eq. (8a)
is over the cylinder volume excited by the laser. This
solution is obtained in the paraxial approximation, which
is valid for light traveling at small angles to the z axis,
and is useful for a cylinder whose length is much longer
than its diameter. Because of this approximation the fac-
tor (z —z') ' appears in the solution instead of

~

r —r'
~

', leading to a divergence near z'=z. The diver-

gence is overcome by noting that, in stimulated scattering
with high gain, the region near z'=0 contributes more
strongly than that near z'=z. So the integrals in Eq. (8a)
need not be extended to the region near z'=z. On the oth-
er hand, the solution in Eq. (8a) does not properly describe
the low-gain scattering (spontaneous emission) regime, be-
cause in that regime the region near z' =z must be includ-
ed, which leads to a divergence.

It should be pointed out that it is possible to solve Eqs.
(2) and (5) without the paraxial approximation if the laser
pulse is assumed to have a square temporal shape. This
avoids the divergence problem at z'=z. See Appendix B.

III. INTENSITY OF THREE-DIMENSIONAL
STOKES CiENERATION

Restricting ourselves to the high-gain regime, we will
evaluate the average intensity of the generated Stokes
wave from the paraxial solution, Eq. (8). The intensity, in
units of photons/cm sec, at the output face z =L, is
given by

Is(p, ~) = (E s '(p, L,r)E s+'(p, L,~)),
2&Acos

where the expectation value is taken in the initial state
with no Stokes photons and all atoms in their ground
states. Using the 6-correlated properties of Q and F given
by Eq. (7), the intensity is seen to be

Is(p &)

ksv2X(r,r', ~) = EL (~)
2m. z —z' 2 (z —z')

X ' fd r'
~

X(r r', v)
~

27TfRos

+ 2I & ~ fd3r'f dw'
~

H(r, r', &, w )
~

and

XIO([4')a2p(~)(z —z')]' ), (8b) (10)

This result will be evaluated in the transient and steady-
state limits.
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A. Transient Stokes intensity

When the collisional dephasing rate I is sufficiently
small to have no effect during the Stokes pulse, the
scattering is said to be in the transient regime. This is
certainly true when the laser pulse duration rL satisfies
I ~L && 1. A more accurate criterion is given by
I vz &gL, where g is the gain coefficient given in Eq. (6)
and 1. is the medium length. This arises from the require-
ment that dephasing be negligible for the duration of the
Stokes pulse. For a square laser pulse of duration il, the
Stokes intensity grows in time as exp[(8gLI vL)' ],
leading to a Stokes duration ~s (full width at half max-
imum) of approximately (rl /161"gL)'~ . Then, the con-
dition I ~& &&1 is equivalent to I ~L &&16gL, which can
be stated conservatively as I ~L &gl. . This is consistent
with the fact that the time needed for the Stokes intensity
to reach its steady-state value is of order of gL /I .

In the transient regime, the first term in Eq. (10) dom-
inates the intensity. Using the asymptotic formula for the
Bessel function

I„(x)— i, x »1exp(x) (11)
(2m.x )'i

IV. STATISTICAL PROPERTIES
OF STOKES EMISSION

In this section the spatial and temporal coherence prop-
erties of the Stokes output field are examined through the
field correlation function. The field is expanded into a set
of statistically independent "coherence modes. " Using
this expansion, the probability distribution P ( W) for
Stokes pulse energy 8'is found.

A. , Stokes field correlation function

The correlation function of the Stokes field in the plane
of the output face (z =L) is defined to be

w(+)
G (pli+lip2i+2) (ES (pliLi+1)ES (p2iLi+2) )

2~A'cog

where again p=(x,y) is the radial vector. Using Eqs. (7)
and (8), this can be evaluated explicitly. In general the re-
sult is very complex. It can be shown explicitly that in
the limit of high gain the correlation function factorizes
into the product of a spatial part times a temporal part

the transient intensity at the output face (z =L) is found
to be, in the high-gain limit,

~2
l
Q~(r)

l

ITR(p r) = expI [1611'lv2Lp (r)]'~2I . (12)
8@A p(r)

G(pl, rl', p2, r2) =-Gl, (p„p2)G, (&l,r2) .

The spatial part is found to be

G (pl, p2)

(16)

Note that in this treatment the average Stokes intensity is
constant over the output face, with area A. The result Eq.
(12) is equivalent to the previous one-dimensional result
[Eq. (37), Ref. 7], except for the factor ~ . This is an in-
tuitively expected result since ~ is roughly the number
of spatial modes of the Stokes field that can fit within the
cylindrically shaped pumped volume.

B. Steady-state Stokes intensity

When the laser pulse is sufficiently long, the Stokes in-
tensity becomes constant in time. This occurs when
I &L &&gl., that is, when dephasing prevents the further
growth of the collective dipole. In this case the second
term in Eq. (10) dominates the intensity, which becomes,
for ~~ ao, in the high-gain limit

~~2
Iss = egL (13)

A (477gL)'

Again, this is equivalent to the one-dimensional result,
except for the factor W .

C. General case

=~-'f d'p'
r

s I 2&«xp —1 (
I pl —p'

I

—
I p2 —p'

I
)2I

(17)

where the integral is over the output face of area A, and
the temporal part is found to be

/Ac ( ) ( )G.(+1,+2) = (+ S (L,'rl )E S+ (Li r2) ~1D .
27TACO g

Except for the factor ~ the correlation function in Eq.
(18) is exactly the same as that which arises in the one-
dimensional theory of SRS,' which is approximately
valid for Fresnel numbers near unity. The factorization
of the correlation function will be seen below to greatly
simplify the determination of the statistical properties of
the Stokes light.

The spatial part of the correlation function, Eq. (17),
can be evaluated to give'

1 2J1(2~
I pl —p2I «)

2~l p, p, l

/a—
In the case of arbitrary values of I v; the intensity from

Eq. (10) can be shown to be given by +exP —1 ( IP1 I

'—IP21')
a

(19)

~2
Is(p ~)= Is (L,~), (14)

where Is (L,~) is the intensity in the one-dimensional
case (M= 1), which is given explicitly by Eq. (21) and Fig.
2 in Ref. 7. Again, this is valid only in the high-gain lim-
it.

where Jl(x) is the Bessel function of order 1 and a is the
radius of the cylinder (i.e., A =ma ). Equation (19) is the
well-known measure of spatial coherence of light emitted
incoherently from a disk with radius a in the plane z =0
and observed in the plane z =L.' The coherence area of
the light at the z =L plane can be seen from Eq. (19) to be
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approximately na./~, or (A,sL ) /~a, which shows that
the farther the light travels from its source at z =0, the
more spatially coherent it becomes. If a =1, only one
coherence mode (spatially coherent field) can pass from
the source through the area ma at z =L, while if ~ ~&1,
then roughly ~ modes can pass through the area. Thus,
for small P the effective aperture of the pumped gain re-
gion acts as a spatial filter for the Stokes light. This fur-
ther justifies the approximate one-dimensional (single-
mode) treatment of SRS for the case ~ = 1 in Ref. 7.

The temporal correlation function, Eq. (18), can be
evaluated to give

spatially coherent, in that its complex degree of coher-
ence' attains its max'imum value, unity. The P„(p) are
the spatial coherence modes.

One of the desirable consequences of the mode expan-
sion leading to Eq. (21) is that the probability distribution
I'( W) for Stokes pulse energy 8' can be expressed simply
in terms of the 13„,once they are known. This will be seen
in Sec. IVC.

1. Spatial coherence modes

Consider expanding the Stokes field operator in the out-
put plane z =I. as

2 2mlK2EL (T1)EL(+2) —I'(t, +v'2)
G, (v ),~2) =w 1 2

q (~),~2) E' '(PL, r) =
' 1/2

2m~s g ~ „(r)P„(p), (22a)

T
X f( ,r, r)+2I f e'"'g(r')d~' (20a)

where
7

q (1 g, 'ri ) =4K]KzL
~
EI (T )

~

d7
b

f (r~, &2) =[q (r~, O)]' I~([q(&~,0)]' )

XIO([q(~2, 0)]' ) —(1~2),
g (~') = [q (r„g')]'~'I, ([q(~„~')]' ')

XIO([q (~2,~')]' ')—(1~2),

(20b)

B. Expansion of field in coherence modes

Following classical coherence theory we will expand the
Stokes field in a set of modes, or fields, each of which is
coherent, but uncorrelated with any other mode. Such an
expansion is known as a Karhunen-I. oeve expansion. ' It
was independently developed via functional integration
techniques in Ref. 12. A related expan'sion was recently
developed and applied to study the coherence of laser
modes. ' A different mode expansion for the SRS problem
was developed in Ref. 19, where statistical features were
not studied.

It will be shown below that the result of the mode ex-
pansion is to put the spatial autocorrelation function into
the form

G~(p~, pz) = g p, p„(p~)p"„(P2) . (21)

Each term in the sum is in the factorized form
P„(pt)P*„(p2), which describes a field that is completely

where (1~2) indicates interchange of ~& and r2, and T is
the lesser of ~& and ~2. The coherence time v, can be de-
fined by G,(~—~„~)= ,' G,(~,r) —Inthe t.ransient, high-

gain limit, where only the term containing f(~t, ~2) is sig-
nificant, it can be shown that ~, -=(r/16I gL)' . This is
essentially equal to the duration of the Stokes pulse, as ex-
pected for a transform-limited pulse. In the steady-state,
high-gain limit, where only the term containing g(w') is
significant, it can be shown [indirectly from Eq. (57) of
Ref. 7] that ~, =(gL)'~ /I . The light becomes more tem-

porally coherent as the gain increases due to gain narrow-
ing of the emission line.

where
~ p ~

is in the domain 0 to a, and w is in the domain
—oo to + ce. The factor in front is for convenience. The
spatial coherence modes P„(p) are assumed to be ortho-
normal,

J d P4' (P)0 (P)=&

and therefore the operator coefficients a„(r) are given by
1/2

a„(~)= J d'PEv '(P, L,~)P„(p) .

(22b)

C

2~~s (23)

The field correlation function, Eq. (15), can be expressed
as

G(p&, r&', p2, ~2) —g (a pg(~])+pyg(~2) )P„(p~)@(p2) .
n, m

(24)

Now a great simplification can be made by using the
property, Eq. (16), that the correlation function factorizes
into space and time parts. Using this, Eq. (24) can be
written

( g „(~))g (~2) )
G (pl~&l~p2~&2) G~(+1~ 2) g

n, m r +ii+2

XP„(p~)P* (p2), (25)

where the term in large parentheses must be independent
of w& and rz. We can set it equal to a constant /3„and
thus write

(a „(r&)a (~2) ) =13„G,(w~, ~z) . (26)

A further simplification comes about by imposing the
condition that the mode amplitudes a„be uncorrelated,
i.e., that (a „(r~)a~ (r2) ) equals zero if m &n This.
means that Eq. (26) becomes

(a „(~~)a (v2)) =P„5„.G,(~),~2), (27)

where the second subscript on the constants P„was
dropped for simplicity. The values of the constants P„
will be determined below. Note that using Eq. (27) in (24)
immediately leads to the desired form of the spatial corre-
lation function given in Eq. (21).

The physical interpretation of the a„and the P„can be
found by noting that each spatial mode $„(p) has tem-
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poral coherence described by Eq. (27) with m =n Also,
at rq r——

~ r——this gives the mean number of photons in the
mode, using Eqs. (14) and (18), as

( a „(r)a„(r)) =P„G,(r, r) =P„AIz(p, r), (28)

which is equal to P„ times the total number of photons
per second being emitted through the output face at time

Thus Ij„ is seen to be the fraction of photons emitted
into spatial mode P„(p). Evidently, then, it must be true
that

(29)

This can be proved easily from Eq. (21), from which it
follows that

TABLE I. Radial eigenvalues f3~
' corresponding to excitation

strengths of spatial coherence modes gI' '(p), determined from
Eq. (34). For Fresnel number u equal to unity, a small number
of spatial modes are significantly excited, while for u =3, a
large number are excited.

p(kj

0.630
0.672{—2)'
0.192( —5)
0.981(—10)

0.161
0.185( —3)
0.190(—7)

g P„=f d p Gp(p, p) =1,

the last step following from Eq. (19).
In order to determine the values of the I3„and the expli-

cit forms of the P„(p), note that, using Eqs. (23), (15), and
(16), we can derive from Eq. (26) the result

f d'p f d'p'Gp(p, p')P*„(p)P (p') =P„5„. (31)

0.8-

0.6-
l

I

0 0.2 0.4 0.6 0.8 I.O
p/a

I.O

0.8

0.6
lg~'(p) I

0.4

0.2

00 0.2 0.4 0.6 0.8 I.O
p/a

I.O

0

1

2
3

0.191(—1)
0.405( —5)
0.170(—9)

0.111
0.923( —1)
0.903( —2)
0.486( —4)

0.109
0.477( —1)
0.929( —3)
0.223( —5)

0.994( —1)
0.129( —1)
0.726( —4)
0.938( —7)

0.710(—1)
0.215( —2)
0.484( —5)

0.350( —1)
0.257( —3)
0.285{—6)

0.117(—1)
0.255( —4)
0.152( —7)

0.275( —2)
0.215( —5 )

0.123( —8)

0.8-

0.6-
lg"'(p)l

0.4-

0~
0 0.2 0.4 0.6 0.8 I.O

p/a

FIG. 1. Absolute value of radial eigenfunctions g~' '(p) for
the case ~ =1, from Eq. (34). Each eigenfunction is plotted so
that its maximum value is unity.

'The number enclosed in parentheses indicates the exponent of
the multiplicative factor of 10.

f d p Gp(PP)4' (P)=~ 4' (P). (32)

This integral eigenvalue problem with the kernel G (p,p')
given by Eq. (19), has an infinite number of solutions

(p), with associated eigenvalues P~, which can be
found by numerical means. If the position p is expressed

This equation can be satisfied, noting the orthogonality of
the P„(p), if we require that
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in polar coordinates, p=(pcos8, psin8), it is shown in
Appendix C that the eigenfunctions can be labeled with
two integers, k and l, and can be written as

~G(k)(p)e keg(k)(p)ep i p2 (33)

where k =0, +1,+2, . . . and l =1,2, 3, . . . . The factor
exp( i—~ p /a ) describes a paraxial spherical wave ori-
ginating at r=O. The radial eigenfunctions gi' '(p) obey
the equation

p U p p gi p = I gi p 34

where the new kernel U' '(p', p) is given in Appendix C.
For k =0 the eigenvalues are nondegenerate, while for

l

k
l
) 1 the eigenvalues are doubly degenerate, corre-

sponding to k =+
l
k l. Equation (34) is solved numeri-

cally -by discretizing the p variable and using a standard
matrix diagonalization routine.

Figure 1 and Table I give some of the radial eigenfunc-
tions and eigenvalues, determined numerically for the case
~ =1. The lowest-order mode gI '(p) has no radial or
angular nodes. It is approximately uniform across the
output face and is the dominant excitation, having
pp'=0. 63. Nevertheless, we find that even for ~ =1, the
modes g~

—"are excited with non-negligible excitation
strengths PI

—"——0. 16. These modes have a zero at p=O,
and suitable linear combinations of them have angular
nodes at 0=0 and 0=~.

Figure 2 and Table I give some of the eigenfunctions
and eigenvalues for the case ~ =3. The shapes of the
eigenfunctions are qualitatively similar to the ~ = 1 case,
but the eigenvalues, giving the excitation strengths, show
that now many modes (-~ ) are excited. This is in
agreement with the qualitative discussion following Eq.
(19).

2. Temporal coherence modes

A procedure formally analogous to the above develop-
ment of spatial coherence modes can be used to find the
temporal coherence modes. ' The intuitive meaning of
these modes is perhaps less clear than in the spatial case,
but they nevertheless prove to be useful in determining the
probability distribution P(W) in the next section. By
analogy with Eq. (21), the operators a„(r) can be expand-
ed as

a„( )=p„'"gb,'"'e„( ),
k

(35)

where the %k(r) are orthonormal over the interval
—ao &r+ oo, and p„' is inserted for convenience. Re-
quiring that the temporal coherence modes %'k(r) are ex-
cited in a statistically uncorrelated fashion implies that
(b k"' b I '}=Ak5k~5„, where the Ak are the eigenvalues
of the equation

J dr'G (r, r')+k(r')=&k+k(r) (36)

(@'}=J„d p f dri, (p, r)

=J drG (rr), (37)

where the intensity Is(p, r) is given in Eq. (9), and use was
made of Eqs. (15), (16), and (30). Values of ( k} can be
found from Fig. 3 of Ref. 7 (using the relation
'(II }=~&s) The correlation function can be written

It is convenient to normalize the eigenvalues A,k by the
total mean number of photons (energy) emitted in the
Stokes pulse, which is given by

I.O

0.8

0.6
l~"'(p)l

0.4
lq~&' ( p& I

0.2

0

I.O

p/a I.O 0 I.O I.O

0.6—

0.4-

0.2—

p/a I.O I.O 0 I.O

FIG. 2. Absolute value of radial eigenfunctions gi '(p) for the case ~ =3.
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Gr(Vl%2) = Q ~k+k(+1)+k(+2)

which, when used in Eq. (37), leads to

(38)

(39)

I rL/gL is greater than unity, the number of temporal
modes significantly excited scales as I rL /gL. In this case
temporal incoherence exists during the Stokes pulse.

C. Pulse-energy probability distribution function

Thus A.k is the mean total energy emitted into temporal
mode %k(r). Defining normalized eigenvalues A, k by

A,k ——A,k/( W) (40)

leads to the interpretation that p„k,k is the fraction of the
total energy emitted into the spatial-temporal mode
P„(p)+k(r).

Table II gives values for some of the normalized eigen-
values A,k, determined numerically from Eq. (36) for dif-
ferent values of I ri and gL. The laser pulse is assumed
to be Gaussian in time with full width at half maximum
equal to rl. The given values of the gain coefficient g
[see Eq. (6)] correspond to the intensity at the peak of the
laser pulse. It can be seen from Table II that when the ra-
tio I rL /gL is less than unity, a single temporal mode is
dominantly excited, i.e., A,

&
is much larger than all the

other kk. This means that the Stokes light emitted during
the laser pulse is temporally coherent. This corresponds
to the transient regime of SRS. On the other hand, when

50 0.02 0.997
0.274( —2)'
0.484( —4)
0.535( —5)

0.757
0.131
0.414( —1)
0.190(—1)
0.108( —1)
0.702( —2)

TABLE II. Normalized temporal eigenvalues kk correspond-
ing to excitation strengths of temporal coherence modes +k(v),
determined from Eqs. (36) and (40). The number of significant-
ly excited modes increases with increasing I ~L /gI. .

I &L /gI

Using the mode expansion of the field operator
developed in Sec. IVB, the probability density function
P(W) for observing a Stokes pulse with energy W can be
calculated. ' ' ' First, the pulse-energy operator 8' is
written as

f d pf drEs '(p, L,r)Eg'+'(p, L,r)

= QP„b'"' b'„"',
n, k

(41)

C(g)=(:exp(igW): } . (43)

The colons, which indicate normal ordering, have been
added to simplify the calculation, and since we are dealing
only with fields containing many photons, they do not sig-
nificantly affect the value of C(g').

The expectation value in Eq. (43) is taken in the initial
state with all atoms in their ground states and no Stokes
photons present. It is known ' ' that, since the atoms
are being treated as a continuum field of harmonic oscilla-
tors, the quantum expectation value of a normally ordered
quantity can be represented by a classical avera e over a
set of independent, complex, random variables bk"', which
are Gaussian distributed with variance given by
( ~b„'"'~'}=X„,

C(g) = g fd bk"'P(bk"')exp(i gP„l bk"'
~

), (44a)
n, k

where P(bk"') is the density function for bk"',

P(bk"')= exp( —
~

bk"'~ /A, k) .
STD k

(44b)

where the last step results from Eqs. (22a) and (35), and
the orthonormality of the eigenfunctions.

The probability density function is given by

P( W) = f dg exp( if W—)C(g), (42)

where C(g), the characteristic function, may be written as

30 1

2
3
4
5
6
7
8
9

10
11
12
13
14

0.274
0.169
0.112
0.775( —1)
0.561(—1)
0.422( —1)
0.327( —1)
0.260( —1)
0.212( —1)
0.176( —1)
0.149(—1)
0.127( —1)
0.111(—1)
0.971(—2)

K
P(W) = lim g g C„'k' 'exp( —W/P„kk),

NK~oo „
where

(46a)

Note that the Gaussian nature of the bk"', along with their
being uncorrelated, means that they are statistically in-
dependent. Equation (44) can be evaluated to give

C(g)= g (1—g'P„k,k)
n, k

The probability distribution is then found from Eq. (42) to
be

'The number enclosed in parentheses indicates the exponent of
the multiplicative factor of 10.

X K
C(NK) (P g )NK —2 + + (P g P g )

—1

m (&n) l(&k)
(46b)
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This formula is valid when the eigenvalues are nondegen-
erate. In the present case some of the eigenvalues are two-
fold degenerate and thus a limit must be taken in Eq. (46)
as /3 A, ~/3„A, k (Ref. 17). We will not present the rather
lengthy expression for P(8') that results. This result is a
generalization of Eqs. (15), (4), and (9) in Refs. 8, 10, and
12, respectively. In the transient limit, the kk here are the
same as the A,; in Ref. 8. The P„here are related to the A, „
in Ref. 12 by /3„=A,„/~.

It should be emphasized that the above approach to ob-
tain P( W) is very similar in some respects to that used in
theories of photoelectron counting. ' In those treatments,
the autocorrelation function was assumed to factorize into
spatial and temporal parts, as in our Eq. (16), and our Eq.
(46) was obtained. The temporal part was usually taken to
be stationary in time. In the present treatment we have
explicitly calculated the correlation function for SRS and
found that it factorizes. The temporal dynamics for SRS
is nonstationary. In addition, we have calculated-the dis-
tribution function P(8') for the energy of pulses with
macroscopic amounts of energy, in contrast to the case of
photoelectrori counting.

V. RESULTS AND DISCUSSION

(n)" 1

1+(n) '+" (n) (n) (47)

(n ) )) 1 ~ This distribution is
also obeyed by a single-mode thermal light source at high
temperature, when the photon-counting time is much
smaller than the coherence time of the light. ' One may
think of the SRS process as amplifying the zero-point ra-
diation field, which is Gaussian distributed, leading to the
exponential distribution for instantaneous intensity in Eq.
(47). (Note, however, that in the normally ordered treat-
ment used here, the emission actually appears to arise
from the zero-point motion of the dipole moments of the
atoms, rather than the zero-point field. ')

When M is small (=-1) but I rl /gL is large ( &&1), a
single spatial'mode and many temporal modes are excited.
The Stokes emission is spatially coherent but temporally
incoherent. The distribution P(8') is seen in Fig. 3 to be-
come peaked near the mean and to narrow as I ~1 /gl. in-
creases. Corresponding behavior occurs for a thermal
source when the photon-counting time becomes longer
than the coherence time. In this case p(n) for the thermal
source is a Poisson distribution, which becomes G-aussian
in the limit of large mean photon number ( n ),

Figure 3 shows several examples of the probability den-
sity function P(W) for different values of ~, I ~1, and
gL. The behavior of P(W) is in agreement with simple
ideas of statistics. When ~ and I rl /gL are small ( ( 1),
a single spatial-temporal mode is dominant in the Stokes
emission. Then P(W) is nearly a negative exponential.
This describes Bose-Einstein statistics in the limit of a
large mean number of photons. If the probability p (n) of
observing n photons within a certain counting time is
given by a Bose-Einstein distribution, then

p(n)=, exp( —(n ) )

(n (n ) )'—
(2'(n ) )' 2(n )

(48)

This behavior, for both Stokes light and thermal light, can
be understood in the following way. Let n; be the number
of photons emitted in the ith coherence time (temporal
mode). Then the detected photon number is the sum of
the numbers in each mode

ITL
0.3

ia IO
iii 50

g L I"~L/g L

I 50 0.002
50 0.02
5 2
5 6

II 7
iii IO

&=2
gL 1~ /gL

I 50 0.002
50 0.02
7 I

5 2

I TL

II 7
iii, IO

gL r~L/gL
l50 0.002
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FIG. 3. Probability density function P( W/( W) ) for Stokes pulse energy W; for various Fresnel numbers ~, and various col-
lisional dephasing rates I". The effect of I enters through the factor I ~& /gL, where ~I is the laser pulse duration and gL is the num-
ber of gain lengths in the medium. As either ~ or I ~l /gL is increased, P(W/( W)) narrows, illustrating that the Stokes pulse-
energy fluctuations decrease. This is associated with the decrease of the spatial and/or temporal coherence of the Stokes emission.
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n =n1+n2+n3+ (49)

In the limit of many modes, the well-known central-limit
theorem states that p(n) will be a Gaussian distribution
centered at n = (n ), with width decreasing as the square
root of the number of modes present. The departures
from exponential seen in Fig. 3 are indications of the ten-
dency of P(W) to become Gaussian when many modes
.are excited.

Physically, one may view each coherence time as an in-
dependent chance for the atoms to emit a spontaneous
photon, which would be amplified to the macroscopic lev-
el. In a pure single-mode case it would be most likely that
the atoms do not emit a photon (negative exponential dis-
tribution). As more modes are added, it becomes less like-
ly that all modes will fail to emit a photon (departure
from exponential).

When I ~L /gL is small ( && 1) but ~ is large ( && I ), a
single temporal mode and many spatial modes are excited.
The Stokes emission is temporally coherent but spatially
incoherent. As ~ increases, the number of spatial modes
increases as ~, causing the peak of P(W') to move to-
ward the mean energy ( W). This behavior is analogous
to that observed above as the number of tempor'al modes
was increased. Again an equation of the form of Eq. (49)
applies, where n; is the number of photons emitted into
the ith spatial mode.

When both I ~L /gL and ~ are much larger than unity,
the Stokes emission is temporally and spatially incoherent.
The number of spatial-temporal modes that are signifi-
antly excited is approximately given by ~ I ~L, /gL.

Again the peak of the distribution P(H') moves toward
the mean energy as this number increases.

In conclusion, it has been found that microscopic quan-
tum fluctuations associated with spontaneous Ram an
scattering can give rise to large fluctuations in the tota1
energy of generated Stokes pulses. This occurs for pulses
containing macroscopic amounts (say, Ipj, or 10' pho-
tons) of energy. The fluctuations are in great excess of the
shot noise limit. As the Fresnel number M and/or the ra-
tio I ~L /gL increases, the Stokes emission becomes spa-
tially and/or temporally incoherent, and the pulse-energy
distribution function P(W') narrows. It has been shown

how to determine the spatial and temporal coherence
modes from knowledge of the Stokes field correlation
function, using concepts known in classical coherence
theory 14 '

1 5 1 8

The present theory is restricted to Fresnel numbers not
less than about unity, although the precise range of validi-

ty is difficult to ascertain. For smaller Fresnel numbers,
numerical simulations of the type in Ref. 23 may prove to
be useful.

We would like to thank K. Rzyzewski, E. Wolf, A.
Szoke, and F. Mattar for stimulating discussions. %'e
wish to acknowledge that three-dimensional solutions of
the SRS equations were independently, and first, obtained
by P. Drummond. This work was supported by the
Joint Services Optics Program. -

APPENDIX A: PARAXIAL SOLUTION
OF MAXWELL-BLOCH EQUATIONS

A method is presented here for solving the coupled
equations (2) and (5), which may be written in the moving
frame, where r = t —z/e,

Q(r, i)= —I Q(r, t) i~~Et.—(~)Eq+'(r, ~)+F(r,~),
1

(A 1)

VT+2iks Ez+'(r, t) =
Bz

2~z~s
EL, (~)Q(r, t) .

c (A2)

In obtaining these equations, the paraxial approximation
was used, i.e., r) Ez+ /Bz «k&BEs+'/Bz. Also, use was
made of the slowly-varying-envelope approximation, i.e.,
BG/B~&&~G, where G stands for either Ez+', EL, or Q,
and co is ms, col, or m31, respectively. Finally, it has been
assumed that EL (~) is independent of x and y throughout
a cylindrical region in which the equations are to be
solved. Vz- above is the transverse Laplacian 8 /Bx
+$2/Qy 2

To solve Eqs. (A 1) and (A2) define the Fourier
transform variables by

G(P, k, ~)=(2~) jdz Jd pG(p, z, ~)

X exp[ i (kz +p.p)]—, (A3)

where p=(x,y) is the radial vector. In the transform
space, Eqs. (Al) and (A2) become

Q = —I'Q i ~)ELE s+'+F-,
Bv

(A4)

C
(A5)

From Eq. (A5) a solution for Es is found, which is substi-
tuted into Eq. (A4). The result is a differential equation
whose solution is

Recent experimental studies of SRS in molecular hy-
drogen have illustrated the present predictions concerning
the dependence of the pulse-energy fluctuations on Fresnel
number and collisional dephasing rate.
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i 2ksa(~)
Q(P, k, ~) =Q(P, k, 0)exp —I w—

P +2ksk

'r i 2kg[a(~) —a(~')]
+ d~'F, k, ~ exp —I

0 P +2k~k

where

a(7.) =~~~2I ~

Et (~')
~

d~' . (A7)

This solution is then substituted back into Eq. (A5) to obtain the result for E z+'(p, k, ~). In order to carry out the in-



RAYMER, %'ALMSLEY, MOSTOWSKI, AND SOBOLEWSKA

verse transform back to r space, it is convenient to change variables to p =k+P /2ks. Then the inverse transform can
be written as

Es+ (p,z,~)=
3 fd r' fdp fd f3—exp[ip(z z') —iP —(z —z')/2ks+iP (p —p')])

*E()
2

(2~) P

Q(r', 0)e "'exp[ —ia(r)/p]

+ f d~'F(r', ~')e ' ''expI i [a—(~) a(—~')]/p] (A8)

The p and P integrals above can be carried out using the calculus of residues to yield

ksKz&~(~)~(+)(r ) d r', exp
28 z —z

—ks1 Ip —p'I'
2(z —z')

&& Q(r', 0)e 'Io([4a(~)(z —z')]' )

+ f d~'F(r', ~')e "' ')Io(I4[a(~) —a(~')](z —z') j'i ) (A9)

This solution is exactly that given in Eq. (8) in the text.

APPENDIX 8: NONPARAXIAL SOLUTION
OF MAXWELL-BLOCH EQUATIONS

(j2 2K' (j
As(r, t) = AL z q(r, t), (82)

where the following variables have been defined:
—i (co&t —k&z)

As(r, t) —=&s (r, t)e

q(r, t)=—Q(r, t)e

The coupled equations (2) and (5) can be solved without

making the paraxial approximation if it is assumed that

the laser field in the cylindrical region is constant

throughout its duration, i.e., EL (r, ~) =AL, (0(i(~L, ).
The equations can then be written

a
q(r, t)= (icos+1"—)q(r, t) iK)AI A—s(r, t)+f(r, t),

Bt.

(81)

q (r, o) iK)At As(—r,s)+f(r, s)
q(r, s) =

s + l cos + j.

and Eq. (84) leads to

V — A, (r,s)
2S

c Bz

(85)

2K2
s q(r, s) sq(r, o) —q(r, ~)—

C COs v=0

2 a
A, (r,O) .

C Bz
Substituting (85) into (86) and defining the new variable

(86)

To solve these equations, define the Laplace transform
variables by

G(r, s) = d~e "G(r,~),
0

where G(r, v) stands for As, q, or f. Equation (83) then
leads to

f(r, t) =F(r, t)e

Changing to a moving-frame time ~=t —z/c, (81) and

(82) become

a
q (r, r) = (icos+ I")q (r—,~)—iKzAt As(r, ~)~ ~

a~

~s(r, s) =e "i'As(r, s),
it is found that

(&'+4')Ms(r, s) = —4m.m(r, s ),
where

(87)

(88)

+f(r,~), (83)
sz 2K,KzIAL Iz

+g
C s s+I~s

z As(r, ~) = AL, q (r, w) . (84)2 8 2K (j

c Bzd'r ccos

.s K)Kz
I

AL, I c
s+i~s+I.

Cps

—sz/c 2KzAL s(icos+1 ) sz
~(r,s)= . q(r, o)+ . f(r, s) — q(r, ~)

4~ s +E~s+ I s +i cps
As(r, O}

2 ()

c Bz
(810)
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The solution of Eq. (88) [with (87)] is

(811)
f
r —r'/

Neglecting the initial derivatives Bq(r, O)/B~ and BAs(r, O)/Bz, Eq. (811) can be inverse Laplace transformed, using
I «mg, to give

ks~2AL d „' ~)ap~ AL
~ r —r' z —z'

~s(r, t) = exp
~

r —r'
~

exp (ic—os+1 ) r— +
2m ~r —r' c C C

T

q(r', 0)Io 4~9&2
I
~L,

I I

r —r'
I

r — +2 /r —r'/

C C

1/2 '

+ «'f(r', ~'~~o 4&i&2
I ~L,

l

' r —r'
l0

/r —r'/ z —z'
+ (812)

The r' integral is over the cylinder volume. Note that this
solution contains the retarded time ~ ~r —r'~ /c —(z
—z')/c, which accounts correctly for propagation
through the medium. Also, unlike the paraxial solution,
there is no divergence of the solution as z' —+z, since the
correct Green's function, proportional to I/~ r —r' ~, has
been used. It is not possible, however, to generalize this
method to an arbitrary laser spatial or temporal profile.
In the high-gain limit, when only propagation close to the

I

z axis is important, this solution reduces to that of Ap-
pendix A.

APPENDIX C: FACTORIZATION OF SPATIAL
CORRELATION FUNCTION

Here Eqs. (33) and (34) are derived and the form of the
integral kernel U'"'(p', p) is found. The two-dimensional
spatial correlation function is given, from Eq. (19), by

1 2Ji(2~ IPi —Pzl/a)
Gp(pt pp) exp —'

2 (Pl P2) (C 1)

where p;—:
~ p; ~

. In polar coordinates the radial vectors are p;=(p; cos8;,p; sin8;), for i =1,2. Using Gegen-
bauer's theorem, Eq. (C 1) can be written as

4 ~G

Gz(p, p2) =—exp i (p—f—p2)
a

;&(g, g, )
~ JJ+&(2~p, /a)JJ+&(2w pz/a)(j+1)

i =I&
I

4W p)p2/a2
(C2)

where the prime indicates that j takes on only even values
if

~

n
~

is even and only odd values if n is odd. Thus
the integral equation (32),

2&p
a

f dp' f d8'p'G (p,p')p (p') =P 0 (p» (C3) xJJ+)
2M p'

a
(C6)

Nm(p) =e ~gl (p)e"p '
2 pa

(C4)

The 8 integration in Eq. (C3) is then easily accomplished,
leaving the radial equation

f dp' U' '(p', p)gl'"'(p') =13'I"'g1' '(p), (C5)

where the radial integral kernel is given by

may be simplified by factorizing the eigenfunctions P~(p)
into an angular part and a radial part, labeled by integers l
and k, so that

For each value of k, Eq. (C5) has an infinte number of
eigensolutions. %'e determine those with the largest eigen-
values by discretizing the p' variable and using a standard
numerical technique for matrix diagonalization. The cal-
culation typically converges for a matrix size of between
60&60 and 80&(80. Also it should be pointed out that
the sum in Eq. (C6) is truncated at j=6M, since terms
beyond this are negligible.

If only the eigenvalues, and not the eigenfunctions, are
required, a faster numerical technique is that discussed in
the Appendix of Ref. 17.
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